raze-gles/source/build/src/polymost.cpp
Mitchell Richters bbacc9e816 - factor in xdimenscale and viewingrangerecip when calculating renderSetVisibility().
* Changes performed in 0bd460d9e3 didn't take into account xdimenscale and viewingrangerecip like the days of old and this wasn't picked up in d80a32d379 or d80a32d379, where the applied fixes only appeared to work because they worked for me at 2560x1440p.
2020-07-03 14:42:41 +02:00

4345 lines
148 KiB
C++

/**************************************************************************************************
"POLYMOST" code originally written by Ken Silverman
Ken Silverman's official web site: http://www.advsys.net/ken
**************************************************************************************************/
#include "build.h"
#include "common.h"
#include "engine_priv.h"
#include "mdsprite.h"
#include "polymost.h"
#include "files.h"
#include "buildtiles.h"
#include "bitmap.h"
#include "../../glbackend/glbackend.h"
#include "c_cvars.h"
#include "gamecvars.h"
#include "v_video.h"
#include "flatvertices.h"
#include "palettecontainer.h"
#include "texturemanager.h"
#include "hw_renderstate.h"
CVAR(Bool, hw_detailmapping, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
CVAR(Bool, hw_glowmapping, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
CVARD(Bool, hw_animsmoothing, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "enable/disable model animation smoothing")
CVARD(Bool, hw_hightile, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "enable/disable hightile texture rendering")
CVARD(Bool, hw_models, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "enable/disable model rendering")
CVARD(Bool, hw_parallaxskypanning, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "enable/disable parallaxed floor/ceiling panning when drawing a parallaxing sky")
CVARD(Bool, hw_shadeinterpolate, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "enable/disable shade interpolation")
CVARD(Float, hw_shadescale, 1.0f, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "multiplier for shading")
bool hw_int_useindexedcolortextures;
CUSTOM_CVARD(Bool, hw_useindexedcolortextures, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "enable/disable indexed color texture rendering")
{
hw_int_useindexedcolortextures = self;
}
//{ "r_yshearing", "enable/disable y-shearing", (void*)&r_yshearing, CVAR_BOOL, 0, 1 }, disabled because not fully functional
// For testing - will be removed later.
CVAR(Int, skytile, 0, 0)
typedef struct { float x, cy[2], fy[2]; int32_t tag; int16_t n, p, ctag, ftag; } vsptyp;
#define VSPMAX 2048 //<- careful!
static vsptyp vsp[VSPMAX];
static int32_t gtag, viewportNodeCount;
static float xbl, xbr, xbt, xbb;
static int32_t domost_rejectcount;
#ifdef YAX_ENABLE
typedef struct { float x, cy[2]; int32_t tag; int16_t n, p, ctag; } yax_vsptyp;
static yax_vsptyp yax_vsp[YAX_MAXBUNCHES*2][VSPMAX];
typedef struct { float x0, x1, cy[2], fy[2]; } yax_hole_t;
static yax_hole_t yax_holecf[2][VSPMAX];
static int32_t yax_holencf[2];
static int32_t yax_drawcf = -1;
#endif
static float dxb1[MAXWALLSB], dxb2[MAXWALLSB];
//POGOTODO: the SCISDIST could be set to 0 now to allow close objects to render properly,
// but there's a nasty rendering bug that needs to be dug into when setting SCISDIST lower than 1
#define SCISDIST 1.f //close plane clipping distance
#define SOFTROTMAT 0
static int32_t r_pogoDebug = 0;
static float gviewxrange;
static float ghoriz, ghoriz2;
static float ghorizcorrect;
double gxyaspect;
float gyxscale, ghalfx, grhalfxdown10, grhalfxdown10x, ghalfy;
float gcosang, gsinang, gcosang2, gsinang2;
float gtang = 0.f;
static float gchang = 0, gshang = 0, gctang = 0, gstang = 0;
static float gvrcorrection = 1.f;
static vec3d_t xtex, ytex, otex, xtex2, ytex2, otex2;
static float fsearchx, fsearchy, fsearchz;
static int psectnum, pwallnum, pbottomwall, pisbottomwall, psearchstat;
static int32_t drawpoly_srepeat = 0, drawpoly_trepeat = 0;
#define MAX_DRAWPOLY_VERTS 8
static int32_t lastglpolygonmode = 0; //FUK
static int32_t r_yshearing = 0;
// used for fogcalc
static float fogresult, fogresult2;
static char ptempbuf[MAXWALLSB<<1];
// polymost ART sky control
static int32_t r_parallaxskyclamping = 1;
#define MIN_CACHETIME_PRINT 10
#define Bfabsf fabsf
static int32_t drawingskybox = 0;
static int32_t hicprecaching = 0;
static hitdata_t polymost_hitdata;
void polymost_outputGLDebugMessage(uint8_t severity, const char* format, ...)
{
}
float sectorVisibility(int sectnum)
{
// Beware of wraparound madness...
int v = sector[sectnum].visibility;
return v? ((uint8_t)(v + 16)) / 16.f : 1.f;
}
//--------------------------------------------------------------------------------------------------
//Use this for both initialization and uninitialization of OpenGL.
//in-place multiply m0=m0*m1
static float* multiplyMatrix4f(float m0[4*4], const float m1[4*4])
{
float mR[4*4];
#define multMatrix4RowCol(r, c) mR[r*4+c] = m0[r*4]*m1[c] + m0[r*4+1]*m1[c+4] + m0[r*4+2]*m1[c+8] + m0[r*4+3]*m1[c+12]
multMatrix4RowCol(0, 0);
multMatrix4RowCol(0, 1);
multMatrix4RowCol(0, 2);
multMatrix4RowCol(0, 3);
multMatrix4RowCol(1, 0);
multMatrix4RowCol(1, 1);
multMatrix4RowCol(1, 2);
multMatrix4RowCol(1, 3);
multMatrix4RowCol(2, 0);
multMatrix4RowCol(2, 1);
multMatrix4RowCol(2, 2);
multMatrix4RowCol(2, 3);
multMatrix4RowCol(3, 0);
multMatrix4RowCol(3, 1);
multMatrix4RowCol(3, 2);
multMatrix4RowCol(3, 3);
Bmemcpy(m0, mR, sizeof(float)*4*4);
return m0;
#undef multMatrix4RowCol
}
void polymost_glreset()
{
//Reset if this is -1 (meaning 1st texture call ever), or > 0 (textures in memory)
gcosang = gcosang2 = 16384.f/262144.f;
gsinang = gsinang2 = 0.f;
}
FileReader GetBaseResource(const char* fn);
static void resizeglcheck(void)
{
const int32_t ourxdimen = (windowxy2.x-windowxy1.x+1);
float ratio = 1;
const int32_t fovcorrect = (int32_t)(ourxdimen*ratio - ourxdimen);
ratio = 1.f/ratio;
GLInterface.SetViewport(windowxy1.x-(fovcorrect/2), ydim-(windowxy2.y+1),
ourxdimen+fovcorrect, windowxy2.y-windowxy1.y+1);
float m[4][4]{};
float const nearclip = 4.0f / (gxyaspect * gyxscale);
float const farclip = 65536.f;
m[0][0] = 1.f;
m[1][1] = fxdimen / (fydimen * ratio);
m[2][0] = 2.f * ghoriz2 * gstang / fxdimen;
m[2][1] = 2.f * (ghoriz2 * gctang + ghorizcorrect) / fydimen;
m[2][2] = (farclip + nearclip) / (farclip - nearclip);
m[2][3] = 1.f;
m[3][2] = -(2.f * farclip * nearclip) / (farclip - nearclip);
renderSetProjectionMatrix(&m[0][0]);
}
//(dpx,dpy) specifies an n-sided polygon. The polygon must be a convex clockwise loop.
// n must be <= 8 (assume clipping can double number of vertices)
//method: 0:solid, 1:masked(255 is transparent), 2:transluscent #1, 3:transluscent #2
// +4 means it's a sprite, so wraparound isn't needed
// drawpoly's hack globals
static int32_t pow2xsplit = 0, skyclamphack = 0, skyzbufferhack = 0, flatskyrender = 0;
static float drawpoly_alpha = 0.f;
static uint8_t drawpoly_blend = 0;
int32_t polymost_maskWallHasTranslucency(uwalltype const * const wall)
{
if (wall->cstat & CSTAT_WALL_TRANSLUCENT)
return true;
auto tex = tileGetTexture(wall->picnum);
auto si = TileFiles.FindReplacement(wall->picnum, wall->pal);
if (si && hw_hightile) tex = si->faces[0];
if (tex->GetTexelWidth() == 0 || tex->GetTexelHeight() == 0) return false;
return tex && tex->GetTranslucency();
}
int32_t polymost_spriteHasTranslucency(tspritetype const * const tspr)
{
if ((tspr->cstat & CSTAT_SPRITE_TRANSLUCENT) || (tspr->clipdist & TSPR_FLAGS_DRAW_LAST) ||
((unsigned)tspr->owner < MAXSPRITES && spriteext[tspr->owner].alpha))
return true;
auto tex = tileGetTexture(tspr->picnum);
auto si = TileFiles.FindReplacement(tspr->picnum, tspr->shade, 0);
if (si && hw_hightile) tex = si->faces[0];
if (tex->GetTexelWidth() == 0 || tex->GetTexelHeight() == 0) return false;
return tex && tex->GetTranslucency();
}
int32_t polymost_spriteIsModelOrVoxel(tspritetype const * const tspr)
{
if ((unsigned)tspr->owner < MAXSPRITES && spriteext[tspr->owner].flags&SPREXT_NOTMD)
return false;
if (hw_models && tile2model[Ptile2tile(tspr->picnum, tspr->pal)].modelid >= 0 &&
tile2model[Ptile2tile(tspr->picnum, tspr->pal)].framenum >= 0)
return true;
if (r_voxels && (tspr->cstat & CSTAT_SPRITE_ALIGNMENT) != CSTAT_SPRITE_ALIGNMENT_SLAB && tiletovox[tspr->picnum] >= 0 && voxmodels[tiletovox[tspr->picnum]])
return true;
if ((tspr->cstat & CSTAT_SPRITE_ALIGNMENT) == CSTAT_SPRITE_ALIGNMENT_SLAB && voxmodels[tspr->picnum])
return true;
return false;
}
static void polymost_updaterotmat(void)
{
//Up/down rotation
float matrix[16] = {
1.f, 0.f, 0.f, 0.f,
0.f, gchang, -gshang*gvrcorrection, 0.f,
0.f, gshang/gvrcorrection, gchang, 0.f,
0.f, 0.f, 0.f, 1.f,
};
// Tilt rotation
float tiltmatrix[16] = {
gctang, -gstang, 0.f, 0.f,
gstang, gctang, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, 0.f, 0.f, 1.f,
};
multiplyMatrix4f(matrix, tiltmatrix);
renderSetViewMatrix(matrix);
renderSetVisibility(mulscale16(g_visibility, mulscale16(xdimenscale, viewingrangerecip)) * fviewingrange * (1.f / (65536.f * 65536.f)) / r_ambientlight);
}
static void polymost_flatskyrender(vec2f_t const* const dpxy, int32_t const n, int32_t method, const vec2_16_t& tilesiz);
// Hack for Duke's camera until I can find out why this behaves erratically.
int skiptile = -1;
static void polymost_drawpoly(vec2f_t const * const dpxy, int32_t const n, int32_t method, const vec2_16_t &tilesize)
{
if (method == DAMETH_BACKFACECULL || globalpicnum == skiptile ||
#ifdef YAX_ENABLE
g_nodraw ||
#endif
(uint32_t)globalpicnum >= MAXTILES)
return;
const int32_t method_ = method;
if (n == 3)
{
if ((dpxy[0].x-dpxy[1].x) * (dpxy[2].y-dpxy[1].y) >=
(dpxy[2].x-dpxy[1].x) * (dpxy[0].y-dpxy[1].y)) return; //for triangle
}
else if (n > 3)
{
float f = 0; //f is area of polygon / 2
for (bssize_t i=n-2, j=n-1,k=0; k<n; i=j,j=k,k++)
f += (dpxy[i].x-dpxy[k].x)*dpxy[j].y;
if (f <= 0) return;
}
static int32_t skyzbufferhack_pass = 0;
if (flatskyrender && skyzbufferhack_pass == 0)
{
polymost_flatskyrender(dpxy, n, method|DAMETH_SKY, tilesize);
return;
}
if (!lookups.checkTable(globalpal))
globalpal = 0;
//Load texture (globalpicnum)
setgotpic(globalpicnum);
vec2_t tsiz = { tilesize.x, tilesize.y };
Bassert(n <= MAX_DRAWPOLY_VERTS);
int j = 0;
float px[8], py[8], dd[8], uu[8], vv[8];
for (bssize_t i=0; i<n; ++i)
{
px[j] = dpxy[i].x;
py[j] = dpxy[i].y;
dd[j] = (dpxy[i].x * xtex.d + dpxy[i].y * ytex.d + otex.d);
if (dd[j] <= 0.f) // invalid polygon
return;
uu[j] = (dpxy[i].x * xtex.u + dpxy[i].y * ytex.u + otex.u);
vv[j] = (dpxy[i].x * xtex.v + dpxy[i].y * ytex.v + otex.v);
j++;
}
while ((j >= 3) && (px[j-1] == px[0]) && (py[j-1] == py[0])) j--;
if (j < 3)
return;
int const npoints = j;
float usub = 0;
float vsub = 0;
#if 0
if (skyclamphack)
{
drawpoly_srepeat = false;
drawpoly_trepeat = false;
method = DAMETH_CLAMPED;
vec2f_t const scale = { 1.f / tsiz.x, 1.f / tsiz.y };
#if 0
usub = FLT_MAX;
vsub = FLT_MAX;
for (int i = 0; i < npoints; i++)
{
float const r = 1.f / dd[i];
float u = floor(uu[i] * r * scale.x);
float v = floor(vv[i] * r * scale.y);
if (u < usub) usub = u;
if (v < vsub) vsub = v;
}
#endif
for (int i = 0; i < npoints; i++)
{
float const r = 1.f / dd[i];
float u = uu[i] * r * scale.x - usub;
float v = vv[i] * r * scale.y - vsub;
if (u < -FLT_EPSILON || u > 1 + FLT_EPSILON) drawpoly_srepeat = true;
if (v < -FLT_EPSILON || v > 1 + FLT_EPSILON) drawpoly_trepeat = true;
}
}
#endif
polymost_outputGLDebugMessage(3, "polymost_drawpoly(dpxy:%p, n:%d, method_:%X), method: %X", dpxy, n, method_, method);
// This only takes effect for textures with their default set to SamplerClampXY.
int sampleroverride = CLAMP_NONE;
if (method & DAMETH_CLAMPED)
{
if (drawpoly_srepeat) sampleroverride |= CLAMP_Y;
if (drawpoly_trepeat) sampleroverride |= CLAMP_X;
}
int palid = TRANSLATION(Translation_Remap + curbasepal, globalpal);
bool success = GLInterface.SetTexture(globalpicnum, tileGetTexture(globalpicnum), palid, sampleroverride);
if (!success)
{
tsiz.x = tsiz.y = 1;
GLInterface.SetColorMask(false); //Hack to update Z-buffer for invalid mirror textures
}
GLInterface.SetShade(globalshade, numshades);
if ((method & DAMETH_WALL) != 0)
{
int32_t size = tilesize.y;
int32_t size2;
for (size2 = 1; size2 < size; size2 += size2) {}
if (size == size2)
GLInterface.SetNpotEmulation(0.f, 0.f);
else
{
float xOffset = 1.f / tilesize.x;
GLInterface.SetNpotEmulation((1.f*size2) / size, xOffset);
}
}
else
{
GLInterface.SetNpotEmulation(0.f, 0.f);
}
vec2_t tsiz2 = tsiz;
if (method & DAMETH_MASKPROPS)
{
SetRenderStyleFromBlend((method & DAMETH_MASKPROPS) > DAMETH_MASK, drawpoly_blend, (method & DAMETH_MASKPROPS) == DAMETH_TRANS2);
}
if (!(method & (DAMETH_WALL | DAMETH_CLAMPED | DAMETH_MASK)))
GLInterface.SetTextureMode(TM_OPAQUE);
float pc[4];
// The shade rgb from the tint is ignored here.
pc[0] = (float)globalr * (1.f / 255.f);
pc[1] = (float)globalg * (1.f / 255.f);
pc[2] = (float)globalb * (1.f / 255.f);
pc[3] = GetAlphaFromBlend(method & DAMETH_MASKPROPS, drawpoly_blend) * (1.f - drawpoly_alpha);
if (skyzbufferhack_pass)
pc[3] = 0.01f;
GLInterface.SetColor(pc[0], pc[1], pc[2], pc[3]);
vec2f_t const scale = { 1.f / tsiz2.x, 1.f / tsiz2.y };
auto data = screen->mVertexData->AllocVertices(npoints);
auto vt = data.first;
for (bssize_t i = 0; i < npoints; ++i, vt++)
{
float const r = 1.f / dd[i];
if (tileGetTexture(globalpicnum)->GetTexture()->isHardwareCanvas())
{
//update texcoords, canvas textures are upside down!
vt->SetTexCoord(
uu[i] * r * scale.x - usub,
1.f - (vv[i] * r * scale.y - vsub));
}
else
{
//update texcoords
vt->SetTexCoord(
uu[i] * r * scale.x - usub,
vv[i] * r * scale.y - vsub);
}
//update verts
vt->SetVertex(
(px[i] - ghalfx) * r * grhalfxdown10x * 1024.f,
(ghalfy - py[i]) * r * grhalfxdown10 * 1024.f,
r);
}
GLInterface.Draw(DT_TriangleFan, data.second, npoints);
GLInterface.SetTinting(-1, 0xffffff, 0xffffff);
GLInterface.SetNpotEmulation(0.f, 0.f);
GLInterface.SetTextureMode(TM_NORMAL);
if (skyzbufferhack && skyzbufferhack_pass == 0)
{
vec3d_t const bxtex = xtex, bytex = ytex, botex = otex;
xtex = xtex2, ytex = ytex2, otex = otex2;
GLInterface.SetColorMask(false);
GLInterface.Draw(DT_TriangleFan, data.second, npoints);
GLInterface.SetColorMask(true);
xtex = bxtex, ytex = bytex, otex = botex;
}
if (!success)
GLInterface.SetColorMask(true);
}
static inline void vsp_finalize_init(int32_t const vcnt)
{
for (bssize_t i=0; i<vcnt; ++i)
{
vsp[i].cy[1] = vsp[i+1].cy[0]; vsp[i].ctag = i;
vsp[i].fy[1] = vsp[i+1].fy[0]; vsp[i].ftag = i;
vsp[i].n = i+1; vsp[i].p = i-1;
// vsp[i].tag = -1;
}
vsp[vcnt-1].n = 0; vsp[0].p = vcnt-1;
//VSPMAX-1 is dummy empty node
for (bssize_t i=vcnt; i<VSPMAX; i++) { vsp[i].n = i+1; vsp[i].p = i-1; }
vsp[VSPMAX-1].n = vcnt; vsp[vcnt].p = VSPMAX-1;
}
#ifdef YAX_ENABLE
static inline void yax_vsp_finalize_init(int32_t const yaxbunch, int32_t const vcnt)
{
for (bssize_t i=0; i<vcnt; ++i)
{
yax_vsp[yaxbunch][i].cy[1] = yax_vsp[yaxbunch][i+1].cy[0]; yax_vsp[yaxbunch][i].ctag = i;
yax_vsp[yaxbunch][i].n = i+1; yax_vsp[yaxbunch][i].p = i-1;
// vsp[i].tag = -1;
}
yax_vsp[yaxbunch][vcnt-1].n = 0; yax_vsp[yaxbunch][0].p = vcnt-1;
//VSPMAX-1 is dummy empty node
for (bssize_t i=vcnt; i<VSPMAX; i++) { yax_vsp[yaxbunch][i].n = i+1; yax_vsp[yaxbunch][i].p = i-1; }
yax_vsp[yaxbunch][VSPMAX-1].n = vcnt; yax_vsp[yaxbunch][vcnt].p = VSPMAX-1;
}
#endif
#define COMBINE_STRIPS
#ifdef COMBINE_STRIPS
static inline void vsdel(int const i)
{
//Delete i
int const pi = vsp[i].p;
int const ni = vsp[i].n;
vsp[ni].p = pi;
vsp[pi].n = ni;
//Add i to empty list
vsp[i].n = vsp[VSPMAX-1].n;
vsp[i].p = VSPMAX-1;
vsp[vsp[VSPMAX-1].n].p = i;
vsp[VSPMAX-1].n = i;
}
static inline void vsmerge(int const i, int const ni)
{
vsp[i].cy[1] = vsp[ni].cy[1];
vsp[i].fy[1] = vsp[ni].fy[1];
vsdel(ni);
}
# ifdef YAX_ENABLE
static inline void yax_vsdel(int const yaxbunch, int const i)
{
//Delete i
int const pi = yax_vsp[yaxbunch][i].p;
int const ni = yax_vsp[yaxbunch][i].n;
yax_vsp[yaxbunch][ni].p = pi;
yax_vsp[yaxbunch][pi].n = ni;
//Add i to empty list
yax_vsp[yaxbunch][i].n = yax_vsp[yaxbunch][VSPMAX - 1].n;
yax_vsp[yaxbunch][i].p = VSPMAX - 1;
yax_vsp[yaxbunch][yax_vsp[yaxbunch][VSPMAX - 1].n].p = i;
yax_vsp[yaxbunch][VSPMAX - 1].n = i;
}
# endif
#endif
static inline int32_t vsinsaft(int const i)
{
//i = next element from empty list
int32_t const r = vsp[VSPMAX-1].n;
vsp[vsp[r].n].p = VSPMAX-1;
vsp[VSPMAX-1].n = vsp[r].n;
vsp[r] = vsp[i]; //copy i to r
//insert r after i
vsp[r].p = i; vsp[r].n = vsp[i].n;
vsp[vsp[i].n].p = r; vsp[i].n = r;
return r;
}
#ifdef YAX_ENABLE
static inline int32_t yax_vsinsaft(int const yaxbunch, int const i)
{
//i = next element from empty list
int32_t const r = yax_vsp[yaxbunch][VSPMAX - 1].n;
yax_vsp[yaxbunch][yax_vsp[yaxbunch][r].n].p = VSPMAX - 1;
yax_vsp[yaxbunch][VSPMAX - 1].n = yax_vsp[yaxbunch][r].n;
yax_vsp[yaxbunch][r] = yax_vsp[yaxbunch][i]; //copy i to r
//insert r after i
yax_vsp[yaxbunch][r].p = i; yax_vsp[yaxbunch][r].n = yax_vsp[yaxbunch][i].n;
yax_vsp[yaxbunch][yax_vsp[yaxbunch][i].n].p = r; yax_vsp[yaxbunch][i].n = r;
return r;
}
#endif
static int32_t domostpolymethod = DAMETH_NOMASK;
#define DOMOST_OFFSET .01f
static void polymost_clipmost(vec2f_t *dpxy, int &n, float x0, float x1, float y0top, float y0bot, float y1top, float y1bot)
{
if (y0bot < y0top || y1bot < y1top)
return;
//Clip to (x0,y0top)-(x1,y1top)
vec2f_t dp2[8];
float t0, t1;
int n2 = 0;
t1 = -((dpxy[0].x - x0) * (y1top - y0top) - (dpxy[0].y - y0top) * (x1 - x0));
for (bssize_t i=0; i<n; i++)
{
int j = i + 1;
if (j >= n)
j = 0;
t0 = t1;
t1 = -((dpxy[j].x - x0) * (y1top - y0top) - (dpxy[j].y - y0top) * (x1 - x0));
if (t0 >= 0)
dp2[n2++] = dpxy[i];
if ((t0 >= 0) != (t1 >= 0) && (t0 <= 0) != (t1 <= 0))
{
float const r = t0 / (t0 - t1);
dp2[n2] = { (dpxy[j].x - dpxy[i].x) * r + dpxy[i].x,
(dpxy[j].y - dpxy[i].y) * r + dpxy[i].y };
n2++;
}
}
if (n2 < 3)
{
n = 0;
return;
}
//Clip to (x1,y1bot)-(x0,y0bot)
t1 = -((dp2[0].x - x1) * (y0bot - y1bot) - (dp2[0].y - y1bot) * (x0 - x1));
n = 0;
for (bssize_t i = 0, j = 1; i < n2; j = ++i + 1)
{
if (j >= n2)
j = 0;
t0 = t1;
t1 = -((dp2[j].x - x1) * (y0bot - y1bot) - (dp2[j].y - y1bot) * (x0 - x1));
if (t0 >= 0)
dpxy[n++] = dp2[i];
if ((t0 >= 0) != (t1 >= 0) && (t0 <= 0) != (t1 <= 0))
{
float const r = t0 / (t0 - t1);
dpxy[n] = { (dp2[j].x - dp2[i].x) * r + dp2[i].x,
(dp2[j].y - dp2[i].y) * r + dp2[i].y };
n++;
}
}
if (n < 3)
{
n = 0;
return;
}
}
static void polymost_domost(float x0, float y0, float x1, float y1, float y0top = 0.f, float y0bot = -1.f, float y1top = 0.f, float y1bot = -1.f)
{
int const dir = (x0 < x1);
polymost_outputGLDebugMessage(3, "polymost_domost(x0:%f, y0:%f, x1:%f, y1:%f, y0top:%f, y0bot:%f, y1top:%f, y1bot:%f)",
x0, y0, x1, y1, y0top, y0bot, y1top, y1bot);
y0top -= DOMOST_OFFSET;
y1top -= DOMOST_OFFSET;
y0bot += DOMOST_OFFSET;
y1bot += DOMOST_OFFSET;
if (dir) //clip dmost (floor)
{
y0 -= DOMOST_OFFSET;
y1 -= DOMOST_OFFSET;
}
else //clip umost (ceiling)
{
if (x0 == x1) return;
swapfloat(&x0, &x1);
swapfloat(&y0, &y1);
swapfloat(&y0top, &y1top);
swapfloat(&y0bot, &y1bot);
y0 += DOMOST_OFFSET;
y1 += DOMOST_OFFSET; //necessary?
}
// Test if span is outside screen bounds
if (x1 < xbl || x0 > xbr)
{
domost_rejectcount++;
return;
}
vec2f_t dm0 = { x0 - DOMOST_OFFSET, y0 };
vec2f_t dm1 = { x1 + DOMOST_OFFSET, y1 };
float const slop = (dm1.y - dm0.y) / (dm1.x - dm0.x);
if (dm0.x < xbl)
{
dm0.y += slop*(xbl-dm0.x);
dm0.x = xbl;
}
if (dm1.x > xbr)
{
dm1.y += slop*(xbr-dm1.x);
dm1.x = xbr;
}
drawpoly_alpha = 0.f;
drawpoly_blend = 0;
vec2f_t n0, n1;
float spx[4];
int32_t spt[4];
int firstnode = vsp[0].n;
for (bssize_t newi, i=vsp[0].n; i; i=newi)
{
newi = vsp[i].n; n0.x = vsp[i].x; n1.x = vsp[newi].x;
if (dm0.x >= n1.x)
{
firstnode = i;
continue;
}
if (n0.x >= dm1.x)
break;
if (vsp[i].ctag <= 0) continue;
float const dx = n1.x-n0.x;
float const cy[2] = { vsp[i].cy[0], vsp[i].fy[0] },
cv[2] = { vsp[i].cy[1]-cy[0], vsp[i].fy[1]-cy[1] };
int scnt = 0;
//Test if left edge requires split (dm0.x,dm0.y) (nx0,cy(0)),<dx,cv(0)>
if ((dm0.x > n0.x) && (dm0.x < n1.x))
{
float const t = (dm0.x-n0.x)*cv[dir] - (dm0.y-cy[dir])*dx;
if (((!dir) && (t < 0.f)) || ((dir) && (t > 0.f)))
{ spx[scnt] = dm0.x; spt[scnt] = -1; scnt++; }
}
//Test for intersection on umost (0) and dmost (1)
float const d[2] = { ((dm0.y - dm1.y) * dx) - ((dm0.x - dm1.x) * cv[0]),
((dm0.y - dm1.y) * dx) - ((dm0.x - dm1.x) * cv[1]) };
float const n[2] = { ((dm0.y - cy[0]) * dx) - ((dm0.x - n0.x) * cv[0]),
((dm0.y - cy[1]) * dx) - ((dm0.x - n0.x) * cv[1]) };
float const fnx[2] = { dm0.x + ((n[0] / d[0]) * (dm1.x - dm0.x)),
dm0.x + ((n[1] / d[1]) * (dm1.x - dm0.x)) };
if ((Bfabsf(d[0]) > Bfabsf(n[0])) && (d[0] * n[0] >= 0.f) && (fnx[0] > n0.x) && (fnx[0] < n1.x))
spx[scnt] = fnx[0], spt[scnt++] = 0;
if ((Bfabsf(d[1]) > Bfabsf(n[1])) && (d[1] * n[1] >= 0.f) && (fnx[1] > n0.x) && (fnx[1] < n1.x))
spx[scnt] = fnx[1], spt[scnt++] = 1;
//Nice hack to avoid full sort later :)
if ((scnt >= 2) && (spx[scnt-1] < spx[scnt-2]))
{
swapfloat(&spx[scnt-1], &spx[scnt-2]);
swaplong(&spt[scnt-1], &spt[scnt-2]);
}
//Test if right edge requires split
if ((dm1.x > n0.x) && (dm1.x < n1.x))
{
float const t = (dm1.x-n0.x)*cv[dir] - (dm1.y-cy[dir])*dx;
if (((!dir) && (t < 0.f)) || ((dir) && (t > 0.f)))
{ spx[scnt] = dm1.x; spt[scnt] = -1; scnt++; }
}
vsp[i].tag = vsp[newi].tag = -1;
float const rdx = 1.f/dx;
for (bssize_t z=0, vcnt=0; z<=scnt; z++,i=vcnt)
{
float t;
if (z == scnt)
goto skip;
t = (spx[z]-n0.x)*rdx;
vcnt = vsinsaft(i);
vsp[i].cy[1] = t*cv[0] + cy[0];
vsp[i].fy[1] = t*cv[1] + cy[1];
vsp[vcnt].x = spx[z];
vsp[vcnt].cy[0] = vsp[i].cy[1];
vsp[vcnt].fy[0] = vsp[i].fy[1];
vsp[vcnt].tag = spt[z];
skip: ;
int32_t const ni = vsp[i].n; if (!ni) continue; //this 'if' fixes many bugs!
float const dx0 = vsp[i].x; if (dm0.x > dx0) continue;
float const dx1 = vsp[ni].x; if (dm1.x < dx1) continue;
n0.y = (dx0-dm0.x)*slop + dm0.y;
n1.y = (dx1-dm0.x)*slop + dm0.y;
// dx0 dx1
// ~ ~
//----------------------------
// t0+=0 t1+=0
// vsp[i].cy[0] vsp[i].cy[1]
//============================
// t0+=1 t1+=3
//============================
// vsp[i].fy[0] vsp[i].fy[1]
// t0+=2 t1+=6
//
// ny0 ? ny1 ?
int k = 4;
if ((vsp[i].tag == 0) || (n0.y <= vsp[i].cy[0]+DOMOST_OFFSET)) k--;
if ((vsp[i].tag == 1) || (n0.y >= vsp[i].fy[0]-DOMOST_OFFSET)) k++;
if ((vsp[ni].tag == 0) || (n1.y <= vsp[i].cy[1]+DOMOST_OFFSET)) k -= 3;
if ((vsp[ni].tag == 1) || (n1.y >= vsp[i].fy[1]-DOMOST_OFFSET)) k += 3;
if (!dir)
{
switch (k)
{
case 4:
case 5:
case 7:
{
vec2f_t dpxy[8] = {
{ dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, n1.y }, { dx0, n0.y }
};
int n = 4;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, vsp[i].cy[0], vsp[i].cy[1], n0.y, n1.y };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].cy[0] = n0.y;
vsp[i].cy[1] = n1.y;
vsp[i].ctag = gtag;
}
break;
case 1:
case 2:
{
vec2f_t dpxy[8] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx0, n0.y } };
int n = 3;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, vsp[i].cy[0], vsp[i].cy[1], n0.y, vsp[i].cy[1] };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].cy[0] = n0.y;
vsp[i].ctag = gtag;
}
break;
case 3:
case 6:
{
vec2f_t dpxy[8] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, n1.y } };
int n = 3;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, vsp[i].cy[0], vsp[i].cy[1], vsp[i].cy[0], n1.y };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].cy[1] = n1.y;
vsp[i].ctag = gtag;
}
break;
case 8:
{
vec2f_t dpxy[8] = {
{ dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] }
};
int n = 4;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, vsp[i].cy[0], vsp[i].cy[1], vsp[i].fy[0], vsp[i].fy[1] };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].ctag = vsp[i].ftag = -1;
}
default: break;
}
}
else
{
switch (k)
{
case 4:
case 3:
case 1:
{
vec2f_t dpxy[8] = {
{ dx0, n0.y }, { dx1, n1.y }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] }
};
int n = 4;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, n0.y, n1.y, vsp[i].fy[0], vsp[i].fy[1] };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].fy[0] = n0.y;
vsp[i].fy[1] = n1.y;
vsp[i].ftag = gtag;
}
break;
case 7:
case 6:
{
vec2f_t dpxy[8] = { { dx0, n0.y }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] } };
int n = 3;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, n0.y, vsp[i].fy[1], vsp[i].fy[0], vsp[i].fy[1] };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].fy[0] = n0.y;
vsp[i].ftag = gtag;
}
break;
case 5:
case 2:
{
vec2f_t dpxy[8] = { { dx0, vsp[i].fy[0] }, { dx1, n1.y }, { dx1, vsp[i].fy[1] } };
int n = 3;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, vsp[i].fy[0], n1.y, vsp[i].fy[0], vsp[i].fy[1] };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].fy[1] = n1.y;
vsp[i].ftag = gtag;
}
break;
case 0:
{
vec2f_t dpxy[8] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] } };
int n = 4;
polymost_clipmost(dpxy, n, x0, x1, y0top, y0bot, y1top, y1bot);
#ifdef YAX_ENABLE
if (g_nodraw)
{
if (yax_drawcf != -1)
yax_holecf[yax_drawcf][yax_holencf[yax_drawcf]++] = { dx0, dx1, vsp[i].cy[0], vsp[i].cy[1], vsp[i].fy[0], vsp[i].fy[1] };
}
else
#endif
polymost_drawpoly(dpxy, n, domostpolymethod, tilesiz[globalpicnum]);
vsp[i].ctag = vsp[i].ftag = -1;
}
default:
break;
}
}
}
}
gtag++;
//Combine neighboring vertical strips with matching collinear top&bottom edges
//This prevents x-splits from propagating through the entire scan
#ifdef COMBINE_STRIPS
int i = firstnode;
do
{
if (vsp[i].x >= dm1.x)
break;
if ((vsp[i].cy[0]+DOMOST_OFFSET*2 >= vsp[i].fy[0]) && (vsp[i].cy[1]+DOMOST_OFFSET*2 >= vsp[i].fy[1]))
vsp[i].ctag = vsp[i].ftag = -1;
int const ni = vsp[i].n;
//POGO: specially treat the viewport nodes so that we will never end up in a situation where we accidentally access the sentinel node
if (ni >= viewportNodeCount)
{
if ((vsp[i].ctag == vsp[ni].ctag) && (vsp[i].ftag == vsp[ni].ftag))
{
vsmerge(i, ni);
continue;
}
if (vsp[ni].x - vsp[i].x < DOMOST_OFFSET)
{
vsp[i].x = vsp[ni].x;
vsp[i].cy[0] = vsp[ni].cy[0];
vsp[i].fy[0] = vsp[ni].fy[0];
vsp[i].ctag = vsp[ni].ctag;
vsp[i].ftag = vsp[ni].ftag;
vsmerge(i, ni);
continue;
}
}
i = ni;
}
while (i);
#endif
}
#ifdef YAX_ENABLE
static void yax_polymost_domost(const int yaxbunch, float x0, float y0, float x1, float y1)
{
int const dir = (x0 < x1);
if (dir) //clip dmost (floor)
{
y0 -= DOMOST_OFFSET;
y1 -= DOMOST_OFFSET;
}
else //clip umost (ceiling)
{
if (x0 == x1) return;
swapfloat(&x0, &x1);
swapfloat(&y0, &y1);
y0 += DOMOST_OFFSET;
y1 += DOMOST_OFFSET; //necessary?
}
// Test if span is outside screen bounds
if (x1 < xbl || x0 > xbr)
{
domost_rejectcount++;
return;
}
vec2f_t dm0 = { x0, y0 };
vec2f_t dm1 = { x1, y1 };
float const slop = (dm1.y - dm0.y) / (dm1.x - dm0.x);
if (dm0.x < xbl)
{
dm0.y += slop*(xbl-dm0.x);
dm0.x = xbl;
}
if (dm1.x > xbr)
{
dm1.y += slop*(xbr-dm1.x);
dm1.x = xbr;
}
vec2f_t n0, n1;
float spx[4];
int32_t spt[4];
for (bssize_t newi, i=yax_vsp[yaxbunch][0].n; i; i=newi)
{
newi = yax_vsp[yaxbunch][i].n; n0.x = yax_vsp[yaxbunch][i].x; n1.x = yax_vsp[yaxbunch][newi].x;
if ((dm0.x >= n1.x) || (n0.x >= dm1.x) || (yax_vsp[yaxbunch][i].ctag <= 0)) continue;
double const dx = double(n1.x)-double(n0.x);
double const cy = yax_vsp[yaxbunch][i].cy[0],
cv = yax_vsp[yaxbunch][i].cy[1]-cy;
int scnt = 0;
//Test if left edge requires split (dm0.x,dm0.y) (nx0,cy(0)),<dx,cv(0)>
if ((dm0.x > n0.x) && (dm0.x < n1.x))
{
double const t = (dm0.x-n0.x)*cv - (dm0.y-cy)*dx;
if (((!dir) && (t <= 0.0)) || ((dir) && (t >= 0.0)))
{ spx[scnt] = dm0.x; spt[scnt] = -1; scnt++; }
}
//Test for intersection on umost (0) and dmost (1)
double const d = ((double(dm0.y) - double(dm1.y)) * dx) - ((double(dm0.x) - double(dm1.x)) * cv);
double const n = ((double(dm0.y) - cy) * dx) - ((double(dm0.x) - double(n0.x)) * cv);
double const fnx = double(dm0.x) + ((n / d) * (double(dm1.x) - double(dm0.x)));
if ((fabs(d) > fabs(n)) && (d * n >= 0.0) && (fnx > n0.x) && (fnx < n1.x))
spx[scnt] = fnx, spt[scnt++] = 0;
//Nice hack to avoid full sort later :)
if ((scnt >= 2) && (spx[scnt-1] < spx[scnt-2]))
{
swapfloat(&spx[scnt-1], &spx[scnt-2]);
swaplong(&spt[scnt-1], &spt[scnt-2]);
}
//Test if right edge requires split
if ((dm1.x > n0.x) && (dm1.x < n1.x))
{
double const t = (double(dm1.x)- double(n0.x))*cv - (double(dm1.y)- double(cy))*dx;
if (((!dir) && (t <= 0.0)) || ((dir) && (t >= 0.0)))
{ spx[scnt] = dm1.x; spt[scnt] = -1; scnt++; }
}
yax_vsp[yaxbunch][i].tag = yax_vsp[yaxbunch][newi].tag = -1;
float const rdx = 1.f/dx;
for (bssize_t z=0, vcnt=0; z<=scnt; z++,i=vcnt)
{
float t;
if (z == scnt)
goto skip;
t = (spx[z]-n0.x)*rdx;
vcnt = yax_vsinsaft(yaxbunch, i);
yax_vsp[yaxbunch][i].cy[1] = t*cv + cy;
yax_vsp[yaxbunch][vcnt].x = spx[z];
yax_vsp[yaxbunch][vcnt].cy[0] = yax_vsp[yaxbunch][i].cy[1];
yax_vsp[yaxbunch][vcnt].tag = spt[z];
skip: ;
int32_t const ni = yax_vsp[yaxbunch][i].n; if (!ni) continue; //this 'if' fixes many bugs!
float const dx0 = yax_vsp[yaxbunch][i].x; if (dm0.x > dx0) continue;
float const dx1 = yax_vsp[yaxbunch][ni].x; if (dm1.x < dx1) continue;
n0.y = (dx0-dm0.x)*slop + dm0.y;
n1.y = (dx1-dm0.x)*slop + dm0.y;
// dx0 dx1
// ~ ~
//----------------------------
// t0+=0 t1+=0
// vsp[i].cy[0] vsp[i].cy[1]
//============================
// t0+=1 t1+=3
//============================
// vsp[i].fy[0] vsp[i].fy[1]
// t0+=2 t1+=6
//
// ny0 ? ny1 ?
int k = 4;
if (!dir)
{
if ((yax_vsp[yaxbunch][i].tag == 0) || (n0.y <= yax_vsp[yaxbunch][i].cy[0]+DOMOST_OFFSET)) k--;
if ((yax_vsp[yaxbunch][ni].tag == 0) || (n1.y <= yax_vsp[yaxbunch][i].cy[1]+DOMOST_OFFSET)) k -= 3;
switch (k)
{
case 4:
{
yax_vsp[yaxbunch][i].cy[0] = n0.y;
yax_vsp[yaxbunch][i].cy[1] = n1.y;
yax_vsp[yaxbunch][i].ctag = gtag;
}
break;
case 1:
case 2:
{
yax_vsp[yaxbunch][i].cy[0] = n0.y;
yax_vsp[yaxbunch][i].ctag = gtag;
}
break;
case 3:
{
yax_vsp[yaxbunch][i].cy[1] = n1.y;
yax_vsp[yaxbunch][i].ctag = gtag;
}
break;
default: break;
}
}
else
{
if ((yax_vsp[yaxbunch][i].tag == 0) || (n0.y >= yax_vsp[yaxbunch][i].cy[0]-DOMOST_OFFSET)) k++;
if ((yax_vsp[yaxbunch][ni].tag == 0) || (n1.y >= yax_vsp[yaxbunch][i].cy[1]-DOMOST_OFFSET)) k += 3;
switch (k)
{
case 4:
{
yax_vsp[yaxbunch][i].cy[0] = n0.y;
yax_vsp[yaxbunch][i].cy[1] = n1.y;
yax_vsp[yaxbunch][i].ctag = gtag;
}
break;
case 7:
case 6:
{
yax_vsp[yaxbunch][i].cy[0] = n0.y;
yax_vsp[yaxbunch][i].ctag = gtag;
}
break;
case 5:
{
yax_vsp[yaxbunch][i].cy[1] = n1.y;
yax_vsp[yaxbunch][i].ctag = gtag;
}
break;
default:
break;
}
}
}
}
gtag++;
//Combine neighboring vertical strips with matching collinear top&bottom edges
//This prevents x-splits from propagating through the entire scan
#ifdef COMBINE_STRIPS
int i = yax_vsp[yaxbunch][0].n;
do
{
int const ni = yax_vsp[yaxbunch][i].n;
if (yax_vsp[yaxbunch][i].ctag == yax_vsp[yaxbunch][ni].ctag)
{
yax_vsp[yaxbunch][i].cy[1] = yax_vsp[yaxbunch][ni].cy[1];
yax_vsdel(yaxbunch, ni);
}
else i = ni;
}
while (i);
#endif
}
static int32_t should_clip_cfwall(float x0, float y0, float x1, float y1)
{
int const dir = (x0 < x1);
if (dir && yax_globallev >= YAX_MAXDRAWS)
return 1;
if (!dir && yax_globallev <= YAX_MAXDRAWS)
return 1;
if (dir) //clip dmost (floor)
{
y0 -= DOMOST_OFFSET;
y1 -= DOMOST_OFFSET;
}
else //clip umost (ceiling)
{
if (x0 == x1) return 1;
swapfloat(&x0, &x1);
swapfloat(&y0, &y1);
y0 += DOMOST_OFFSET;
y1 += DOMOST_OFFSET; //necessary?
}
x0 -= DOMOST_OFFSET;
x1 += DOMOST_OFFSET;
// Test if span is outside screen bounds
if (x1 < xbl || x0 > xbr)
return 1;
vec2f_t dm0 = { x0, y0 };
vec2f_t dm1 = { x1, y1 };
float const slop = (dm1.y - dm0.y) / (dm1.x - dm0.x);
if (dm0.x < xbl)
{
dm0.y += slop*(xbl-dm0.x);
dm0.x = xbl;
}
if (dm1.x > xbr)
{
dm1.y += slop*(xbr-dm1.x);
dm1.x = xbr;
}
vec2f_t n0, n1;
float spx[6], spcy[6], spfy[6];
int32_t spt[6];
for (bssize_t newi, i=vsp[0].n; i; i=newi)
{
newi = vsp[i].n; n0.x = vsp[i].x; n1.x = vsp[newi].x;
if ((dm0.x >= n1.x) || (n0.x >= dm1.x) || (vsp[i].ctag <= 0)) continue;
float const dx = n1.x-n0.x;
float const cy[2] = { vsp[i].cy[0], vsp[i].fy[0] },
cv[2] = { vsp[i].cy[1]-cy[0], vsp[i].fy[1]-cy[1] };
int scnt = 0;
spx[scnt] = n0.x; spt[scnt] = -1; scnt++;
//Test if left edge requires split (dm0.x,dm0.y) (nx0,cy(0)),<dx,cv(0)>
if ((dm0.x > n0.x) && (dm0.x < n1.x))
{
float const t = (dm0.x-n0.x)*cv[dir] - (dm0.y-cy[dir])*dx;
if (((!dir) && (t < 0.f)) || ((dir) && (t > 0.f)))
{ spx[scnt] = dm0.x; spt[scnt] = -1; scnt++; }
}
//Test for intersection on umost (0) and dmost (1)
float const d[2] = { ((dm0.y - dm1.y) * dx) - ((dm0.x - dm1.x) * cv[0]),
((dm0.y - dm1.y) * dx) - ((dm0.x - dm1.x) * cv[1]) };
float const n[2] = { ((dm0.y - cy[0]) * dx) - ((dm0.x - n0.x) * cv[0]),
((dm0.y - cy[1]) * dx) - ((dm0.x - n0.x) * cv[1]) };
float const fnx[2] = { dm0.x + ((n[0] / d[0]) * (dm1.x - dm0.x)),
dm0.x + ((n[1] / d[1]) * (dm1.x - dm0.x)) };
if ((Bfabsf(d[0]) > Bfabsf(n[0])) && (d[0] * n[0] >= 0.f) && (fnx[0] > n0.x) && (fnx[0] < n1.x))
spx[scnt] = fnx[0], spt[scnt++] = 0;
if ((Bfabsf(d[1]) > Bfabsf(n[1])) && (d[1] * n[1] >= 0.f) && (fnx[1] > n0.x) && (fnx[1] < n1.x))
spx[scnt] = fnx[1], spt[scnt++] = 1;
//Nice hack to avoid full sort later :)
if ((scnt >= 2) && (spx[scnt-1] < spx[scnt-2]))
{
swapfloat(&spx[scnt-1], &spx[scnt-2]);
swaplong(&spx[scnt-1], &spx[scnt-2]);
}
//Test if right edge requires split
if ((dm1.x > n0.x) && (dm1.x < n1.x))
{
float const t = (dm1.x-n0.x)*cv[dir] - (dm1.y-cy[dir])*dx;
if (((!dir) && (t < 0.f)) || ((dir) && (t > 0.f)))
{ spx[scnt] = dm1.x; spt[scnt] = -1; scnt++; }
}
spx[scnt] = n1.x; spt[scnt] = -1; scnt++;
float const rdx = 1.f/dx;
for (bssize_t z=0; z<scnt; z++)
{
float const t = (spx[z]-n0.x)*rdx;
spcy[z] = t*cv[0]+cy[0];
spfy[z] = t*cv[1]+cy[1];
}
for (bssize_t z=0; z<scnt-1; z++)
{
float const dx0 = spx[z];
float const dx1 = spx[z+1];
n0.y = (dx0-dm0.x)*slop + dm0.y;
n1.y = (dx1-dm0.x)*slop + dm0.y;
// dx0 dx1
// ~ ~
//----------------------------
// t0+=0 t1+=0
// vsp[i].cy[0] vsp[i].cy[1]
//============================
// t0+=1 t1+=3
//============================
// vsp[i].fy[0] vsp[i].fy[1]
// t0+=2 t1+=6
//
// ny0 ? ny1 ?
int k = 4;
if (dir)
{
if ((spt[z] == 0) || (n0.y <= spcy[z]+DOMOST_OFFSET)) k--;
if ((spt[z+1] == 0) || (n1.y <= spcy[z+1]+DOMOST_OFFSET)) k -= 3;
if (k != 0)
return 1;
}
else
{
if ((spt[z] == 1) || (n0.y >= spfy[z]-DOMOST_OFFSET)) k++;
if ((spt[z+1] == 1) || (n1.y >= spfy[z+1]-DOMOST_OFFSET)) k += 3;
if (k != 8)
return 1;
}
}
}
return 0;
}
#endif
// variables that are set to ceiling- or floor-members, depending
// on which one is processed right now
static int32_t global_cf_z;
static float global_cf_xpanning, global_cf_ypanning, global_cf_heinum;
static int32_t global_cf_shade, global_cf_pal, global_cf_fogpal;
static float (*global_getzofslope_func)(usectorptr_t, float, float);
static void polymost_internal_nonparallaxed(vec2f_t n0, vec2f_t n1, float ryp0, float ryp1, float x0, float x1,
float y0, float y1, int32_t sectnum)
{
int const have_floor = sectnum & MAXSECTORS;
sectnum &= ~MAXSECTORS;
auto const sec = (usectorptr_t)&sector[sectnum];
// comments from floor code:
//(singlobalang/-16384*(sx-ghalfx) + 0*(sy-ghoriz) + (cosviewingrangeglobalang/16384)*ghalfx)*d + globalposx = u*16
//(cosglobalang/ 16384*(sx-ghalfx) + 0*(sy-ghoriz) + (sinviewingrangeglobalang/16384)*ghalfx)*d + globalposy = v*16
//( 0*(sx-ghalfx) + 1*(sy-ghoriz) + ( 0)*ghalfx)*d + globalposz/16 = (sec->floorz/16)
float ft[4] = { fglobalposx, fglobalposy, fcosglobalang, fsinglobalang };
polymost_outputGLDebugMessage(3, "polymost_internal_nonparallaxed(n0:{x:%f, y:%f}, n1:{x:%f, y:%f}, ryp0:%f, ryp1:%f, x0:%f, x1:%f, y0:%f, y1:%f, sectnum:%d)",
n0.x, n0.y, n1.x, n1.y, ryp0, ryp1, x0, x1, y0, y1, sectnum);
if (globalorientation & 64)
{
//relative alignment
vec2_t const xy = { wall[wall[sec->wallptr].point2].x - wall[sec->wallptr].x,
wall[wall[sec->wallptr].point2].y - wall[sec->wallptr].y };
float r;
if (globalorientation & 2)
{
int i = krecipasm(nsqrtasm(uhypsq(xy.x,xy.y)));
r = i * (1.f/1073741824.f);
}
else
{
int i = nsqrtasm(uhypsq(xy.x,xy.y)); if (i == 0) i = 1024; else i = tabledivide32(1048576, i);
r = i * (1.f/1048576.f);
}
vec2f_t const fxy = { xy.x*r, xy.y*r };
ft[0] = ((float)(globalposx - wall[sec->wallptr].x)) * fxy.x + ((float)(globalposy - wall[sec->wallptr].y)) * fxy.y;
ft[1] = ((float)(globalposy - wall[sec->wallptr].y)) * fxy.x - ((float)(globalposx - wall[sec->wallptr].x)) * fxy.y;
ft[2] = fcosglobalang * fxy.x + fsinglobalang * fxy.y;
ft[3] = fsinglobalang * fxy.x - fcosglobalang * fxy.y;
globalorientation ^= (!(globalorientation & 4)) ? 32 : 16;
}
xtex.d = 0;
ytex.d = gxyaspect;
if (!(globalorientation&2) && global_cf_z-globalposz) // PK 2012: don't allow div by zero
ytex.d /= (double)(global_cf_z-globalposz);
otex.d = -ghoriz * ytex.d;
if (globalorientation & 8)
{
ft[0] *= (1.f / 8.f);
ft[1] *= -(1.f / 8.f);
ft[2] *= (1.f / 2097152.f);
ft[3] *= (1.f / 2097152.f);
}
else
{
ft[0] *= (1.f / 16.f);
ft[1] *= -(1.f / 16.f);
ft[2] *= (1.f / 4194304.f);
ft[3] *= (1.f / 4194304.f);
}
xtex.u = ft[3] * -(1.f / 65536.f) * (double)viewingrange;
xtex.v = ft[2] * -(1.f / 65536.f) * (double)viewingrange;
ytex.u = ft[0] * ytex.d;
ytex.v = ft[1] * ytex.d;
otex.u = ft[0] * otex.d;
otex.v = ft[1] * otex.d;
otex.u += (ft[2] - xtex.u) * ghalfx;
otex.v -= (ft[3] + xtex.v) * ghalfx;
//Texture flipping
if (globalorientation&4)
{
swapdouble(&xtex.u, &xtex.v);
swapdouble(&ytex.u, &ytex.v);
swapdouble(&otex.u, &otex.v);
}
if (globalorientation&16) { xtex.u = -xtex.u; ytex.u = -ytex.u; otex.u = -otex.u; }
if (globalorientation&32) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; }
//Texture panning
vec2f_t fxy = { global_cf_xpanning * ((float)(1 << widthBits(globalpicnum))) * (1.0f / 256.f),
global_cf_ypanning * ((float)(1 << heightBits(globalpicnum))) * (1.0f / 256.f) };
if ((globalorientation&(2+64)) == (2+64)) //Hack for panning for slopes w/ relative alignment
{
float r = global_cf_heinum * (1.0f / 4096.f);
r = polymost_invsqrt_approximation(r * r + 1);
if (!(globalorientation & 4))
fxy.y *= r;
else
fxy.x *= r;
}
ytex.u += ytex.d*fxy.x; otex.u += otex.d*fxy.x;
ytex.v += ytex.d*fxy.y; otex.v += otex.d*fxy.y;
if (globalorientation&2) //slopes
{
//Pick some point guaranteed to be not collinear to the 1st two points
vec2f_t dxy = { n1.y - n0.y, n0.x - n1.x };
float const dxyr = polymost_invsqrt_approximation(dxy.x * dxy.x + dxy.y * dxy.y);
dxy.x *= dxyr * 4096.f;
dxy.y *= dxyr * 4096.f;
vec2f_t const oxy = { n0.x + dxy.x, n0.y + dxy.y };
float const ox2 = (oxy.y - fglobalposy) * gcosang - (oxy.x - fglobalposx) * gsinang;
float oy2 = 1.f / ((oxy.x - fglobalposx) * gcosang2 + (oxy.y - fglobalposy) * gsinang2);
double const px[3] = { x0, x1, (double)ghalfx * ox2 * oy2 + ghalfx };
oy2 *= gyxscale;
double py[3] = { ryp0 + (double)ghoriz, ryp1 + (double)ghoriz, oy2 + (double)ghoriz };
vec3d_t const duv[3] = {
{ (px[0] * xtex.d + py[0] * ytex.d + otex.d),
(px[0] * xtex.u + py[0] * ytex.u + otex.u),
(px[0] * xtex.v + py[0] * ytex.v + otex.v)
},
{ (px[1] * xtex.d + py[1] * ytex.d + otex.d),
(px[1] * xtex.u + py[1] * ytex.u + otex.u),
(px[1] * xtex.v + py[1] * ytex.v + otex.v)
},
{ (px[2] * xtex.d + py[2] * ytex.d + otex.d),
(px[2] * xtex.u + py[2] * ytex.u + otex.u),
(px[2] * xtex.v + py[2] * ytex.v + otex.v)
}
};
py[0] = y0;
py[1] = y1;
py[2] = double(global_getzofslope_func((usectorptr_t)&sector[sectnum], oxy.x, oxy.y) - globalposz) * oy2 + ghoriz;
vec3f_t oxyz[2] = { { (float)(py[1] - py[2]), (float)(py[2] - py[0]), (float)(py[0] - py[1]) },
{ (float)(px[2] - px[1]), (float)(px[0] - px[2]), (float)(px[1] - px[0]) } };
float const r = 1.f / (oxyz[0].x * px[0] + oxyz[0].y * px[1] + oxyz[0].z * px[2]);
xtex.d = (oxyz[0].x * duv[0].d + oxyz[0].y * duv[1].d + oxyz[0].z * duv[2].d) * r;
xtex.u = (oxyz[0].x * duv[0].u + oxyz[0].y * duv[1].u + oxyz[0].z * duv[2].u) * r;
xtex.v = (oxyz[0].x * duv[0].v + oxyz[0].y * duv[1].v + oxyz[0].z * duv[2].v) * r;
ytex.d = (oxyz[1].x * duv[0].d + oxyz[1].y * duv[1].d + oxyz[1].z * duv[2].d) * r;
ytex.u = (oxyz[1].x * duv[0].u + oxyz[1].y * duv[1].u + oxyz[1].z * duv[2].u) * r;
ytex.v = (oxyz[1].x * duv[0].v + oxyz[1].y * duv[1].v + oxyz[1].z * duv[2].v) * r;
otex.d = duv[0].d - px[0] * xtex.d - py[0] * ytex.d;
otex.u = duv[0].u - px[0] * xtex.u - py[0] * ytex.u;
otex.v = duv[0].v - px[0] * xtex.v - py[0] * ytex.v;
if (globalorientation&64) //Hack for relative alignment on slopes
{
float r = global_cf_heinum * (1.0f / 4096.f);
r = Bsqrtf(r*r+1);
if (!(globalorientation&4)) { xtex.v *= r; ytex.v *= r; otex.v *= r; }
else { xtex.u *= r; ytex.u *= r; otex.u *= r; }
}
}
domostpolymethod = (globalorientation>>7) & DAMETH_MASKPROPS;
pow2xsplit = 0;
drawpoly_alpha = 0.f;
drawpoly_blend = 0;
if (have_floor)
{
if (globalposz > getflorzofslope(sectnum, globalposx, globalposy))
domostpolymethod = DAMETH_BACKFACECULL; //Back-face culling
if (domostpolymethod & DAMETH_MASKPROPS)
GLInterface.EnableBlend(true);
polymost_domost(x0, y0, x1, y1); //flor
}
else
{
if (globalposz < getceilzofslope(sectnum, globalposx, globalposy))
domostpolymethod = DAMETH_BACKFACECULL; //Back-face culling
if (domostpolymethod & DAMETH_MASKPROPS)
GLInterface.EnableBlend(true);
polymost_domost(x1, y1, x0, y0); //ceil
}
if (domostpolymethod & DAMETH_MASKPROPS)
GLInterface.EnableBlend(false);
domostpolymethod = DAMETH_NOMASK;
}
static void calc_ypanning(int32_t refposz, float ryp0, float ryp1,
float x0, float x1, uint8_t ypan, uint8_t yrepeat,
int32_t dopancor, const vec2_16_t &tilesize)
{
float const t0 = ((float)(refposz-globalposz))*ryp0 + ghoriz;
float const t1 = ((float)(refposz-globalposz))*ryp1 + ghoriz;
float t = (float(xtex.d*x0 + otex.d) * (float)yrepeat) / ((x1-x0) * ryp0 * 2048.f);
int i = 1<< heightBits(globalpicnum);
if (i < tilesize.y) i <<= 1;
float const fy = (float)(ypan * i) * (1.f / 256.f);
xtex.v = double(t0 - t1) * t;
ytex.v = double(x1 - x0) * t;
otex.v = -xtex.v * x0 - ytex.v * t0 + fy * otex.d;
xtex.v += fy * xtex.d;
ytex.v += fy * ytex.d;
}
static inline int32_t testvisiblemost(float const x0, float const x1)
{
for (bssize_t i=vsp[0].n, newi; i; i=newi)
{
newi = vsp[i].n;
if ((x0 < vsp[newi].x) && (vsp[i].x < x1) && (vsp[i].ctag >= 0))
return 1;
}
return 0;
}
static inline int polymost_getclosestpointonwall(vec2_t const * const pos, int32_t dawall, vec2_t * const n)
{
vec2_t const w = { wall[dawall].x, wall[dawall].y };
vec2_t const d = { POINT2(dawall).x - w.x, POINT2(dawall).y - w.y };
int64_t i = d.x * ((int64_t)pos->x - w.x) + d.y * ((int64_t)pos->y - w.y);
if (i < 0)
return 1;
int64_t const j = (int64_t)d.x * d.x + (int64_t)d.y * d.y;
if (i > j)
return 1;
i = tabledivide64((i << 15), j) << 15;
n->x = w.x + ((d.x * i) >> 30);
n->y = w.y + ((d.y * i) >> 30);
return 0;
}
static float fgetceilzofslope(usectorptr_t sec, float dax, float day)
{
if (!(sec->ceilingstat&2))
return float(sec->ceilingz);
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = nsqrtasm(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->ceilingz;
float const j = (d.x*(day-w.y)-d.y*(dax-w.x))*(1.f/8.f);
return float(sec->ceilingz) + (sec->ceilingheinum*j)/i;
}
static float fgetflorzofslope(usectorptr_t sec, float dax, float day)
{
if (!(sec->floorstat&2))
return float(sec->floorz);
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = nsqrtasm(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->floorz;
float const j = (d.x*(day-w.y)-d.y*(dax-w.x))*(1.f/8.f);
return float(sec->floorz) + (sec->floorheinum*j)/i;
}
static void fgetzsofslope(usectorptr_t sec, float dax, float day, float* ceilz, float *florz)
{
*ceilz = float(sec->ceilingz); *florz = float(sec->floorz);
if (((sec->ceilingstat|sec->floorstat)&2) != 2)
return;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const d = { wal2->x - wal->x, wal2->y - wal->y };
int const i = nsqrtasm(uhypsq(d.x,d.y))<<5;
if (i == 0) return;
float const j = (d.x*(day-wal->y)-d.y*(dax-wal->x))*(1.f/8.f);
if (sec->ceilingstat&2)
*ceilz += (sec->ceilingheinum*j)/i;
if (sec->floorstat&2)
*florz += (sec->floorheinum*j)/i;
}
static void polymost_flatskyrender(vec2f_t const* const dpxy, int32_t const n, int32_t method, const vec2_16_t &tilesiz)
{
flatskyrender = 0;
vec2f_t xys[8];
auto f = GLInterface.useMapFog;
GLInterface.useMapFog = false;
// Transform polygon to sky coordinates
for (int i = 0; i < n; i++)
{
vec3f_t const o = { dpxy[i].x-ghalfx, dpxy[i].y-ghalfy, ghalfx / gvrcorrection };
//Up/down rotation
vec3d_t v = { o.x, o.y * gchang - o.z * gshang, o.z * gchang + o.y * gshang };
float const r = (ghalfx / gvrcorrection) / v.z;
xys[i].x = v.x * r + ghalfx;
xys[i].y = v.y * r + ghalfy;
}
float const fglobalang = fix16_to_float(qglobalang);
int32_t dapyscale, dapskybits, dapyoffs, daptileyscale;
int8_t const * dapskyoff = getpsky(globalpicnum, &dapyscale, &dapskybits, &dapyoffs, &daptileyscale);
ghoriz = (qglobalhoriz*(1.f/65536.f)-float(ydimen>>1))*dapyscale*(1.f/65536.f)+float(ydimen>>1)+ghorizcorrect;
float const dd = fxdimen*.0000001f; //Adjust sky depth based on screen size!
float vv[2];
float t = (float)((1<<(widthBits(globalpicnum)))<<dapskybits);
vv[1] = dd*((float)xdimscale*fviewingrange) * (1.f/(daptileyscale*65536.f));
vv[0] = dd*((float)((tilesiz.y>>1)+dapyoffs)) - vv[1]*ghoriz;
int ti = (1<<(heightBits(globalpicnum))); if (ti != tilesiz.y) ti += ti;
vec3f_t o;
skyclamphack = 0;
xtex.d = xtex.v = 0;
ytex.d = ytex.u = 0;
otex.d = dd;
xtex.u = otex.d * (t * double(((uint64_t)xdimscale * yxaspect) * viewingrange)) *
(1.0 / (16384.0 * 65536.0 * 65536.0 * 5.0 * 1024.0));
ytex.v = vv[1];
otex.v = hw_parallaxskypanning ? vv[0] + dd*(float)global_cf_ypanning*(float)ti*(1.f/256.f) : vv[0];
float x0 = xys[0].x, x1 = xys[0].x;
for (bssize_t i=n-1; i>=1; i--)
{
if (xys[i].x < x0) x0 = xys[i].x;
if (xys[i].x > x1) x1 = xys[i].x;
}
int const npot = (1<<(widthBits(globalpicnum))) != tileWidth(globalpicnum);
int const xpanning = (hw_parallaxskypanning?global_cf_xpanning:0);
int picnumbak = globalpicnum;
ti = globalpicnum;
o.y = fviewingrange/(ghalfx*256.f); o.z = 1.f/o.y;
int y = ((int32_t)(((x0-ghalfx)*o.y)+fglobalang)>>(11-dapskybits));
float fx = x0;
skyclamphack = true; // Hack to make Blood's skies show properly.
do
{
globalpicnum = dapskyoff[y&((1<<dapskybits)-1)]+ti;
if (skytile > 0)
globalpicnum = skytile;
if (npot)
{
fx = ((float)((y<<(11-dapskybits))-fglobalang))*o.z+ghalfx;
int tang = (y<<(11-dapskybits))&2047;
otex.u = otex.d*(t*((float)(tang)) * (1.f/2048.f) + xpanning) - xtex.u*fx;
}
else
otex.u = otex.d*(t*((float)(fglobalang-(y<<(11-dapskybits)))) * (1.f/2048.f) + xpanning) - xtex.u*ghalfx;
y++;
o.x = fx; fx = ((float)((y<<(11-dapskybits))-fglobalang))*o.z+ghalfx;
if (fx > x1) { fx = x1; ti = -1; }
vec3d_t otexbak = otex, xtexbak = xtex, ytexbak = ytex;
// Transform texture mapping factors
vec2f_t fxy[3] = { { ghalfx * (1.f - 0.25f), ghalfy * (1.f - 0.25f) },
{ ghalfx, ghalfy * (1.f + 0.25f) },
{ ghalfx * (1.f + 0.25f), ghalfy * (1.f - 0.25f) } };
vec3d_t duv[3] = {
{ (fxy[0].x * xtex.d + fxy[0].y * ytex.d + otex.d),
(fxy[0].x * xtex.u + fxy[0].y * ytex.u + otex.u),
(fxy[0].x * xtex.v + fxy[0].y * ytex.v + otex.v)
},
{ (fxy[1].x * xtex.d + fxy[1].y * ytex.d + otex.d),
(fxy[1].x * xtex.u + fxy[1].y * ytex.u + otex.u),
(fxy[1].x * xtex.v + fxy[1].y * ytex.v + otex.v)
},
{ (fxy[2].x * xtex.d + fxy[2].y * ytex.d + otex.d),
(fxy[2].x * xtex.u + fxy[2].y * ytex.u + otex.u),
(fxy[2].x * xtex.v + fxy[2].y * ytex.v + otex.v)
}
};
vec2f_t fxyt[3];
vec3d_t duvt[3];
for (int i = 0; i < 3; i++)
{
vec2f_t const o = { fxy[i].x-ghalfx, fxy[i].y-ghalfy };
vec3f_t const o2 = { o.x, o.y, ghalfx / gvrcorrection };
//Up/down rotation (backwards)
vec3d_t v = { o2.x, o2.y * gchang + o2.z * gshang, o2.z * gchang - o2.y * gshang };
float const r = (ghalfx / gvrcorrection) / v.z;
fxyt[i].x = v.x * r + ghalfx;
fxyt[i].y = v.y * r + ghalfy;
duvt[i].d = duv[i].d*r;
duvt[i].u = duv[i].u*r;
duvt[i].v = duv[i].v*r;
}
vec3f_t oxyz[2] = { { (float)(fxyt[1].y - fxyt[2].y), (float)(fxyt[2].y - fxyt[0].y), (float)(fxyt[0].y - fxyt[1].y) },
{ (float)(fxyt[2].x - fxyt[1].x), (float)(fxyt[0].x - fxyt[2].x), (float)(fxyt[1].x - fxyt[0].x) } };
float const rr = 1.f / (oxyz[0].x * fxyt[0].x + oxyz[0].y * fxyt[1].x + oxyz[0].z * fxyt[2].x);
xtex.d = (oxyz[0].x * duvt[0].d + oxyz[0].y * duvt[1].d + oxyz[0].z * duvt[2].d) * rr;
xtex.u = (oxyz[0].x * duvt[0].u + oxyz[0].y * duvt[1].u + oxyz[0].z * duvt[2].u) * rr;
xtex.v = (oxyz[0].x * duvt[0].v + oxyz[0].y * duvt[1].v + oxyz[0].z * duvt[2].v) * rr;
ytex.d = (oxyz[1].x * duvt[0].d + oxyz[1].y * duvt[1].d + oxyz[1].z * duvt[2].d) * rr;
ytex.u = (oxyz[1].x * duvt[0].u + oxyz[1].y * duvt[1].u + oxyz[1].z * duvt[2].u) * rr;
ytex.v = (oxyz[1].x * duvt[0].v + oxyz[1].y * duvt[1].v + oxyz[1].z * duvt[2].v) * rr;
otex.d = duvt[0].d - fxyt[0].x * xtex.d - fxyt[0].y * ytex.d;
otex.u = duvt[0].u - fxyt[0].x * xtex.u - fxyt[0].y * ytex.u;
otex.v = duvt[0].v - fxyt[0].x * xtex.v - fxyt[0].y * ytex.v;
vec2f_t cxy[8];
vec2f_t cxy2[8];
int n2 = 0, n3 = 0;
// Clip to o.x
for (bssize_t i=0; i<n; i++)
{
int const j = i < n-1 ? i + 1 : 0;
if (xys[i].x >= o.x)
cxy[n2++] = xys[i];
if ((xys[i].x >= o.x) != (xys[j].x >= o.x))
{
float const r = (o.x - xys[i].x) / (xys[j].x - xys[i].x);
cxy[n2++] = { o.x, (xys[j].y - xys[i].y) * r + xys[i].y };
}
}
// Clip to fx
for (bssize_t i=0; i<n2; i++)
{
int const j = i < n2-1 ? i + 1 : 0;
if (cxy[i].x <= fx)
cxy2[n3++] = cxy[i];
if ((cxy[i].x <= fx) != (cxy[j].x <= fx))
{
float const r = (fx - cxy[i].x) / (cxy[j].x - cxy[i].x);
cxy2[n3++] = { fx, (cxy[j].y - cxy[i].y) * r + cxy[i].y };
}
}
// Transform back to polymost coordinates
for (int i = 0; i < n3; i++)
{
vec3f_t const o = { cxy2[i].x-ghalfx, cxy2[i].y-ghalfy, ghalfx / gvrcorrection };
//Up/down rotation
vec3d_t v = { o.x, o.y * gchang + o.z * gshang, o.z * gchang - o.y * gshang };
float const r = (ghalfx / gvrcorrection) / v.z;
cxy[i].x = v.x * r + ghalfx;
cxy[i].y = v.y * r + ghalfy;
}
polymost_drawpoly(cxy, n3, method|DAMETH_WALL, tilesiz);
otex = otexbak, xtex = xtexbak, ytex = ytexbak;
}
while (ti >= 0);
skyclamphack = false;
globalpicnum = picnumbak;
flatskyrender = 1;
GLInterface.useMapFog = f;
}
static void polymost_drawalls(int32_t const bunch)
{
drawpoly_alpha = 0.f;
drawpoly_blend = 0;
int32_t const sectnum = thesector[bunchfirst[bunch]];
auto const sec = (usectorptr_t)&sector[sectnum];
float const fglobalang = fix16_to_float(qglobalang);
polymost_outputGLDebugMessage(3, "polymost_drawalls(bunch:%d)", bunch);
//DRAW WALLS SECTION!
for (bssize_t z=bunchfirst[bunch]; z>=0; z=bunchp2[z])
{
int32_t const wallnum = thewall[z];
auto const wal = (uwallptr_t)&wall[wallnum];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
int32_t const nextsectnum = wal->nextsector;
auto const nextsec = nextsectnum>=0 ? (usectorptr_t)&sector[nextsectnum] : NULL;
//Offset&Rotate 3D coordinates to screen 3D space
vec2f_t walpos = { (float)(wal->x-globalposx), (float)(wal->y-globalposy) };
vec2f_t p0 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 };
vec2f_t const op0 = p0;
walpos = { (float)(wal2->x - globalposx),
(float)(wal2->y - globalposy) };
vec2f_t p1 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 };
//Clip to close parallel-screen plane
vec2f_t n0, n1;
float t0, t1;
if (p0.y < SCISDIST)
{
if (p1.y < SCISDIST) continue;
t0 = (SCISDIST-p0.y)/(p1.y-p0.y);
p0 = { (p1.x-p0.x)*t0+p0.x, SCISDIST };
n0 = { (wal2->x-wal->x)*t0+wal->x,
(wal2->y-wal->y)*t0+wal->y };
}
else
{
t0 = 0.f;
n0 = { (float)wal->x, (float)wal->y };
}
if (p1.y < SCISDIST)
{
t1 = (SCISDIST-op0.y)/(p1.y-op0.y);
p1 = { (p1.x-op0.x)*t1+op0.x, SCISDIST };
n1 = { (wal2->x-wal->x)*t1+wal->x,
(wal2->y-wal->y)*t1+wal->y };
}
else
{
t1 = 1.f;
n1 = { (float)wal2->x, (float)wal2->y };
}
float ryp0 = 1.f/p0.y, ryp1 = 1.f/p1.y;
//Generate screen coordinates for front side of wall
float const x0 = ghalfx*p0.x*ryp0 + ghalfx, x1 = ghalfx*p1.x*ryp1 + ghalfx;
if (x1 <= x0) continue;
ryp0 *= gyxscale; ryp1 *= gyxscale;
float cz, fz;
fgetzsofslope((usectorptr_t)&sector[sectnum],n0.x,n0.y,&cz,&fz);
float const cy0 = (cz-globalposz)*ryp0 + ghoriz, fy0 = (fz-globalposz)*ryp0 + ghoriz;
fgetzsofslope((usectorptr_t)&sector[sectnum],n1.x,n1.y,&cz,&fz);
float const cy1 = (cz-globalposz)*ryp1 + ghoriz, fy1 = (fz-globalposz)*ryp1 + ghoriz;
xtex2.d = (ryp0 - ryp1)*gxyaspect / (x0 - x1);
ytex2.d = 0;
otex2.d = ryp0 * gxyaspect - xtex2.d*x0;
xtex2.u = ytex2.u = otex2.u = 0;
xtex2.v = ytex2.v = otex2.v = 0;
#ifdef YAX_ENABLE
yax_holencf[YAX_FLOOR] = 0;
yax_drawcf = YAX_FLOOR;
#endif
// Floor
globalpicnum = sec->floorpicnum;
globalshade = sec->floorshade;
globalpal = sec->floorpal;
globalorientation = sec->floorstat;
GLInterface.SetVisibility(sectorVisibility(sectnum));
tileUpdatePicnum(&globalpicnum, sectnum);
int32_t dapyscale, dapskybits, dapyoffs, daptileyscale;
int8_t const * dapskyoff = getpsky(globalpicnum, &dapyscale, &dapskybits, &dapyoffs, &daptileyscale);
global_cf_fogpal = sec->fogpal;
global_cf_shade = sec->floorshade, global_cf_pal = sec->floorpal; global_cf_z = sec->floorz; // REFACT
global_cf_xpanning = sec->floorxpanning; global_cf_ypanning = sec->floorypanning, global_cf_heinum = sec->floorheinum;
global_getzofslope_func = &fgetflorzofslope;
if (globalpicnum >= r_rortexture && globalpicnum < r_rortexture + r_rortexturerange && r_rorphase == 0)
{
xtex.d = (ryp0-ryp1)*gxyaspect / (x0-x1);
ytex.d = 0;
otex.d = ryp0*gxyaspect - xtex.d*x0;
xtex.u = ytex.u = otex.u = 0;
xtex.v = ytex.v = otex.v = 0;
polymost_domost(x0, fy0, x1, fy1);
}
else if (!(globalorientation&1))
{
int32_t fz = getflorzofslope(sectnum, globalposx, globalposy);
if (globalposz <= fz)
polymost_internal_nonparallaxed(n0, n1, ryp0, ryp1, x0, x1, fy0, fy1, sectnum | MAXSECTORS);
}
else if ((nextsectnum < 0) || (!(sector[nextsectnum].floorstat&1)))
{
//Use clamping for tiled sky textures
//(don't wrap around edges if the sky use multiple panels)
for (bssize_t i=(1<<dapskybits)-1; i>0; i--)
if (dapskyoff[i] != dapskyoff[i-1])
{ skyclamphack = r_parallaxskyclamping; break; }
skyzbufferhack = 1;
//if (!hw_hightile || !hicfindskybox(globalpicnum, globalpal))
{
float const ghorizbak = ghoriz;
pow2xsplit = 0;
skyclamphack = 0;
flatskyrender = 1;
//globalshade += globvis2*xdimscale*fviewingrange*(1.f / (64.f * 65536.f * 256.f * 1024.f));
GLInterface.SetVisibility(0.f);
polymost_domost(x0,fy0,x1,fy1);
flatskyrender = 0;
ghoriz = ghorizbak;
}
#if 0
else //NOTE: code copied from ceiling code... lots of duplicated stuff :/
{
//Skybox code for parallax floor!
float sky_t0, sky_t1; // _nx0, _ny0, _nx1, _ny1;
float sky_ryp0, sky_ryp1, sky_x0, sky_x1, sky_cy0, sky_fy0, sky_cy1, sky_fy1, sky_ox0, sky_ox1;
static vec2f_t const skywal[4] = { { -512, -512 }, { 512, -512 }, { 512, 512 }, { -512, 512 } };
pow2xsplit = 0;
skyclamphack = 1;
for (bssize_t i=0; i<4; i++)
{
walpos = skywal[i&3];
vec2f_t skyp0 = { walpos.y * gcosang - walpos.x * gsinang,
walpos.x * gcosang2 + walpos.y * gsinang2 };
walpos = skywal[(i + 1) & 3];
vec2f_t skyp1 = { walpos.y * gcosang - walpos.x * gsinang,
walpos.x * gcosang2 + walpos.y * gsinang2 };
vec2f_t const oskyp0 = skyp0;
//Clip to close parallel-screen plane
if (skyp0.y < SCISDIST)
{
if (skyp1.y < SCISDIST) continue;
sky_t0 = (SCISDIST - skyp0.y) / (skyp1.y - skyp0.y);
skyp0 = { (skyp1.x - skyp0.x) * sky_t0 + skyp0.x, SCISDIST };
}
else { sky_t0 = 0.f; }
if (skyp1.y < SCISDIST)
{
sky_t1 = (SCISDIST - oskyp0.y) / (skyp1.y - oskyp0.y);
skyp1 = { (skyp1.x - oskyp0.x) * sky_t1 + oskyp0.x, SCISDIST };
}
else { sky_t1 = 1.f; }
sky_ryp0 = 1.f/skyp0.y; sky_ryp1 = 1.f/skyp1.y;
//Generate screen coordinates for front side of wall
sky_x0 = ghalfx*skyp0.x*sky_ryp0 + ghalfx;
sky_x1 = ghalfx*skyp1.x*sky_ryp1 + ghalfx;
if ((sky_x1 <= sky_x0) || (sky_x0 >= x1) || (x0 >= sky_x1)) continue;
sky_ryp0 *= gyxscale; sky_ryp1 *= gyxscale;
sky_cy0 = -8192.f*sky_ryp0 + ghoriz;
sky_fy0 = 8192.f*sky_ryp0 + ghoriz;
sky_cy1 = -8192.f*sky_ryp1 + ghoriz;
sky_fy1 = 8192.f*sky_ryp1 + ghoriz;
sky_ox0 = sky_x0; sky_ox1 = sky_x1;
//Make sure: x0<=_x0<_x1<=x1
float nfy[2] = { fy0, fy1 };
if (sky_x0 < x0)
{
float const t = (x0-sky_x0)/(sky_x1-sky_x0);
sky_cy0 += (sky_cy1-sky_cy0)*t;
sky_fy0 += (sky_fy1-sky_fy0)*t;
sky_x0 = x0;
}
else if (sky_x0 > x0) nfy[0] += (sky_x0-x0)*(fy1-fy0)/(x1-x0);
if (sky_x1 > x1)
{
float const t = (x1-sky_x1)/(sky_x1-sky_x0);
sky_cy1 += (sky_cy1-sky_cy0)*t;
sky_fy1 += (sky_fy1-sky_fy0)*t;
sky_x1 = x1;
}
else if (sky_x1 < x1) nfy[1] += (sky_x1-x1)*(fy1-fy0)/(x1-x0);
// (skybox floor)
//(_x0,_fy0)-(_x1,_fy1)
// (skybox wall)
//(_x0,_cy0)-(_x1,_cy1)
// (skybox ceiling)
//(_x0,nfy0)-(_x1,nfy1)
//floor of skybox
drawingskybox = 6; //floor/6th texture/index 5 of skybox
float const ft[4] = { 512 / 16, 512 / -16, fcosglobalang * (1.f / 2147483648.f),
fsinglobalang * (1.f / 2147483648.f) };
xtex.d = 0;
ytex.d = gxyaspect*(1.0/4194304.0);
otex.d = -ghoriz*ytex.d;
xtex.u = ft[3]*fviewingrange*(-1.0/65536.0);
xtex.v = ft[2]*fviewingrange*(-1.0/65536.0);
ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d;
otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d;
otex.u += (ft[2]-xtex.u)*ghalfx;
otex.v -= (ft[3]+xtex.v)*ghalfx;
xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; //y-flip skybox floor
if ((sky_fy0 > nfy[0]) && (sky_fy1 > nfy[1]))
polymost_domost(sky_x0,sky_fy0,sky_x1,sky_fy1);
else if ((sky_fy0 > nfy[0]) != (sky_fy1 > nfy[1]))
{
//(ox,oy) is intersection of: (_x0,_fy0)-(_x1,_fy1)
// (_x0,nfy0)-(_x1,nfy1)
float const t = (sky_fy0-nfy[0])/(nfy[1]-nfy[0]-sky_fy1+sky_fy0);
vec2f_t const o = { sky_x0 + (sky_x1-sky_x0)*t, sky_fy0 + (sky_fy1-sky_fy0)*t };
if (nfy[0] > sky_fy0)
{
polymost_domost(sky_x0,nfy[0],o.x,o.y);
polymost_domost(o.x,o.y,sky_x1,sky_fy1);
}
else
{
polymost_domost(sky_x0,sky_fy0,o.x,o.y);
polymost_domost(o.x,o.y,sky_x1,nfy[1]);
}
}
else
polymost_domost(sky_x0,nfy[0],sky_x1,nfy[1]);
//wall of skybox
drawingskybox = i+1; //i+1th texture/index i of skybox
xtex.d = (sky_ryp0-sky_ryp1)*gxyaspect*(1.0/512.0) / (sky_ox0-sky_ox1);
ytex.d = 0;
otex.d = sky_ryp0*gxyaspect*(1.0/512.0) - xtex.d*sky_ox0;
xtex.u = (sky_t0*sky_ryp0 - sky_t1*sky_ryp1)*gxyaspect*(64.0/512.0) / (sky_ox0-sky_ox1);
otex.u = sky_t0*sky_ryp0*gxyaspect*(64.0/512.0) - xtex.u*sky_ox0;
ytex.u = 0;
sky_t0 = -8192.f*sky_ryp0 + ghoriz;
sky_t1 = -8192.f*sky_ryp1 + ghoriz;
float const t = ((xtex.d*sky_ox0 + otex.d)*8.f) / ((sky_ox1-sky_ox0) * sky_ryp0 * 2048.f);
xtex.v = (sky_t0-sky_t1)*t;
ytex.v = (sky_ox1-sky_ox0)*t;
otex.v = -xtex.v*sky_ox0 - ytex.v*sky_t0;
if ((sky_cy0 > nfy[0]) && (sky_cy1 > nfy[1]))
polymost_domost(sky_x0,sky_cy0,sky_x1,sky_cy1);
else if ((sky_cy0 > nfy[0]) != (sky_cy1 > nfy[1]))
{
//(ox,oy) is intersection of: (_x0,_fy0)-(_x1,_fy1)
// (_x0,nfy0)-(_x1,nfy1)
float const t = (sky_cy0-nfy[0])/(nfy[1]-nfy[0]-sky_cy1+sky_cy0);
vec2f_t const o = { sky_x0 + (sky_x1 - sky_x0) * t, sky_cy0 + (sky_cy1 - sky_cy0) * t };
if (nfy[0] > sky_cy0)
{
polymost_domost(sky_x0,nfy[0],o.x,o.y);
polymost_domost(o.x,o.y,sky_x1,sky_cy1);
}
else
{
polymost_domost(sky_x0,sky_cy0,o.x,o.y);
polymost_domost(o.x,o.y,sky_x1,nfy[1]);
}
}
else
polymost_domost(sky_x0,nfy[0],sky_x1,nfy[1]);
}
//Ceiling of skybox
drawingskybox = 5; //ceiling/5th texture/index 4 of skybox
float const ft[4] = { 512 / 16, -512 / -16, fcosglobalang * (1.f / 2147483648.f),
fsinglobalang * (1.f / 2147483648.f) };
xtex.d = 0;
ytex.d = gxyaspect*(-1.0/4194304.0);
otex.d = -ghoriz*ytex.d;
xtex.u = ft[3]*fviewingrange*(-1.0/65536.0);
xtex.v = ft[2]*fviewingrange*(-1.0/65536.0);
ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d;
otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d;
otex.u += (ft[2]-xtex.u)*ghalfx;
otex.v -= (ft[3]+xtex.v)*ghalfx;
polymost_domost(x0,fy0,x1,fy1);
skyclamphack = 0;
drawingskybox = 0;
}
#endif
skyclamphack = 0;
skyzbufferhack = 0;
}
// Ceiling
#ifdef YAX_ENABLE
yax_holencf[YAX_CEILING] = 0;
yax_drawcf = YAX_CEILING;
#endif
globalpicnum = sec->ceilingpicnum;
globalshade = sec->ceilingshade;
globalpal = sec->ceilingpal;
globalorientation = sec->ceilingstat;
GLInterface.SetVisibility(sectorVisibility(sectnum));
tileUpdatePicnum(&globalpicnum, sectnum);
dapskyoff = getpsky(globalpicnum, &dapyscale, &dapskybits, &dapyoffs, &daptileyscale);
global_cf_fogpal = sec->fogpal;
global_cf_shade = sec->ceilingshade, global_cf_pal = sec->ceilingpal; global_cf_z = sec->ceilingz; // REFACT
global_cf_xpanning = sec->ceilingxpanning; global_cf_ypanning = sec->ceilingypanning, global_cf_heinum = sec->ceilingheinum;
global_getzofslope_func = &fgetceilzofslope;
if (globalpicnum >= r_rortexture && globalpicnum < r_rortexture + r_rortexturerange && r_rorphase == 0)
{
xtex.d = (ryp0-ryp1)*gxyaspect / (x0-x1);
ytex.d = 0;
otex.d = ryp0*gxyaspect - xtex.d*x0;
xtex.u = ytex.u = otex.u = 0;
xtex.v = ytex.v = otex.v = 0;
polymost_domost(x1, cy1, x0, cy0);
}
else if (!(globalorientation&1))
{
int32_t cz = getceilzofslope(sectnum, globalposx, globalposy);
if (globalposz >= cz)
polymost_internal_nonparallaxed(n0, n1, ryp0, ryp1, x0, x1, cy0, cy1, sectnum);
}
else if ((nextsectnum < 0) || (!(sector[nextsectnum].ceilingstat&1)))
{
//Use clamping for tiled sky textures
//(don't wrap around edges if the sky use multiple panels)
for (bssize_t i=(1<<dapskybits)-1; i>0; i--)
if (dapskyoff[i] != dapskyoff[i-1])
{ skyclamphack = r_parallaxskyclamping; break; }
skyzbufferhack = 1;
//if (!hw_hightile || !hicfindskybox(globalpicnum, globalpal))
{
float const ghorizbak = ghoriz;
pow2xsplit = 0;
skyclamphack = 0;
flatskyrender = 1;
//globalshade += globvis2 * xdimscale * fviewingrange * (1.f / (64.f * 65536.f * 256.f * 1024.f));
GLInterface.SetVisibility(0.f);
polymost_domost(x1, cy1, x0, cy0);
flatskyrender = 0;
ghoriz = ghorizbak;
}
#if 0
else
{
//Skybox code for parallax ceiling!
float sky_t0, sky_t1; // _nx0, _ny0, _nx1, _ny1;
float sky_ryp0, sky_ryp1, sky_x0, sky_x1, sky_cy0, sky_fy0, sky_cy1, sky_fy1, sky_ox0, sky_ox1;
static vec2f_t const skywal[4] = { { -512, -512 }, { 512, -512 }, { 512, 512 }, { -512, 512 } };
pow2xsplit = 0;
skyclamphack = 1;
for (bssize_t i=0; i<4; i++)
{
walpos = skywal[i&3];
vec2f_t skyp0 = { walpos.y * gcosang - walpos.x * gsinang,
walpos.x * gcosang2 + walpos.y * gsinang2 };
walpos = skywal[(i + 1) & 3];
vec2f_t skyp1 = { walpos.y * gcosang - walpos.x * gsinang,
walpos.x * gcosang2 + walpos.y * gsinang2 };
vec2f_t const oskyp0 = skyp0;
//Clip to close parallel-screen plane
if (skyp0.y < SCISDIST)
{
if (skyp1.y < SCISDIST) continue;
sky_t0 = (SCISDIST - skyp0.y) / (skyp1.y - skyp0.y);
skyp0 = { (skyp1.x - skyp0.x) * sky_t0 + skyp0.x, SCISDIST };
}
else { sky_t0 = 0.f; }
if (skyp1.y < SCISDIST)
{
sky_t1 = (SCISDIST - oskyp0.y) / (skyp1.y - oskyp0.y);
skyp1 = { (skyp1.x - oskyp0.x) * sky_t1 + oskyp0.x, SCISDIST };
}
else { sky_t1 = 1.f; }
sky_ryp0 = 1.f/skyp0.y; sky_ryp1 = 1.f/skyp1.y;
//Generate screen coordinates for front side of wall
sky_x0 = ghalfx*skyp0.x*sky_ryp0 + ghalfx;
sky_x1 = ghalfx*skyp1.x*sky_ryp1 + ghalfx;
if ((sky_x1 <= sky_x0) || (sky_x0 >= x1) || (x0 >= sky_x1)) continue;
sky_ryp0 *= gyxscale; sky_ryp1 *= gyxscale;
sky_cy0 = -8192.f*sky_ryp0 + ghoriz;
sky_fy0 = 8192.f*sky_ryp0 + ghoriz;
sky_cy1 = -8192.f*sky_ryp1 + ghoriz;
sky_fy1 = 8192.f*sky_ryp1 + ghoriz;
sky_ox0 = sky_x0; sky_ox1 = sky_x1;
//Make sure: x0<=_x0<_x1<=x1
float ncy[2] = { cy0, cy1 };
if (sky_x0 < x0)
{
float const t = (x0-sky_x0)/(sky_x1-sky_x0);
sky_cy0 += (sky_cy1-sky_cy0)*t;
sky_fy0 += (sky_fy1-sky_fy0)*t;
sky_x0 = x0;
}
else if (sky_x0 > x0) ncy[0] += (sky_x0-x0)*(cy1-cy0)/(x1-x0);
if (sky_x1 > x1)
{
float const t = (x1-sky_x1)/(sky_x1-sky_x0);
sky_cy1 += (sky_cy1-sky_cy0)*t;
sky_fy1 += (sky_fy1-sky_fy0)*t;
sky_x1 = x1;
}
else if (sky_x1 < x1) ncy[1] += (sky_x1-x1)*(cy1-cy0)/(x1-x0);
// (skybox ceiling)
//(_x0,_cy0)-(_x1,_cy1)
// (skybox wall)
//(_x0,_fy0)-(_x1,_fy1)
// (skybox floor)
//(_x0,ncy0)-(_x1,ncy1)
//ceiling of skybox
drawingskybox = 5; //ceiling/5th texture/index 4 of skybox
float const ft[4] = { 512 / 16, -512 / -16, fcosglobalang * (1.f / 2147483648.f),
fsinglobalang * (1.f / 2147483648.f) };
xtex.d = 0;
ytex.d = gxyaspect*(-1.0/4194304.0);
otex.d = -ghoriz*ytex.d;
xtex.u = ft[3]*fviewingrange*(-1.0/65536.0);
xtex.v = ft[2]*fviewingrange*(-1.0/65536.0);
ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d;
otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d;
otex.u += (ft[2]-xtex.u)*ghalfx;
otex.v -= (ft[3]+xtex.v)*ghalfx;
if ((sky_cy0 < ncy[0]) && (sky_cy1 < ncy[1]))
polymost_domost(sky_x1,sky_cy1,sky_x0,sky_cy0);
else if ((sky_cy0 < ncy[0]) != (sky_cy1 < ncy[1]))
{
//(ox,oy) is intersection of: (_x0,_cy0)-(_x1,_cy1)
// (_x0,ncy0)-(_x1,ncy1)
float const t = (sky_cy0-ncy[0])/(ncy[1]-ncy[0]-sky_cy1+sky_cy0);
vec2f_t const o = { sky_x0 + (sky_x1-sky_x0)*t, sky_cy0 + (sky_cy1-sky_cy0)*t };
if (ncy[0] < sky_cy0)
{
polymost_domost(o.x,o.y,sky_x0,ncy[0]);
polymost_domost(sky_x1,sky_cy1,o.x,o.y);
}
else
{
polymost_domost(o.x,o.y,sky_x0,sky_cy0);
polymost_domost(sky_x1,ncy[1],o.x,o.y);
}
}
else
polymost_domost(sky_x1,ncy[1],sky_x0,ncy[0]);
//wall of skybox
drawingskybox = i+1; //i+1th texture/index i of skybox
xtex.d = (sky_ryp0-sky_ryp1)*gxyaspect*(1.0/512.0) / (sky_ox0-sky_ox1);
ytex.d = 0;
otex.d = sky_ryp0*gxyaspect*(1.0/512.0) - xtex.d*sky_ox0;
xtex.u = (sky_t0*sky_ryp0 - sky_t1*sky_ryp1)*gxyaspect*(64.0/512.0) / (sky_ox0-sky_ox1);
otex.u = sky_t0*sky_ryp0*gxyaspect*(64.0/512.0) - xtex.u*sky_ox0;
ytex.u = 0;
sky_t0 = -8192.f*sky_ryp0 + ghoriz;
sky_t1 = -8192.f*sky_ryp1 + ghoriz;
float const t = ((xtex.d*sky_ox0 + otex.d)*8.f) / ((sky_ox1-sky_ox0) * sky_ryp0 * 2048.f);
xtex.v = (sky_t0-sky_t1)*t;
ytex.v = (sky_ox1-sky_ox0)*t;
otex.v = -xtex.v*sky_ox0 - ytex.v*sky_t0;
if ((sky_fy0 < ncy[0]) && (sky_fy1 < ncy[1]))
polymost_domost(sky_x1,sky_fy1,sky_x0,sky_fy0);
else if ((sky_fy0 < ncy[0]) != (sky_fy1 < ncy[1]))
{
//(ox,oy) is intersection of: (_x0,_fy0)-(_x1,_fy1)
// (_x0,ncy0)-(_x1,ncy1)
float const t = (sky_fy0-ncy[0])/(ncy[1]-ncy[0]-sky_fy1+sky_fy0);
vec2f_t const o = { sky_x0 + (sky_x1 - sky_x0) * t, sky_fy0 + (sky_fy1 - sky_fy0) * t };
if (ncy[0] < sky_fy0)
{
polymost_domost(o.x,o.y,sky_x0,ncy[0]);
polymost_domost(sky_x1,sky_fy1,o.x,o.y);
}
else
{
polymost_domost(o.x,o.y,sky_x0,sky_fy0);
polymost_domost(sky_x1,ncy[1],o.x,o.y);
}
}
else
polymost_domost(sky_x1,ncy[1],sky_x0,ncy[0]);
}
//Floor of skybox
drawingskybox = 6; //floor/6th texture/index 5 of skybox
float const ft[4] = { 512 / 16, 512 / -16, fcosglobalang * (1.f / 2147483648.f),
fsinglobalang * (1.f / 2147483648.f) };
xtex.d = 0;
ytex.d = gxyaspect*(1.0/4194304.0);
otex.d = -ghoriz*ytex.d;
xtex.u = ft[3]*fviewingrange*(-1.0/65536.0);
xtex.v = ft[2]*fviewingrange*(-1.0/65536.0);
ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d;
otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d;
otex.u += (ft[2]-xtex.u)*ghalfx;
otex.v -= (ft[3]+xtex.v)*ghalfx;
xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; //y-flip skybox floor
polymost_domost(x1,cy1,x0,cy0);
skyclamphack = 0;
drawingskybox = 0;
}
#endif
skyclamphack = 0;
skyzbufferhack = 0;
}
#ifdef YAX_ENABLE
if (g_nodraw)
{
int32_t baselevp, checkcf, i, j;
int16_t bn[2];
baselevp = (yax_globallev == YAX_MAXDRAWS);
yax_getbunches(sectnum, &bn[0], &bn[1]);
checkcf = (bn[0]>=0) + ((bn[1]>=0)<<1);
if (!baselevp)
checkcf &= (1<<yax_globalcf);
for (i=0; i<2; i++)
if (checkcf&(1<<i))
{
if ((haveymost[bn[i]>>3]&pow2char[bn[i]&7])==0)
{
// init yax *most arrays for that bunch
haveymost[bn[i]>>3] |= pow2char[bn[i]&7];
yax_vsp[bn[i]*2][1].x = xbl;
yax_vsp[bn[i]*2][2].x = xbr;
yax_vsp[bn[i]*2][1].cy[0] = xbb;
yax_vsp[bn[i]*2][2].cy[0] = xbb;
yax_vsp_finalize_init(bn[i]*2, 3);
yax_vsp[bn[i]*2+1][1].x = xbl;
yax_vsp[bn[i]*2+1][2].x = xbr;
yax_vsp[bn[i]*2+1][1].cy[0] = xbt;
yax_vsp[bn[i]*2+1][2].cy[0] = xbt;
yax_vsp_finalize_init(bn[i]*2+1, 3);
}
for (j = 0; j < yax_holencf[i]; j++)
{
yax_hole_t *hole = &yax_holecf[i][j];
yax_polymost_domost(bn[i]*2, hole->x0, hole->cy[0], hole->x1, hole->cy[1]);
yax_polymost_domost(bn[i]*2+1, hole->x1, hole->fy[1], hole->x0, hole->fy[0]);
}
}
}
#endif
// Wall
#ifdef YAX_ENABLE
yax_drawcf = -1;
#endif
xtex.d = (ryp0-ryp1)*gxyaspect / (x0-x1);
ytex.d = 0;
otex.d = ryp0*gxyaspect - xtex.d*x0;
xtex.u = (t0*ryp0 - t1*ryp1)*gxyaspect*(float)wal->xrepeat*8.f / (x0-x1);
otex.u = t0*ryp0*gxyaspect*wal->xrepeat*8.0 - xtex.u*x0;
otex.u += (float)wal->xpanning*otex.d;
xtex.u += (float)wal->xpanning*xtex.d;
ytex.u = 0;
float const ogux = xtex.u, oguy = ytex.u, oguo = otex.u;
Bassert(domostpolymethod == DAMETH_NOMASK);
domostpolymethod = DAMETH_WALL;
#ifdef YAX_ENABLE
if (yax_nomaskpass==0 || !yax_isislandwall(wallnum, !yax_globalcf) || (yax_nomaskdidit=1, 0))
#endif
if (nextsectnum >= 0)
{
fgetzsofslope((usectorptr_t)&sector[nextsectnum],n0.x,n0.y,&cz,&fz);
float const ocy0 = (cz-globalposz)*ryp0 + ghoriz;
float const ofy0 = (fz-globalposz)*ryp0 + ghoriz;
fgetzsofslope((usectorptr_t)&sector[nextsectnum],n1.x,n1.y,&cz,&fz);
float const ocy1 = (cz-globalposz)*ryp1 + ghoriz;
float const ofy1 = (fz-globalposz)*ryp1 + ghoriz;
if ((wal->cstat&48) == 16) maskwall[maskwallcnt++] = z;
if (((cy0 < ocy0) || (cy1 < ocy1)) && (!((sec->ceilingstat&sector[nextsectnum].ceilingstat)&1)))
{
globalpicnum = wal->picnum; globalshade = wal->shade; globalpal = (int32_t)((uint8_t)wal->pal);
GLInterface.SetVisibility(sectorVisibility(sectnum));
globalorientation = wal->cstat;
tileUpdatePicnum(&globalpicnum, wallnum+16384);
int i = (!(wal->cstat&4)) ? sector[nextsectnum].ceilingz : sec->ceilingz;
// over
calc_ypanning(i, ryp0, ryp1, x0, x1, wal->ypanning, wal->yrepeat, wal->cstat&4, tilesiz[globalpicnum]);
if (wal->cstat&8) //xflip
{
float const t = (float)(wal->xrepeat*8 + wal->xpanning*2);
xtex.u = xtex.d*t - xtex.u;
ytex.u = ytex.d*t - ytex.u;
otex.u = otex.d*t - otex.u;
}
if (wal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip
pow2xsplit = 1;
#ifdef YAX_ENABLE
if (should_clip_cfwall(x1,cy1,x0,cy0))
#endif
polymost_domost(x1,ocy1,x0,ocy0,cy1,ocy1,cy0,ocy0);
if (wal->cstat&8) { xtex.u = ogux; ytex.u = oguy; otex.u = oguo; }
}
if (((ofy0 < fy0) || (ofy1 < fy1)) && (!((sec->floorstat&sector[nextsectnum].floorstat)&1)))
{
uwallptr_t nwal;
if (!(wal->cstat&2)) nwal = wal;
else
{
nwal = (uwallptr_t)&wall[wal->nextwall];
otex.u += (float)(nwal->xpanning - wal->xpanning) * otex.d;
xtex.u += (float)(nwal->xpanning - wal->xpanning) * xtex.d;
ytex.u += (float)(nwal->xpanning - wal->xpanning) * ytex.d;
}
globalpicnum = nwal->picnum; globalshade = nwal->shade; globalpal = (int32_t)((uint8_t)nwal->pal);
GLInterface.SetVisibility(sectorVisibility(sectnum));
globalorientation = nwal->cstat;
tileUpdatePicnum(&globalpicnum, wallnum+16384);
int i = (!(nwal->cstat&4)) ? sector[nextsectnum].floorz : sec->ceilingz;
// under
calc_ypanning(i, ryp0, ryp1, x0, x1, nwal->ypanning, wal->yrepeat, !(nwal->cstat&4), tilesiz[globalpicnum]);
if (wal->cstat&8) //xflip
{
float const t = (float)(wal->xrepeat*8 + nwal->xpanning*2);
xtex.u = xtex.d*t - xtex.u;
ytex.u = ytex.d*t - ytex.u;
otex.u = otex.d*t - otex.u;
}
if (nwal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip
pow2xsplit = 1;
#ifdef YAX_ENABLE
if (should_clip_cfwall(x0,fy0,x1,fy1))
#endif
polymost_domost(x0,ofy0,x1,ofy1,ofy0,fy0,ofy1,fy1);
if (wal->cstat&(2+8)) { otex.u = oguo; xtex.u = ogux; ytex.u = oguy; }
}
}
if ((nextsectnum < 0) || (wal->cstat&32)) //White/1-way wall
{
do
{
const int maskingOneWay = (nextsectnum >= 0 && (wal->cstat&32));
if (maskingOneWay)
{
vec2_t n, pos = { globalposx, globalposy };
if (!polymost_getclosestpointonwall(&pos, wallnum, &n) && klabs(pos.x - n.x) + klabs(pos.y - n.y) <= 128)
break;
}
globalpicnum = (nextsectnum < 0) ? wal->picnum : wal->overpicnum;
globalshade = wal->shade;
globalpal = wal->pal;
GLInterface.SetVisibility(sectorVisibility(sectnum));
globalorientation = wal->cstat;
tileUpdatePicnum(&globalpicnum, wallnum+16384);
int i;
int const nwcs4 = !(wal->cstat & 4);
if (nextsectnum >= 0) { i = nwcs4 ? nextsec->ceilingz : sec->ceilingz; }
else { i = nwcs4 ? sec->ceilingz : sec->floorz; }
// white / 1-way
calc_ypanning(i, ryp0, ryp1, x0, x1, wal->ypanning, wal->yrepeat, nwcs4 && !maskingOneWay, tilesiz[globalpicnum]);
if (wal->cstat&8) //xflip
{
float const t = (float) (wal->xrepeat*8 + wal->xpanning*2);
xtex.u = xtex.d*t - xtex.u;
ytex.u = ytex.d*t - ytex.u;
otex.u = otex.d*t - otex.u;
}
if (wal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip
pow2xsplit = 1;
#ifdef YAX_ENABLE
// TODO: slopes?
if (globalposz > sec->floorz && yax_isislandwall(wallnum, YAX_FLOOR))
polymost_domost(x1, fy1, x0, fy0, cy1, fy1, cy0, fy0);
else
#endif
polymost_domost(x0, cy0, x1, cy1, cy0, fy0, cy1, fy1);
} while (0);
}
domostpolymethod = DAMETH_NOMASK;
if (nextsectnum >= 0)
if ((!(gotsector[nextsectnum>>3]&pow2char[nextsectnum&7])) && testvisiblemost(x0,x1))
polymost_scansector(nextsectnum);
}
}
static int32_t polymost_bunchfront(const int32_t b1, const int32_t b2)
{
int b1f = bunchfirst[b1];
const double x2b2 = dxb2[bunchlast[b2]];
const double x1b1 = dxb1[b1f];
if (nexttowardf(x1b1, x2b2) >= x2b2)
return -1;
int b2f = bunchfirst[b2];
const double x1b2 = dxb1[b2f];
if (nexttowardf(x1b2, dxb2[bunchlast[b1]]) >= dxb2[bunchlast[b1]])
return -1;
if (nexttowardf(x1b1, x1b2) > x1b2)
{
while (nexttowardf(dxb2[b2f], x1b1) <= x1b1) b2f=bunchp2[b2f];
return wallfront(b1f, b2f);
}
while (nexttowardf(dxb2[b1f], x1b2) <= x1b2) b1f=bunchp2[b1f];
return wallfront(b1f, b2f);
}
void polymost_scansector(int32_t sectnum)
{
if (sectnum < 0) return;
if (automapping)
show2dsector.Set(sectnum);
sectorborder[0] = sectnum;
int sectorbordercnt = 1;
do
{
sectnum = sectorborder[--sectorbordercnt];
#ifdef YAX_ENABLE
if (scansector_collectsprites)
#endif
for (bssize_t z=headspritesect[sectnum]; z>=0; z=nextspritesect[z])
{
auto const spr = (uspriteptr_t)&sprite[z];
if ((spr->cstat & 0x8000 && !showinvisibility) || spr->xrepeat == 0 || spr->yrepeat == 0)
continue;
vec2_t const s = { spr->x-globalposx, spr->y-globalposy };
if ((spr->cstat&48) ||
(hw_models && tile2model[spr->picnum].modelid>=0) ||
((s.x * gcosang) + (s.y * gsinang) > 0))
{
if ((spr->cstat&(64+48))!=(64+16) ||
(r_voxels && tiletovox[spr->picnum] >= 0 && voxmodels[tiletovox[spr->picnum]]) ||
dmulscale6(sintable[(spr->ang+512)&2047],-s.x, sintable[spr->ang&2047],-s.y) > 0)
if (renderAddTsprite(z, sectnum))
break;
}
}
gotsector[sectnum>>3] |= pow2char[sectnum&7];
int const bunchfrst = numbunches;
int const onumscans = numscans;
int const startwall = sector[sectnum].wallptr;
int const endwall = sector[sectnum].wallnum + startwall;
int scanfirst = numscans;
vec2d_t p2 = { 0, 0 };
uwallptr_t wal;
int z;
for (z=startwall,wal=(uwallptr_t)&wall[z]; z<endwall; z++,wal++)
{
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2d_t const fp1 = { double(wal->x - globalposx), double(wal->y - globalposy) };
vec2d_t const fp2 = { double(wal2->x - globalposx), double(wal2->y - globalposy) };
int const nextsectnum = wal->nextsector; //Scan close sectors
if (nextsectnum >= 0 && !(wal->cstat&32) && sectorbordercnt < ARRAY_SSIZE(sectorborder))
#ifdef YAX_ENABLE
if (yax_nomaskpass==0 || !yax_isislandwall(z, !yax_globalcf) || (yax_nomaskdidit=1, 0))
#endif
if ((gotsector[nextsectnum>>3]&pow2char[nextsectnum&7]) == 0)
{
double const d = fp1.x*fp2.y - fp2.x*fp1.y;
vec2d_t const p1 = { fp2.x-fp1.x, fp2.y-fp1.y };
// this said (SCISDIST*SCISDIST*260.f), but SCISDIST is 1 and the significance of 260 isn't obvious to me
// is 260 fudged to solve a problem, and does the problem still apply to our version of the renderer?
if (d*d < (p1.x*p1.x + p1.y*p1.y) * 256.f)
{
sectorborder[sectorbordercnt++] = nextsectnum;
gotsector[nextsectnum>>3] |= pow2char[nextsectnum&7];
}
}
vec2d_t p1;
if ((z == startwall) || (wall[z-1].point2 != z))
{
p1 = { (((fp1.y * fcosglobalang) - (fp1.x * fsinglobalang)) * (1.0/64.0)),
(((fp1.x * cosviewingrangeglobalang) + (fp1.y * sinviewingrangeglobalang)) * (1.0/64.0)) };
}
else { p1 = p2; }
p2 = { (((fp2.y * fcosglobalang) - (fp2.x * fsinglobalang)) * (1.0/64.0)),
(((fp2.x * cosviewingrangeglobalang) + (fp2.y * sinviewingrangeglobalang)) * (1.0/64.0)) };
if (numscans >= MAXWALLSB-1)
{
Printf("!!numscans\n");
return;
}
//if wall is facing you...
if ((p1.y >= SCISDIST || p2.y >= SCISDIST) && (nexttoward(p1.x*p2.y, p2.x*p1.y) < p2.x*p1.y))
{
dxb1[numscans] = (p1.y >= SCISDIST) ? float(p1.x*ghalfx/p1.y + ghalfx) : -1e32f;
dxb2[numscans] = (p2.y >= SCISDIST) ? float(p2.x*ghalfx/p2.y + ghalfx) : 1e32f;
if (dxb1[numscans] < xbl)
dxb1[numscans] = xbl;
else if (dxb1[numscans] > xbr)
dxb1[numscans] = xbr;
if (dxb2[numscans] < xbl)
dxb2[numscans] = xbl;
else if (dxb2[numscans] > xbr)
dxb2[numscans] = xbr;
if (nexttowardf(dxb1[numscans], dxb2[numscans]) < dxb2[numscans])
{
thesector[numscans] = sectnum;
thewall[numscans] = z;
bunchp2[numscans] = numscans + 1;
numscans++;
}
}
if ((wall[z].point2 < z) && (scanfirst < numscans))
{
bunchp2[numscans-1] = scanfirst;
scanfirst = numscans;
}
}
for (bssize_t z=onumscans; z<numscans; z++)
{
if ((wall[thewall[z]].point2 != thewall[bunchp2[z]]) || (dxb2[z] > nexttowardf(dxb1[bunchp2[z]], dxb2[z])))
{
bunchfirst[numbunches++] = bunchp2[z];
bunchp2[z] = -1;
#ifdef YAX_ENABLE
if (scansector_retfast)
return;
#endif
}
}
for (bssize_t z=bunchfrst; z<numbunches; z++)
{
int zz;
for (zz=bunchfirst[z]; bunchp2[zz]>=0; zz=bunchp2[zz]) { }
bunchlast[z] = zz;
}
}
while (sectorbordercnt > 0);
}
/*Init viewport boundary (must be 4 point convex loop):
// (px[0],py[0]).----.(px[1],py[1])
// / \
// / \
// (px[3],py[3]).--------------.(px[2],py[2])
*/
static void polymost_initmosts(const float * px, const float * py, int const n)
{
if (n < 3) return;
int32_t imin = (px[1] < px[0]);
for (bssize_t i=n-1; i>=2; i--)
if (px[i] < px[imin]) imin = i;
int32_t vcnt = 1; //0 is dummy solid node
vsp[vcnt].x = px[imin];
vsp[vcnt].cy[0] = vsp[vcnt].fy[0] = py[imin];
vcnt++;
int i = imin+1, j = imin-1;
if (i >= n) i = 0;
if (j < 0) j = n-1;
do
{
if (px[i] < px[j])
{
if (px[i] <= vsp[vcnt-1].x) vcnt--;
vsp[vcnt].x = px[i];
vsp[vcnt].cy[0] = py[i];
int k = j+1; if (k >= n) k = 0;
//(px[k],py[k])
//(px[i],?)
//(px[j],py[j])
vsp[vcnt].fy[0] = (px[i]-px[k])*(py[j]-py[k])/(px[j]-px[k]) + py[k];
vcnt++;
i++; if (i >= n) i = 0;
}
else if (px[j] < px[i])
{
if (px[j] <= vsp[vcnt-1].x) vcnt--;
vsp[vcnt].x = px[j];
vsp[vcnt].fy[0] = py[j];
int k = i-1; if (k < 0) k = n-1;
//(px[k],py[k])
//(px[j],?)
//(px[i],py[i])
vsp[vcnt].cy[0] = (px[j]-px[k])*(py[i]-py[k])/(px[i]-px[k]) + py[k];
vcnt++;
j--; if (j < 0) j = n-1;
}
else
{
if (px[i] <= vsp[vcnt-1].x) vcnt--;
vsp[vcnt].x = px[i];
vsp[vcnt].cy[0] = py[i];
vsp[vcnt].fy[0] = py[j];
vcnt++;
i++; if (i >= n) i = 0; if (i == j) break;
j--; if (j < 0) j = n-1;
}
} while (i != j);
if (px[i] > vsp[vcnt-1].x)
{
vsp[vcnt].x = px[i];
vsp[vcnt].cy[0] = vsp[vcnt].fy[0] = py[i];
vcnt++;
}
domost_rejectcount = 0;
vsp_finalize_init(vcnt);
xbl = px[0];
xbr = px[0];
xbt = py[0];
xbb = py[0];
for (bssize_t i=n-1; i>=1; i--)
{
if (xbl > px[i]) xbl = px[i];
if (xbr < px[i]) xbr = px[i];
if (xbt > py[i]) xbt = py[i];
if (xbb < py[i]) xbb = py[i];
}
gtag = vcnt;
viewportNodeCount = vcnt;
}
void polymost_drawrooms()
{
if (videoGetRenderMode() == REND_CLASSIC) return;
polymost_outputGLDebugMessage(3, "polymost_drawrooms()");
#ifdef YAX_ENABLE
//if (yax_polymostclearzbuffer)
#endif
{
GLInterface.ClearDepth();
}
GLInterface.EnableBlend(false);
GLInterface.EnableAlphaTest(false);
GLInterface.EnableDepthTest(true);
GLInterface.SetDepthFunc(DF_LEqual);
gvrcorrection = viewingrange*(1.f/65536.f);
//if (glprojectionhacks == 2)
{
// calculates the extend of the zenith glitch
float verticalfovtan = (fviewingrange * (windowxy2.y-windowxy1.y) * 5.f) / ((float)yxaspect * (windowxy2.x-windowxy1.x) * 4.f);
float verticalfov = atanf(verticalfovtan) * (2.f / fPI);
static constexpr float const maxhorizangle = 0.6361136f; // horiz of 199 in degrees
float zenglitch = verticalfov + maxhorizangle - 0.95f; // less than 1 because the zenith glitch extends a bit
if (zenglitch > 0.f)
gvrcorrection /= (zenglitch * 2.5f) + 1.f;
}
//Polymost supports true look up/down :) Here, we convert horizon to angle.
//gchang&gshang are cos&sin of this angle (respectively)
gyxscale = ((float)xdimenscale)*(1.0f/131072.f);
gxyaspect = ((double)xyaspect*fviewingrange)*(5.0/(65536.0*262144.0));
gviewxrange = fviewingrange * fxdimen * (1.f/(32768.f*1024.f));
gcosang = fcosglobalang*(1.0f/262144.f);
gsinang = fsinglobalang*(1.0f/262144.f);
gcosang2 = gcosang * (fviewingrange * (1.0f/65536.f));
gsinang2 = gsinang * (fviewingrange * (1.0f/65536.f));
ghalfx = (float)(xdimen>>1);
ghalfy = (float)(ydimen>>1);
grhalfxdown10 = 1.f/(ghalfx*1024.f);
ghoriz = fix16_to_float(qglobalhoriz);
ghorizcorrect = fix16_to_float((100-polymostcenterhoriz)*divscale16(xdimenscale, viewingrange));
GLInterface.SetShadeInterpolate(hw_shadeinterpolate);
//global cos/sin height angle
if (r_yshearing)
{
gshang = 0.f;
gchang = 1.f;
ghoriz2 = (float)(ydimen >> 1) - (ghoriz + ghorizcorrect);
}
else
{
float r = (float)(ydimen >> 1) - (ghoriz + ghorizcorrect);
gshang = r / Bsqrtf(r * r + ghalfx * ghalfx / (gvrcorrection * gvrcorrection));
gchang = Bsqrtf(1.f - gshang * gshang);
ghoriz2 = 0.f;
}
ghoriz = (float)(ydimen>>1);
resizeglcheck();
float const ratio = 1.f;
//global cos/sin tilt angle
gctang = cosf(gtang);
gstang = sinf(gtang);
if (Bfabsf(gstang) < .001f) // This avoids nasty precision bugs in domost()
{
gstang = 0.f;
gctang = (gctang > 0.f) ? 1.f : -1.f;
}
if (inpreparemirror)
gstang = -gstang;
//Generate viewport trapezoid (for handling screen up/down)
vec3f_t p[4] = { { 0-1, 0-1+ghorizcorrect, 0 },
{ (float)(windowxy2.x + 1 - windowxy1.x + 2), 0-1+ghorizcorrect, 0 },
{ (float)(windowxy2.x + 1 - windowxy1.x + 2), (float)(windowxy2.y + 1 - windowxy1.y + 2)+ghorizcorrect, 0 },
{ 0-1, (float)(windowxy2.y + 1 - windowxy1.y + 2)+ghorizcorrect, 0 } };
for (auto & v : p)
{
//Tilt rotation (backwards)
vec2f_t const o = { (v.x-ghalfx)*ratio, (v.y-ghoriz)*ratio };
vec3f_t const o2 = { o.x*gctang + o.y*gstang, o.y*gctang - o.x*gstang + ghoriz2, ghalfx / gvrcorrection };
//Up/down rotation (backwards)
v = { o2.x, o2.y * gchang + o2.z * gshang, o2.z * gchang - o2.y * gshang };
}
if (inpreparemirror)
gstang = -gstang;
polymost_updaterotmat();
//Clip to SCISDIST plane
int n = 0;
vec3f_t p2[6];
for (bssize_t i=0; i<4; i++)
{
int const j = i < 3 ? i + 1 : 0;
if (p[i].z >= SCISDIST)
p2[n++] = p[i];
if ((p[i].z >= SCISDIST) != (p[j].z >= SCISDIST))
{
float const r = (SCISDIST - p[i].z) / (p[j].z - p[i].z);
p2[n++] = { (p[j].x - p[i].x) * r + p[i].x, (p[j].y - p[i].y) * r + p[i].y, SCISDIST };
}
}
if (n < 3)
{
GLInterface.SetDepthFunc(DF_LEqual);
return;
}
float sx[6], sy[6];
for (bssize_t i = 0; i < n; i++)
{
float const r = (ghalfx / gvrcorrection) / p2[i].z;
sx[i] = p2[i].x * r + ghalfx;
sy[i] = p2[i].y * r + ghoriz;
}
polymost_initmosts(sx, sy, n);
#ifdef YAX_ENABLE
if (yax_globallev != YAX_MAXDRAWS)
{
int i, newi;
int32_t nodrawbak = g_nodraw;
g_nodraw = 1;
for (i = yax_vsp[yax_globalbunch*2][0].n; i; i=newi)
{
newi = yax_vsp[yax_globalbunch*2][i].n;
if (!newi)
break;
polymost_domost(yax_vsp[yax_globalbunch*2][newi].x, yax_vsp[yax_globalbunch*2][i].cy[1]-DOMOST_OFFSET, yax_vsp[yax_globalbunch*2][i].x, yax_vsp[yax_globalbunch*2][i].cy[0]-DOMOST_OFFSET);
}
for (i = yax_vsp[yax_globalbunch*2+1][0].n; i; i=newi)
{
newi = yax_vsp[yax_globalbunch*2+1][i].n;
if (!newi)
break;
polymost_domost(yax_vsp[yax_globalbunch*2+1][i].x, yax_vsp[yax_globalbunch*2+1][i].cy[0]+DOMOST_OFFSET, yax_vsp[yax_globalbunch*2+1][newi].x, yax_vsp[yax_globalbunch*2+1][i].cy[1]+DOMOST_OFFSET);
}
g_nodraw = nodrawbak;
#ifdef COMBINE_STRIPS
i = vsp[0].n;
do
{
int const ni = vsp[i].n;
//POGO: specially treat the viewport nodes so that we will never end up in a situation where we accidentally access the sentinel node
if (ni >= viewportNodeCount)
{
if (Bfabsf(vsp[i].cy[1]-vsp[ni].cy[0]) < 0.1f && Bfabsf(vsp[i].fy[1]-vsp[ni].fy[0]) < 0.1f)
{
float const dx = 1.f/(vsp[ni].x-vsp[i].x);
float const dx2 = 1.f/(vsp[vsp[ni].n].x-vsp[i].x);
float const cslop[2] = { vsp[i].cy[1]-vsp[i].cy[0], vsp[ni].cy[1]-vsp[i].cy[0] };
float const fslop[2] = { vsp[i].fy[1]-vsp[i].fy[0], vsp[ni].fy[1]-vsp[i].fy[0] };
if (Bfabsf(cslop[0]*dx-cslop[1]*dx2) < 0.001f && Bfabsf(fslop[0]*dx-fslop[1]*dx2) < 0.001f)
{
vsmerge(i, ni);
continue;
}
}
}
i = ni;
}
while (i);
#endif
}
#endif
numscans = numbunches = 0;
// MASKWALL_BAD_ACCESS
// Fixes access of stale maskwall[maskwallcnt] (a "scan" index, in BUILD lingo):
maskwallcnt = 0;
// NOTE: globalcursectnum has been already adjusted in ADJUST_GLOBALCURSECTNUM.
Bassert((unsigned)globalcursectnum < MAXSECTORS);
polymost_scansector(globalcursectnum);
grhalfxdown10x = grhalfxdown10;
renderBeginScene();
if (inpreparemirror)
{
// see engine.c: INPREPAREMIRROR_NO_BUNCHES
if (numbunches > 0)
{
grhalfxdown10x = -grhalfxdown10;
polymost_drawalls(0);
numbunches--;
bunchfirst[0] = bunchfirst[numbunches];
bunchlast[0] = bunchlast[numbunches];
} else
{
inpreparemirror = 0;
}
}
while (numbunches > 0)
{
Bmemset(ptempbuf,0,numbunches+3); ptempbuf[0] = 1;
int32_t closest = 0; //Almost works, but not quite :(
for (bssize_t i=1; i<numbunches; ++i)
{
int const bnch = polymost_bunchfront(i,closest); if (bnch < 0) continue;
ptempbuf[i] = 1;
if (!bnch) { ptempbuf[closest] = 1; closest = i; }
}
for (bssize_t i=0; i<numbunches; ++i) //Double-check
{
if (ptempbuf[i]) continue;
int const bnch = polymost_bunchfront(i,closest); if (bnch < 0) continue;
ptempbuf[i] = 1;
if (!bnch) { ptempbuf[closest] = 1; closest = i; i = 0; }
}
polymost_drawalls(closest);
if (automapping)
{
for (int z=bunchfirst[closest]; z>=0; z=bunchp2[z])
show2dwall[thewall[z]>>3] |= pow2char[thewall[z]&7];
}
numbunches--;
bunchfirst[closest] = bunchfirst[numbunches];
bunchlast[closest] = bunchlast[numbunches];
}
renderFinishScene();
GLInterface.SetDepthFunc(DF_LEqual);
}
static void polymost_drawmaskwallinternal(int32_t wallIndex)
{
auto const wal = (uwallptr_t)&wall[wallIndex];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
int32_t const sectnum = wall[wal->nextwall].nextsector;
auto const sec = (usectorptr_t)&sector[sectnum];
// if (wal->nextsector < 0) return;
// Without MASKWALL_BAD_ACCESS fix:
// wal->nextsector is -1, WGR2 SVN Lochwood Hollow (Til' Death L1) (or trueror1.map)
auto const nsec = (usectorptr_t)&sector[wal->nextsector];
polymost_outputGLDebugMessage(3, "polymost_drawmaskwallinternal(wallIndex:%d)", wallIndex);
globalpicnum = wal->overpicnum;
if ((uint32_t)globalpicnum >= MAXTILES)
globalpicnum = 0;
globalorientation = (int32_t)wal->cstat;
tileUpdatePicnum(&globalpicnum, (int16_t)wallIndex+16384);
GLInterface.SetVisibility(sectorVisibility(sectnum));
globalshade = (int32_t)wal->shade;
globalpal = (int32_t)((uint8_t)wal->pal);
vec2f_t s0 = { (float)(wal->x-globalposx), (float)(wal->y-globalposy) };
vec2f_t p0 = { s0.y*gcosang - s0.x*gsinang, s0.x*gcosang2 + s0.y*gsinang2 };
vec2f_t s1 = { (float)(wal2->x-globalposx), (float)(wal2->y-globalposy) };
vec2f_t p1 = { s1.y*gcosang - s1.x*gsinang, s1.x*gcosang2 + s1.y*gsinang2 };
if ((p0.y < SCISDIST) && (p1.y < SCISDIST)) return;
//Clip to close parallel-screen plane
vec2f_t const op0 = p0;
float t0 = 0.f;
if (p0.y < SCISDIST)
{
t0 = (SCISDIST - p0.y) / (p1.y - p0.y);
p0 = { (p1.x - p0.x) * t0 + p0.x, SCISDIST };
}
float t1 = 1.f;
if (p1.y < SCISDIST)
{
t1 = (SCISDIST - op0.y) / (p1.y - op0.y);
p1 = { (p1.x - op0.x) * t1 + op0.x, SCISDIST };
}
int32_t m0 = (int32_t)((wal2->x - wal->x) * t0 + wal->x);
int32_t m1 = (int32_t)((wal2->y - wal->y) * t0 + wal->y);
int32_t cz[4], fz[4];
getzsofslope(sectnum, m0, m1, &cz[0], &fz[0]);
getzsofslope(wal->nextsector, m0, m1, &cz[1], &fz[1]);
m0 = (int32_t)((wal2->x - wal->x) * t1 + wal->x);
m1 = (int32_t)((wal2->y - wal->y) * t1 + wal->y);
getzsofslope(sectnum, m0, m1, &cz[2], &fz[2]);
getzsofslope(wal->nextsector, m0, m1, &cz[3], &fz[3]);
float ryp0 = 1.f/p0.y;
float ryp1 = 1.f/p1.y;
//Generate screen coordinates for front side of wall
float const x0 = ghalfx*p0.x*ryp0 + ghalfx;
float const x1 = ghalfx*p1.x*ryp1 + ghalfx;
if (x1 <= x0) return;
ryp0 *= gyxscale; ryp1 *= gyxscale;
xtex.d = (ryp0-ryp1)*gxyaspect / (x0-x1);
ytex.d = 0;
otex.d = ryp0*gxyaspect - xtex.d*x0;
//gux*x0 + guo = t0*wal->xrepeat*8*yp0
//gux*x1 + guo = t1*wal->xrepeat*8*yp1
xtex.u = (t0*ryp0 - t1*ryp1)*gxyaspect*(float)wal->xrepeat*8.f / (x0-x1);
otex.u = t0*ryp0*gxyaspect*(float)wal->xrepeat*8.f - xtex.u*x0;
otex.u += (float)wal->xpanning*otex.d;
xtex.u += (float)wal->xpanning*xtex.d;
ytex.u = 0;
// mask
calc_ypanning((!(wal->cstat & 4)) ? max(nsec->ceilingz, sec->ceilingz) : min(nsec->floorz, sec->floorz), ryp0, ryp1,
x0, x1, wal->ypanning, wal->yrepeat, 0, tilesiz[globalpicnum]);
if (wal->cstat&8) //xflip
{
float const t = (float)(wal->xrepeat*8 + wal->xpanning*2);
xtex.u = xtex.d*t - xtex.u;
ytex.u = ytex.d*t - ytex.u;
otex.u = otex.d*t - otex.u;
}
if (wal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip
int method = DAMETH_MASK | DAMETH_WALL;
if (wal->cstat & 128)
method = DAMETH_WALL | (((wal->cstat & 512)) ? DAMETH_TRANS2 : DAMETH_TRANS1);
#ifdef NEW_MAP_FORMAT
uint8_t const blend = wal->blend;
#else
uint8_t const blend = wallext[wallIndex].blend;
#endif
SetRenderStyleFromBlend(!!(wal->cstat & 128), blend, !!(wal->cstat & 512));
drawpoly_alpha = 0.f;
drawpoly_blend = blend;
float const csy[4] = { ((float)(cz[0] - globalposz)) * ryp0 + ghoriz,
((float)(cz[1] - globalposz)) * ryp0 + ghoriz,
((float)(cz[2] - globalposz)) * ryp1 + ghoriz,
((float)(cz[3] - globalposz)) * ryp1 + ghoriz };
float const fsy[4] = { ((float)(fz[0] - globalposz)) * ryp0 + ghoriz,
((float)(fz[1] - globalposz)) * ryp0 + ghoriz,
((float)(fz[2] - globalposz)) * ryp1 + ghoriz,
((float)(fz[3] - globalposz)) * ryp1 + ghoriz };
//Clip 2 quadrilaterals
// /csy3
// / |
// csy0------/----csy2
// | /xxxxxxx|
// | /xxxxxxxxx|
// csy1/xxxxxxxxxxx|
// |xxxxxxxxxxx/fsy3
// |xxxxxxxxx/ |
// |xxxxxxx/ |
// fsy0----/------fsy2
// | /
// fsy1/
vec2f_t dpxy[16] = { { x0, csy[1] }, { x1, csy[3] }, { x1, fsy[3] }, { x0, fsy[1] } };
//Clip to (x0,csy[0])-(x1,csy[2])
vec2f_t dp2[8];
int n2 = 0;
t1 = -((dpxy[0].x - x0) * (csy[2] - csy[0]) - (dpxy[0].y - csy[0]) * (x1 - x0));
for (bssize_t i=0; i<4; i++)
{
int j = i + 1;
if (j >= 4)
j = 0;
t0 = t1;
t1 = -((dpxy[j].x - x0) * (csy[2] - csy[0]) - (dpxy[j].y - csy[0]) * (x1 - x0));
if (t0 >= 0)
dp2[n2++] = dpxy[i];
if ((t0 >= 0) != (t1 >= 0) && (t0 <= 0) != (t1 <= 0))
{
float const r = t0 / (t0 - t1);
dp2[n2++] = { (dpxy[j].x - dpxy[i].x) * r + dpxy[i].x, (dpxy[j].y - dpxy[i].y) * r + dpxy[i].y };
}
}
if (n2 < 3)
return;
//Clip to (x1,fsy[2])-(x0,fsy[0])
t1 = -((dp2[0].x - x1) * (fsy[0] - fsy[2]) - (dp2[0].y - fsy[2]) * (x0 - x1));
int n = 0;
for (bssize_t i = 0, j = 1; i < n2; j = ++i + 1)
{
if (j >= n2)
j = 0;
t0 = t1;
t1 = -((dp2[j].x - x1) * (fsy[0] - fsy[2]) - (dp2[j].y - fsy[2]) * (x0 - x1));
if (t0 >= 0)
dpxy[n++] = dp2[i];
if ((t0 >= 0) != (t1 >= 0) && (t0 <= 0) != (t1 <= 0))
{
float const r = t0 / (t0 - t1);
dpxy[n++] = { (dp2[j].x - dp2[i].x) * r + dp2[i].x, (dp2[j].y - dp2[i].y) * r + dp2[i].y };
}
}
if (n < 3)
return;
pow2xsplit = 0;
skyclamphack = 0;
polymost_drawpoly(dpxy, n, method, tilesiz[globalpicnum]);
}
void polymost_drawmaskwall(int32_t damaskwallcnt)
{
int const z = maskwall[damaskwallcnt];
polymost_drawmaskwallinternal(thewall[z]);
}
void polymost_prepareMirror(int32_t dax, int32_t day, int32_t daz, fix16_t daang, fix16_t dahoriz, int16_t mirrorWall)
{
polymost_outputGLDebugMessage(3, "polymost_prepareMirror(%u)", mirrorWall);
//POGO: prepare necessary globals for drawing, as we intend to call this outside of drawrooms
gvrcorrection = viewingrange*(1.f/65536.f);
//if (glprojectionhacks == 2)
{
// calculates the extend of the zenith glitch
float verticalfovtan = (fviewingrange * (windowxy2.y-windowxy1.y) * 5.f) / ((float)yxaspect * (windowxy2.x-windowxy1.x) * 4.f);
float verticalfov = atanf(verticalfovtan) * (2.f / fPI);
static constexpr float const maxhorizangle = 0.6361136f; // horiz of 199 in degrees
float zenglitch = verticalfov + maxhorizangle - 0.95f; // less than 1 because the zenith glitch extends a bit
if (zenglitch > 0.f)
gvrcorrection /= (zenglitch * 2.5f) + 1.f;
}
set_globalpos(dax, day, daz);
set_globalang(daang);
globalhoriz = mulscale16(fix16_to_int(dahoriz)-100,divscale16(xdimenscale,viewingrange))+(ydimen>>1);
qglobalhoriz = mulscale16(dahoriz-F16(100), divscale16(xdimenscale, viewingrange))+fix16_from_int(ydimen>>1);
gyxscale = ((float)xdimenscale)*(1.0f/131072.f);
gxyaspect = ((double)xyaspect*fviewingrange)*(5.0/(65536.0*262144.0));
gviewxrange = fviewingrange * fxdimen * (1.f/(32768.f*1024.f));
gcosang = fcosglobalang*(1.0f/262144.f);
gsinang = fsinglobalang*(1.0f/262144.f);
gcosang2 = gcosang * (fviewingrange * (1.0f/65536.f));
gsinang2 = gsinang * (fviewingrange * (1.0f/65536.f));
ghalfx = (float)(xdimen>>1);
ghalfy = (float)(ydimen>>1);
grhalfxdown10 = 1.f/(ghalfx*1024.f);
ghoriz = fix16_to_float(qglobalhoriz);
ghorizcorrect = fix16_to_float((100-polymostcenterhoriz)*divscale16(xdimenscale, viewingrange));
resizeglcheck();
if (r_yshearing)
{
gshang = 0.f;
gchang = 1.f;
ghoriz2 = (float)(ydimen >> 1) - (ghoriz+ghorizcorrect);
}
else
{
float r = (float)(ydimen >> 1) - (ghoriz+ghorizcorrect);
gshang = r / Bsqrtf(r * r + ghalfx * ghalfx / (gvrcorrection * gvrcorrection));
gchang = Bsqrtf(1.f - gshang * gshang);
ghoriz2 = 0.f;
}
ghoriz = (float)(ydimen>>1);
gctang = cosf(gtang);
gstang = sinf(gtang);
if (Bfabsf(gstang) < .001f)
{
gstang = 0.f;
gctang = (gctang > 0.f) ? 1.f : -1.f;
}
polymost_updaterotmat();
grhalfxdown10x = grhalfxdown10;
renderBeginScene();
//POGO: write the mirror region to the stencil buffer to allow showing mirrors & skyboxes at the same time
GLInterface.EnableStencilWrite(1);
GLInterface.EnableAlphaTest(false);
GLInterface.EnableDepthTest(false);
polymost_drawmaskwallinternal(mirrorWall);
GLInterface.EnableAlphaTest(true);
GLInterface.EnableDepthTest(true);
renderFinishScene();
//POGO: render only to the mirror region
GLInterface.EnableStencilTest(1);
}
void polymost_completeMirror()
{
polymost_outputGLDebugMessage(3, "polymost_completeMirror()");
GLInterface.DisableStencil();
}
typedef struct
{
uint32_t wrev;
uint32_t srev;
int16_t wall;
int8_t wdist;
int8_t filler;
} wallspriteinfo_t;
static wallspriteinfo_t wsprinfo[MAXSPRITES];
void Polymost_prepare_loadboard(void)
{
Bmemset(wsprinfo, 0, sizeof(wsprinfo));
}
static inline int32_t polymost_findwall(tspritetype const * const tspr, vec2_t const * const tsiz, int32_t * rd)
{
int32_t dist = 4, closest = -1;
auto const sect = (usectortype * )&sector[tspr->sectnum];
vec2_t n;
for (bssize_t i=sect->wallptr; i<sect->wallptr + sect->wallnum; i++)
{
if ((wall[i].nextsector == -1 || ((sector[wall[i].nextsector].ceilingz > (tspr->z - ((tsiz->y * tspr->yrepeat) << 2))) ||
sector[wall[i].nextsector].floorz < tspr->z)) && !polymost_getclosestpointonwall((const vec2_t *) tspr, i, &n))
{
int const dst = klabs(tspr->x - n.x) + klabs(tspr->y - n.y);
if (dst <= dist)
{
dist = dst;
closest = i;
}
}
}
*rd = dist;
return closest;
}
static int32_t polymost_lintersect(int32_t x1, int32_t y1, int32_t x2, int32_t y2,
int32_t x3, int32_t y3, int32_t x4, int32_t y4)
{
// p1 to p2 is a line segment
int32_t const x21 = x2 - x1, x34 = x3 - x4;
int32_t const y21 = y2 - y1, y34 = y3 - y4;
int32_t const bot = x21 * y34 - y21 * x34;
if (!bot)
return 0;
int32_t const x31 = x3 - x1, y31 = y3 - y1;
int32_t const topt = x31 * y34 - y31 * x34;
int rv = 1;
if (bot > 0)
{
if ((unsigned)topt >= (unsigned)bot)
rv = 0;
int32_t topu = x21 * y31 - y21 * x31;
if ((unsigned)topu >= (unsigned)bot)
rv = 0;
}
else
{
if ((unsigned)topt <= (unsigned)bot)
rv = 0;
int32_t topu = x21 * y31 - y21 * x31;
if ((unsigned)topu <= (unsigned)bot)
rv = 0;
}
return rv;
}
#define TSPR_OFFSET_FACTOR .0002f
#define TSPR_OFFSET(tspr) (TSPR_OFFSET_FACTOR + ((tspr->owner != -1 ? tspr->owner & 63 : 0) * TSPR_OFFSET_FACTOR))
#define TSPR_OFFSET_FACTOR2 .000008f
#define TSPR_OFFSET2(tspr) ((TSPR_OFFSET_FACTOR + ((tspr->owner != -1 ? tspr->owner & 63 : 1) * TSPR_OFFSET_FACTOR)) * (float)sepdist(globalposx - tspr->x, globalposy - tspr->y, globalposz - tspr->z) * 0.025f)
void polymost_drawsprite(int32_t snum)
{
auto const tspr = tspriteptr[snum];
if (EDUKE32_PREDICT_FALSE(bad_tspr(tspr)))
return;
usectorptr_t sec;
int32_t spritenum = tspr->owner;
polymost_outputGLDebugMessage(3, "polymost_drawsprite(snum:%d)", snum);
if ((tspr->cstat&48) != 48)
tileUpdatePicnum(&tspr->picnum, spritenum + 32768);
globalpicnum = tspr->picnum;
globalshade = tspr->shade;
globalpal = tspr->pal;
globalorientation = tspr->cstat;
GLInterface.SetVisibility(sectorVisibility(tspr->sectnum));
vec2_t off = { 0, 0 };
if ((globalorientation & 48) != 48) // only non-voxel sprites should do this
{
int const flag = hw_hightile && h_xsize[globalpicnum];
off = { (int32_t)tspr->xoffset + (flag ? h_xoffs[globalpicnum] : tileLeftOffset(globalpicnum)),
(int32_t)tspr->yoffset + (flag ? h_yoffs[globalpicnum] : tileTopOffset(globalpicnum)) };
}
int32_t method = DAMETH_MASK | DAMETH_CLAMPED;
if (tspr->cstat & 2)
method = DAMETH_CLAMPED | ((tspr->cstat & 512) ? DAMETH_TRANS2 : DAMETH_TRANS1);
SetRenderStyleFromBlend(!!(tspr->cstat & 2), tspr->blend, !!(tspr->cstat & 512));
drawpoly_alpha = spriteext[spritenum].alpha;
drawpoly_blend = tspr->blend;
sec = (usectorptr_t)&sector[tspr->sectnum];
while (!(spriteext[spritenum].flags & SPREXT_NOTMD))
{
if (hw_models && tile2model[Ptile2tile(tspr->picnum, tspr->pal)].modelid >= 0 &&
tile2model[Ptile2tile(tspr->picnum, tspr->pal)].framenum >= 0)
{
if (polymost_mddraw(tspr)) return;
break; // else, render as flat sprite
}
if (r_voxels)
{
if ((tspr->cstat & 48) != 48 && tiletovox[tspr->picnum] >= 0 && voxmodels[tiletovox[tspr->picnum]])
{
if (polymost_voxdraw(voxmodels[tiletovox[tspr->picnum]], tspr)) return;
break; // else, render as flat sprite
}
if ((tspr->cstat & 48) == 48 && voxmodels[tspr->picnum])
{
polymost_voxdraw(voxmodels[tspr->picnum], tspr);
return;
}
}
break;
}
vec3_t pos = tspr->pos;
if (spriteext[spritenum].flags & SPREXT_AWAY1)
{
pos.x += (sintable[(tspr->ang + 512) & 2047] >> 13);
pos.y += (sintable[(tspr->ang) & 2047] >> 13);
}
else if (spriteext[spritenum].flags & SPREXT_AWAY2)
{
pos.x -= (sintable[(tspr->ang + 512) & 2047] >> 13);
pos.y -= (sintable[(tspr->ang) & 2047] >> 13);
}
vec2_16_t const oldsiz = tilesiz[globalpicnum];
vec2_t tsiz = { oldsiz.x, oldsiz.y };
if (hw_hightile && h_xsize[globalpicnum])
tsiz = { h_xsize[globalpicnum], h_ysize[globalpicnum] };
if (tsiz.x <= 0 || tsiz.y <= 0)
return;
vec2f_t const ftsiz = { (float) tsiz.x, (float) tsiz.y };
switch ((globalorientation >> 4) & 3)
{
case 0: // Face sprite
{
// Project 3D to 2D
if (globalorientation & 4)
off.x = -off.x;
// NOTE: yoff not negated not for y flipping, unlike wall and floor
// aligned sprites.
int const ang = (getangle(tspr->x - globalposx, tspr->y - globalposy) + 1024) & 2047;
float foffs = TSPR_OFFSET(tspr);
float foffs2 = TSPR_OFFSET(tspr);
if (fabs(foffs2) < fabs(foffs)) foffs = foffs2;
vec2f_t const offs = { (float)(sintable[(ang + 512) & 2047] >> 6)* foffs, (float) (sintable[(ang) & 2047] >> 6) * foffs };
vec2f_t s0 = { (float)(tspr->x - globalposx) + offs.x,
(float)(tspr->y - globalposy) + offs.y};
vec2f_t p0 = { s0.y * gcosang - s0.x * gsinang, s0.x * gcosang2 + s0.y * gsinang2 };
if (p0.y <= SCISDIST)
goto _drawsprite_return;
float const ryp0 = 1.f / p0.y;
s0 = { ghalfx * p0.x * ryp0 + ghalfx, ((float)(pos.z - globalposz)) * gyxscale * ryp0 + ghoriz };
float const f = ryp0 * fxdimen * (1.0f / 160.f);
vec2f_t ff = { ((float)tspr->xrepeat) * f,
((float)tspr->yrepeat) * f * ((float)yxaspect * (1.0f / 65536.f)) };
if (tsiz.x & 1)
s0.x += ff.x * 0.5f;
if (globalorientation & 128 && tsiz.y & 1)
s0.y += ff.y * 0.5f;
s0.x -= ff.x * (float) off.x;
s0.y -= ff.y * (float) off.y;
ff.x *= ftsiz.x;
ff.y *= ftsiz.y;
vec2f_t pxy[4];
pxy[0].x = pxy[3].x = s0.x - ff.x * 0.5f;
pxy[1].x = pxy[2].x = s0.x + ff.x * 0.5f;
if (!(globalorientation & 128))
{
pxy[0].y = pxy[1].y = s0.y - ff.y;
pxy[2].y = pxy[3].y = s0.y;
}
else
{
pxy[0].y = pxy[1].y = s0.y - ff.y * 0.5f;
pxy[2].y = pxy[3].y = s0.y + ff.y * 0.5f;
}
xtex.d = ytex.d = ytex.u = xtex.v = 0;
otex.d = ryp0 * gviewxrange;
if (!(globalorientation & 4))
{
xtex.u = ftsiz.x * otex.d / (pxy[1].x - pxy[0].x + .002f);
otex.u = -xtex.u * (pxy[0].x - .001f);
}
else
{
xtex.u = ftsiz.x * otex.d / (pxy[0].x - pxy[1].x - .002f);
otex.u = -xtex.u * (pxy[1].x + .001f);
}
if (!(globalorientation & 8))
{
ytex.v = ftsiz.y * otex.d / (pxy[3].y - pxy[0].y + .002f);
otex.v = -ytex.v * (pxy[0].y - .001f);
}
else
{
ytex.v = ftsiz.y * otex.d / (pxy[0].y - pxy[3].y - .002f);
otex.v = -ytex.v * (pxy[3].y + .001f);
}
// sprite panning
if (spriteext[spritenum].xpanning)
{
ytex.u -= ytex.d * ((float) (spriteext[spritenum].xpanning) * (1.0f / 255.f)) * ftsiz.x;
otex.u -= otex.d * ((float) (spriteext[spritenum].xpanning) * (1.0f / 255.f)) * ftsiz.x;
drawpoly_srepeat = 1;
}
if (spriteext[spritenum].ypanning)
{
ytex.v -= ytex.d * ((float) (spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y;
otex.v -= otex.d * ((float) (spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y;
drawpoly_trepeat = 1;
}
// Clip sprites to ceilings/floors when no parallaxing and not sloped
if (!(sector[tspr->sectnum].ceilingstat & 3))
{
s0.y = ((float) (sector[tspr->sectnum].ceilingz - globalposz)) * gyxscale * ryp0 + ghoriz;
if (pxy[0].y < s0.y)
pxy[0].y = pxy[1].y = s0.y;
}
if (!(sector[tspr->sectnum].floorstat & 3))
{
s0.y = ((float) (sector[tspr->sectnum].floorz - globalposz)) * gyxscale * ryp0 + ghoriz;
if (pxy[2].y > s0.y)
pxy[2].y = pxy[3].y = s0.y;
}
vec2_16_t tempsiz = { (int16_t)tsiz.x, (int16_t)tsiz.y };
pow2xsplit = 0;
polymost_drawpoly(pxy, 4, method, tempsiz);
drawpoly_srepeat = 0;
drawpoly_trepeat = 0;
}
break;
case 1: // Wall sprite
{
// Project 3D to 2D
if (globalorientation & 4)
off.x = -off.x;
if (globalorientation & 8)
off.y = -off.y;
vec2f_t const extent = { (float)tspr->xrepeat * (float)sintable[(tspr->ang) & 2047] * (1.0f / 65536.f),
(float)tspr->xrepeat * (float)sintable[(tspr->ang + 1536) & 2047] * (1.0f / 65536.f) };
float f = (float)(tsiz.x >> 1) + (float)off.x;
vec2f_t const vf = { extent.x * f, extent.y * f };
vec2f_t vec0 = { (float)(pos.x - globalposx) - vf.x,
(float)(pos.y - globalposy) - vf.y };
int32_t const s = tspr->owner;
int32_t walldist = 1;
int32_t w = (s == -1) ? -1 : wsprinfo[s].wall;
// find the wall most likely to be what the sprite is supposed to be ornamented against
// this is really slow, so cache the result
if (s == -1 || !wsprinfo[s].wall || (spritechanged[s] != wsprinfo[s].srev) ||
(w != -1 && wallchanged[w] != wsprinfo[s].wrev))
{
w = polymost_findwall(tspr, &tsiz, &walldist);
if (s != -1)
{
wallspriteinfo_t *ws = &wsprinfo[s];
ws->wall = w;
if (w != -1)
{
ws->wdist = walldist;
ws->wrev = wallchanged[w];
ws->srev = spritechanged[s];
}
}
}
else if (s != -1)
walldist = wsprinfo[s].wdist;
// detect if the sprite is either on the wall line or the wall line and sprite intersect
if (w != -1)
{
vec2_t v = { /*Blrintf(vf.x)*/(int)vf.x, /*Blrintf(vf.y)*/(int)vf.y };
if (walldist <= 2 || ((pos.x - v.x) + (pos.x + v.x)) == (wall[w].x + POINT2(w).x) ||
((pos.y - v.y) + (pos.y + v.y)) == (wall[w].y + POINT2(w).y) ||
polymost_lintersect(pos.x - v.x, pos.y - v.y, pos.x + v.x, pos.y + v.y, wall[w].x, wall[w].y,
POINT2(w).x, POINT2(w).y))
{
int32_t const ang = getangle(wall[w].x - POINT2(w).x, wall[w].y - POINT2(w).y);
float const foffs = TSPR_OFFSET(tspr);
vec2f_t const offs = { (float)(sintable[(ang + 1024) & 2047] >> 6) * foffs,
(float)(sintable[(ang + 512) & 2047] >> 6) * foffs};
vec0.x -= offs.x;
vec0.y -= offs.y;
}
}
vec2f_t p0 = { vec0.y * gcosang - vec0.x * gsinang,
vec0.x * gcosang2 + vec0.y * gsinang2 };
vec2f_t const pp = { extent.x * ftsiz.x + vec0.x,
extent.y * ftsiz.x + vec0.y };
vec2f_t p1 = { pp.y * gcosang - pp.x * gsinang,
pp.x * gcosang2 + pp.y * gsinang2 };
if ((p0.y <= SCISDIST) && (p1.y <= SCISDIST))
goto _drawsprite_return;
// Clip to close parallel-screen plane
vec2f_t const op0 = p0;
float t0 = 0.f, t1 = 1.f;
if (p0.y < SCISDIST)
{
t0 = (SCISDIST - p0.y) / (p1.y - p0.y);
p0 = { (p1.x - p0.x) * t0 + p0.x, SCISDIST };
}
if (p1.y < SCISDIST)
{
t1 = (SCISDIST - op0.y) / (p1.y - op0.y);
p1 = { (p1.x - op0.x) * t1 + op0.x, SCISDIST };
}
f = 1.f / p0.y;
const float ryp0 = f * gyxscale;
float sx0 = ghalfx * p0.x * f + ghalfx;
f = 1.f / p1.y;
const float ryp1 = f * gyxscale;
float sx1 = ghalfx * p1.x * f + ghalfx;
pos.z -= ((off.y * tspr->yrepeat) << 2);
if (globalorientation & 128)
{
pos.z += ((tsiz.y * tspr->yrepeat) << 1);
if (tsiz.y & 1)
pos.z += (tspr->yrepeat << 1); // Odd yspans
}
xtex.d = (ryp0 - ryp1) * gxyaspect / (sx0 - sx1);
ytex.d = 0;
otex.d = ryp0 * gxyaspect - xtex.d * sx0;
if (globalorientation & 4)
{
t0 = 1.f - t0;
t1 = 1.f - t1;
}
// sprite panning
if (spriteext[spritenum].xpanning)
{
float const xpan = ((float)(spriteext[spritenum].xpanning) * (1.0f / 255.f));
t0 -= xpan;
t1 -= xpan;
drawpoly_srepeat = 1;
}
xtex.u = (t0 * ryp0 - t1 * ryp1) * gxyaspect * ftsiz.x / (sx0 - sx1);
ytex.u = 0;
otex.u = t0 * ryp0 * gxyaspect * ftsiz.x - xtex.u * sx0;
f = ((float) tspr->yrepeat) * ftsiz.y * 4;
float sc0 = ((float) (pos.z - globalposz - f)) * ryp0 + ghoriz;
float sc1 = ((float) (pos.z - globalposz - f)) * ryp1 + ghoriz;
float sf0 = ((float) (pos.z - globalposz)) * ryp0 + ghoriz;
float sf1 = ((float) (pos.z - globalposz)) * ryp1 + ghoriz;
// gvx*sx0 + gvy*sc0 + gvo = 0
// gvx*sx1 + gvy*sc1 + gvo = 0
// gvx*sx0 + gvy*sf0 + gvo = tsizy*(gdx*sx0 + gdo)
f = ftsiz.y * (xtex.d * sx0 + otex.d) / ((sx0 - sx1) * (sc0 - sf0));
if (!(globalorientation & 8))
{
xtex.v = (sc0 - sc1) * f;
ytex.v = (sx1 - sx0) * f;
otex.v = -xtex.v * sx0 - ytex.v * sc0;
}
else
{
xtex.v = (sf1 - sf0) * f;
ytex.v = (sx0 - sx1) * f;
otex.v = -xtex.v * sx0 - ytex.v * sf0;
}
// sprite panning
if (spriteext[spritenum].ypanning)
{
float const ypan = ((float)(spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y;
xtex.v -= xtex.d * ypan;
ytex.v -= ytex.d * ypan;
otex.v -= otex.d * ypan;
drawpoly_trepeat = 1;
}
// Clip sprites to ceilings/floors when no parallaxing
if (!(sector[tspr->sectnum].ceilingstat & 1))
{
if (sector[tspr->sectnum].ceilingz > pos.z - (float)((tspr->yrepeat * tsiz.y) << 2))
{
sc0 = (float)(sector[tspr->sectnum].ceilingz - globalposz) * ryp0 + ghoriz;
sc1 = (float)(sector[tspr->sectnum].ceilingz - globalposz) * ryp1 + ghoriz;
}
}
if (!(sector[tspr->sectnum].floorstat & 1))
{
if (sector[tspr->sectnum].floorz < pos.z)
{
sf0 = (float)(sector[tspr->sectnum].floorz - globalposz) * ryp0 + ghoriz;
sf1 = (float)(sector[tspr->sectnum].floorz - globalposz) * ryp1 + ghoriz;
}
}
if (sx0 > sx1)
{
if (globalorientation & 64)
goto _drawsprite_return; // 1-sided sprite
swapfloat(&sx0, &sx1);
swapfloat(&sc0, &sc1);
swapfloat(&sf0, &sf1);
}
vec2f_t const pxy[4] = { { sx0, sc0 }, { sx1, sc1 }, { sx1, sf1 }, { sx0, sf0 } };
vec2_16_t tempsiz = { (int16_t)tsiz.x, (int16_t)tsiz.y };
pow2xsplit = 0;
polymost_drawpoly(pxy, 4, method, tempsiz);
drawpoly_srepeat = 0;
drawpoly_trepeat = 0;
}
break;
case 2: // Floor sprite
GLInterface.SetVisibility(sectorVisibility(tspr->sectnum) * (4.f/5.f)); // No idea why this uses a different visibility setting...
if ((globalorientation & 64) != 0 && (globalposz > pos.z) == (!(globalorientation & 8)))
goto _drawsprite_return;
else
{
if ((globalorientation & 4) > 0)
off.x = -off.x;
if ((globalorientation & 8) > 0)
off.y = -off.y;
vec2f_t const p0 = { (float)(((tsiz.x + 1) >> 1) - off.x) * tspr->xrepeat,
(float)(((tsiz.y + 1) >> 1) - off.y) * tspr->yrepeat },
p1 = { (float)((tsiz.x >> 1) + off.x) * tspr->xrepeat,
(float)((tsiz.y >> 1) + off.y) * tspr->yrepeat };
float const c = sintable[(tspr->ang + 512) & 2047] * (1.0f / 65536.f);
float const s = sintable[tspr->ang & 2047] * (1.0f / 65536.f);
vec2f_t pxy[6];
// Project 3D to 2D
for (bssize_t j = 0; j < 4; j++)
{
vec2f_t s0 = { (float)(tspr->x - globalposx), (float)(tspr->y - globalposy) };
if ((j + 0) & 2)
{
s0.y -= s * p0.y;
s0.x -= c * p0.y;
}
else
{
s0.y += s * p1.y;
s0.x += c * p1.y;
}
if ((j + 1) & 2)
{
s0.x -= s * p0.x;
s0.y += c * p0.x;
}
else
{
s0.x += s * p1.x;
s0.y -= c * p1.x;
}
pxy[j] = { s0.y * gcosang - s0.x * gsinang, s0.x * gcosang2 + s0.y * gsinang2 };
}
if (pos.z < globalposz) // if floor sprite is above you, reverse order of points
{
EDUKE32_STATIC_ASSERT(sizeof(uint64_t) == sizeof(vec2f_t));
swap64bit(&pxy[0], &pxy[1]);
swap64bit(&pxy[2], &pxy[3]);
}
// Clip to SCISDIST plane
int32_t npoints = 0;
vec2f_t p2[6];
for (bssize_t i = 0, j = 1; i < 4; j = ((++i + 1) & 3))
{
if (pxy[i].y >= SCISDIST)
p2[npoints++] = pxy[i];
if ((pxy[i].y >= SCISDIST) != (pxy[j].y >= SCISDIST))
{
float const f = (SCISDIST - pxy[i].y) / (pxy[j].y - pxy[i].y);
vec2f_t const t = { (pxy[j].x - pxy[i].x) * f + pxy[i].x,
(pxy[j].y - pxy[i].y) * f + pxy[i].y };
p2[npoints++] = t;
}
}
if (npoints < 3)
goto _drawsprite_return;
// Project rotated 3D points to screen
int fadjust = 0;
// unfortunately, offsetting by only 1 isn't enough on most Android devices
if (pos.z == sec->ceilingz || pos.z == sec->ceilingz + 1)
pos.z = sec->ceilingz + 2, fadjust = (tspr->owner & 31);
if (pos.z == sec->floorz || pos.z == sec->floorz - 1)
pos.z = sec->floorz - 2, fadjust = -((tspr->owner & 31));
float f = (float)(pos.z - globalposz + fadjust) * gyxscale;
for (bssize_t j = 0; j < npoints; j++)
{
float const ryp0 = 1.f / p2[j].y;
pxy[j] = { ghalfx * p2[j].x * ryp0 + ghalfx, f * ryp0 + ghoriz };
}
// gd? Copied from floor rendering code
xtex.d = 0;
ytex.d = gxyaspect / (double)(pos.z - globalposz + fadjust);
otex.d = -ghoriz * ytex.d;
// copied&modified from relative alignment
vec2f_t const vv = { (float)tspr->x + s * p1.x + c * p1.y, (float)tspr->y + s * p1.y - c * p1.x };
vec2f_t ff = { -(p0.x + p1.x) * s, (p0.x + p1.x) * c };
f = polymost_invsqrt_approximation(ff.x * ff.x + ff.y * ff.y);
ff.x *= f;
ff.y *= f;
float const ft[4] = { ((float)(globalposy - vv.y)) * ff.y + ((float)(globalposx - vv.x)) * ff.x,
((float)(globalposx - vv.x)) * ff.y - ((float)(globalposy - vv.y)) * ff.x,
fsinglobalang * ff.y + fcosglobalang * ff.x,
fsinglobalang * ff.x - fcosglobalang * ff.y };
f = fviewingrange * -(1.f / (65536.f * 262144.f));
xtex.u = (float)ft[3] * f;
xtex.v = (float)ft[2] * f;
ytex.u = ft[0] * ytex.d;
ytex.v = ft[1] * ytex.d;
otex.u = ft[0] * otex.d;
otex.v = ft[1] * otex.d;
otex.u += (ft[2] * (1.0f / 262144.f) - xtex.u) * ghalfx;
otex.v -= (ft[3] * (1.0f / 262144.f) + xtex.v) * ghalfx;
f = 4.f / (float)tspr->xrepeat;
xtex.u *= f;
ytex.u *= f;
otex.u *= f;
f = -4.f / (float)tspr->yrepeat;
xtex.v *= f;
ytex.v *= f;
otex.v *= f;
if (globalorientation & 4)
{
xtex.u = ftsiz.x * xtex.d - xtex.u;
ytex.u = ftsiz.x * ytex.d - ytex.u;
otex.u = ftsiz.x * otex.d - otex.u;
}
// sprite panning
if (spriteext[spritenum].xpanning)
{
float const f = ((float)(spriteext[spritenum].xpanning) * (1.0f / 255.f)) * ftsiz.x;
ytex.u -= ytex.d * f;
otex.u -= otex.d * f;
drawpoly_srepeat = 1;
}
if (spriteext[spritenum].ypanning)
{
float const f = ((float)(spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y;
ytex.v -= ytex.d * f;
otex.v -= otex.d * f;
drawpoly_trepeat = 1;
}
vec2_16_t tempsiz = { (int16_t)tsiz.x, (int16_t)tsiz.y };
pow2xsplit = 0;
polymost_drawpoly(pxy, npoints, method, tempsiz);
drawpoly_srepeat = 0;
drawpoly_trepeat = 0;
}
break;
case 3: // Voxel sprite
break;
}
if (automapping == 1 && (unsigned)spritenum < MAXSPRITES)
show2dsprite[spritenum>>3] |= pow2char[spritenum&7];
_drawsprite_return:
;
}
EDUKE32_STATIC_ASSERT((int)RS_YFLIP == (int)HUDFLAG_FLIPPED);
void polymost_initosdfuncs(void)
{
}
static void polymost_precache(int32_t dapicnum, int32_t dapalnum, int32_t datype)
{
// dapicnum and dapalnum are like you'd expect
// datype is 0 for a wall/floor/ceiling and 1 for a sprite
// basically this just means walls are repeating
// while sprites are clamped
if (videoGetRenderMode() < REND_POLYMOST) return;
if ((dapalnum < (MAXPALOOKUPS - RESERVEDPALS)) && (!lookups.checkTable(dapalnum))) return;//dapalnum = 0;
//Printf("precached %d %d type %d\n", dapicnum, dapalnum, datype);
hicprecaching = 1;
int palid = TRANSLATION(Translation_Remap + curbasepal, dapalnum);
GLInterface.SetTexture(dapicnum, tileGetTexture(dapicnum), palid, CLAMP_NONE);
hicprecaching = 0;
if (datype == 0 || !hw_models) return;
int const mid = md_tilehasmodel(dapicnum, dapalnum);
if (mid < 0 || models[mid]->mdnum < 2) return;
int const surfaces = (models[mid]->mdnum == 3) ? ((md3model_t *)models[mid])->head.numsurfs : 0;
for (int i = 0; i <= surfaces; i++)
{
auto tex = mdloadskin((md2model_t *)models[mid], 0, dapalnum, i, nullptr);
int palid = TRANSLATION(Translation_Remap + curbasepal, dapalnum);
if (tex) GLInterface.SetTexture(-1, tex, palid, CLAMP_NONE);
}
}
void PrecacheHardwareTextures(int nTile)
{
// PRECACHE
// This really *really* needs improvement on the game side - the entire precaching logic has no clue about the different needs of a hardware renderer.
polymost_precache(nTile, 0, 1);
}
extern char* voxfilenames[MAXVOXELS];
void (*PolymostProcessVoxels_Callback)(void) = NULL;
static void PolymostProcessVoxels(void)
{
if (PolymostProcessVoxels_Callback)
PolymostProcessVoxels_Callback();
if (g_haveVoxels != 1)
return;
g_haveVoxels = 2;
Printf("Generating voxel models for Polymost. This may take a while...\n");
//videoNextPage();
for (bssize_t i = 0; i < MAXVOXELS; i++)
{
if (voxfilenames[i])
{
voxmodels[i] = voxload(voxfilenames[i]);
voxmodels[i]->scale = voxscale[i] * (1.f / 65536.f);
DO_FREE_AND_NULL(voxfilenames[i]);
}
}
}
void Polymost_Startup()
{
PolymostProcessVoxels();
}