raze-gles/source/common/scripting/vm/vmexec.h

2016 lines
43 KiB
C++

/*
** vmexec.h
** VM bytecode interpreter
**
**---------------------------------------------------------------------------
** Copyright -2016 Randy Heit
** Copyright 2016-2017 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#ifndef IMPLEMENT_VMEXEC
#error vmexec.h must not be #included outside vmexec.cpp. Use vm.h instead.
#endif
static int ExecScriptFunc(VMFrameStack *stack, VMReturn *ret, int numret)
{
#if COMPGOTO
static const void * const ops[256] =
{
#define xx(op,sym,mode,alt,kreg,ktype) &&op,
#include "vmops.h"
};
#endif
//const VMOP *exception_frames[MAX_TRY_DEPTH];
//int try_depth = 0;
VMFrame *f = stack->TopFrame();
VMScriptFunction *sfunc = static_cast<VMScriptFunction *>(f->Func);
const int *konstd = sfunc->KonstD;
const double *konstf = sfunc->KonstF;
const FString *konsts = sfunc->KonstS;
const FVoidObj *konsta = sfunc->KonstA;
const VMOP *pc = sfunc->Code;
assert(!(f->Func->VarFlags & VARF_Native) && "Only script functions should ever reach VMExec");
const VMRegisters reg(f);
void *ptr;
double fb, fc;
const double *fbp, *fcp;
int a, b, c;
//begin:
try
{
#if !COMPGOTO
VM_UBYTE op;
for(;;) switch(op = pc->op, a = pc->a, op)
#else
pc--;
NEXTOP;
#endif
{
#if !COMPGOTO
default:
assert(0 && "Undefined opcode hit");
NEXTOP;
#endif
OP(LI):
ASSERTD(a);
reg.d[a] = BCs;
NEXTOP;
OP(LK):
ASSERTD(a); ASSERTKD(BC);
reg.d[a] = konstd[BC];
NEXTOP;
OP(LKF):
ASSERTF(a); ASSERTKF(BC);
reg.f[a] = konstf[BC];
NEXTOP;
OP(LKS):
ASSERTS(a); ASSERTKS(BC);
reg.s[a] = konsts[BC];
NEXTOP;
OP(LKP):
ASSERTA(a); ASSERTKA(BC);
reg.a[a] = konsta[BC].v;
NEXTOP;
OP(LK_R) :
ASSERTD(a); ASSERTD(B);
reg.d[a] = konstd[reg.d[B] + C];
NEXTOP;
OP(LKF_R) :
ASSERTF(a); ASSERTD(B);
reg.f[a] = konstf[reg.d[B] + C];
NEXTOP;
OP(LKS_R) :
ASSERTS(a); ASSERTD(B);
reg.s[a] = konsts[reg.d[B] + C];
NEXTOP;
OP(LKP_R) :
ASSERTA(a); ASSERTD(B);
b = reg.d[B] + C;
reg.a[a] = konsta[b].v;
NEXTOP;
OP(LFP):
ASSERTA(a); assert(sfunc != NULL); assert(sfunc->ExtraSpace > 0);
reg.a[a] = f->GetExtra();
NEXTOP;
OP(CLSS):
{
ASSERTA(a); ASSERTA(B);
DObject *o = (DObject*)reg.a[B];
if (o == nullptr)
{
ThrowAbortException(X_READ_NIL, nullptr);
return 0;
}
reg.a[a] = o->GetClass();
NEXTOP;
}
OP(META):
{
ASSERTA(a); ASSERTA(B);
DObject *o = (DObject*)reg.a[B];
if (o == nullptr)
{
ThrowAbortException(X_READ_NIL, nullptr);
return 0;
}
reg.a[a] = o->GetClass()->Meta;
NEXTOP;
}
OP(LB):
ASSERTD(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.d[a] = *(VM_SBYTE *)ptr;
NEXTOP;
OP(LB_R):
ASSERTD(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.d[a] = *(VM_SBYTE *)ptr;
NEXTOP;
OP(LH):
ASSERTD(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.d[a] = *(VM_SHALF *)ptr;
NEXTOP;
OP(LH_R):
ASSERTD(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.d[a] = *(VM_SHALF *)ptr;
NEXTOP;
OP(LW):
ASSERTD(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.d[a] = *(VM_SWORD *)ptr;
NEXTOP;
OP(LW_R):
ASSERTD(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.d[a] = *(VM_SWORD *)ptr;
NEXTOP;
OP(LBU):
ASSERTD(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.d[a] = *(VM_UBYTE *)ptr;
NEXTOP;
OP(LBU_R):
ASSERTD(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.d[a] = *(VM_UBYTE *)ptr;
NEXTOP;
OP(LHU):
ASSERTD(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.d[a] = *(VM_UHALF *)ptr;
NEXTOP;
OP(LHU_R):
ASSERTD(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.d[a] = *(VM_UHALF *)ptr;
NEXTOP;
OP(LSP):
ASSERTF(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.f[a] = *(float *)ptr;
NEXTOP;
OP(LSP_R):
ASSERTF(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.f[a] = *(float *)ptr;
NEXTOP;
OP(LDP):
ASSERTF(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.f[a] = *(double *)ptr;
NEXTOP;
OP(LDP_R):
ASSERTF(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.f[a] = *(double *)ptr;
NEXTOP;
OP(LS):
ASSERTS(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.s[a] = *(FString *)ptr;
NEXTOP;
OP(LS_R):
ASSERTS(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.s[a] = *(FString *)ptr;
NEXTOP;
OP(LCS):
ASSERTS(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.s[a] = *(const char **)ptr;
NEXTOP;
OP(LCS_R):
ASSERTS(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.s[a] = *(const char **)ptr;
NEXTOP;
OP(LO):
ASSERTA(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.a[a] = GC::ReadBarrier(*(DObject **)ptr);
NEXTOP;
OP(LO_R):
ASSERTA(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.a[a] = GC::ReadBarrier(*(DObject **)ptr);
NEXTOP;
OP(LP):
ASSERTA(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
reg.a[a] = *(void **)ptr;
NEXTOP;
OP(LP_R):
ASSERTA(a); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
reg.a[a] = *(void **)ptr;
NEXTOP;
OP(LV2):
ASSERTF(a+1); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
{
auto v = (double *)ptr;
reg.f[a] = v[0];
reg.f[a+1] = v[1];
}
NEXTOP;
OP(LV2_R):
ASSERTF(a+1); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
{
auto v = (double *)ptr;
reg.f[a] = v[0];
reg.f[a+1] = v[1];
}
NEXTOP;
OP(LV3):
ASSERTF(a+2); ASSERTA(B); ASSERTKD(C);
GETADDR(PB,KC,X_READ_NIL);
{
auto v = (double *)ptr;
reg.f[a] = v[0];
reg.f[a+1] = v[1];
reg.f[a+2] = v[2];
}
NEXTOP;
OP(LV3_R):
ASSERTF(a+2); ASSERTA(B); ASSERTD(C);
GETADDR(PB,RC,X_READ_NIL);
{
auto v = (double *)ptr;
reg.f[a] = v[0];
reg.f[a+1] = v[1];
reg.f[a+2] = v[2];
}
NEXTOP;
OP(LBIT):
ASSERTD(a); ASSERTA(B);
GETADDR(PB,0,X_READ_NIL);
reg.d[a] = !!(*(VM_UBYTE *)ptr & C);
NEXTOP;
OP(SB):
ASSERTA(a); ASSERTD(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(VM_SBYTE *)ptr = reg.d[B];
NEXTOP;
OP(SB_R):
ASSERTA(a); ASSERTD(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(VM_SBYTE *)ptr = reg.d[B];
NEXTOP;
OP(SH):
ASSERTA(a); ASSERTD(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(VM_SHALF *)ptr = reg.d[B];
NEXTOP;
OP(SH_R):
ASSERTA(a); ASSERTD(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(VM_SHALF *)ptr = reg.d[B];
NEXTOP;
OP(SW):
ASSERTA(a); ASSERTD(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(VM_SWORD *)ptr = reg.d[B];
NEXTOP;
OP(SW_R):
ASSERTA(a); ASSERTD(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(VM_SWORD *)ptr = reg.d[B];
NEXTOP;
OP(SSP):
ASSERTA(a); ASSERTF(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(float *)ptr = (float)reg.f[B];
NEXTOP;
OP(SSP_R):
ASSERTA(a); ASSERTF(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(float *)ptr = (float)reg.f[B];
NEXTOP;
OP(SDP):
ASSERTA(a); ASSERTF(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(double *)ptr = reg.f[B];
NEXTOP;
OP(SDP_R):
ASSERTA(a); ASSERTF(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(double *)ptr = reg.f[B];
NEXTOP;
OP(SS):
ASSERTA(a); ASSERTS(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(FString *)ptr = reg.s[B];
NEXTOP;
OP(SS_R):
ASSERTA(a); ASSERTS(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(FString *)ptr = reg.s[B];
NEXTOP;
OP(SP):
ASSERTA(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(void **)ptr = reg.a[B];
NEXTOP;
OP(SP_R):
ASSERTA(a); ASSERTA(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
*(void **)ptr = reg.a[B];
NEXTOP;
OP(SO):
ASSERTA(a); ASSERTA(B); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
*(void **)ptr = reg.a[B];
GC::WriteBarrier((DObject*)*(void **)ptr);
NEXTOP;
OP(SO_R):
ASSERTA(a); ASSERTA(B); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
GC::WriteBarrier((DObject*)*(void **)ptr);
NEXTOP;
OP(SV2):
ASSERTA(a); ASSERTF(B+1); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
{
auto v = (double *)ptr;
v[0] = reg.f[B];
v[1] = reg.f[B+1];
}
NEXTOP;
OP(SV2_R):
ASSERTA(a); ASSERTF(B+1); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
{
auto v = (double *)ptr;
v[0] = reg.f[B];
v[1] = reg.f[B+1];
}
NEXTOP;
OP(SV3):
ASSERTA(a); ASSERTF(B+2); ASSERTKD(C);
GETADDR(PA,KC,X_WRITE_NIL);
{
auto v = (double *)ptr;
v[0] = reg.f[B];
v[1] = reg.f[B+1];
v[2] = reg.f[B+2];
}
NEXTOP;
OP(SV3_R):
ASSERTA(a); ASSERTF(B+2); ASSERTD(C);
GETADDR(PA,RC,X_WRITE_NIL);
{
auto v = (double *)ptr;
v[0] = reg.f[B];
v[1] = reg.f[B+1];
v[2] = reg.f[B+2];
}
NEXTOP;
OP(SBIT):
ASSERTA(a); ASSERTD(B);
GETADDR(PA,0,X_WRITE_NIL);
if (reg.d[B])
{
*(VM_UBYTE *)ptr |= C;
}
else
{
*(VM_UBYTE *)ptr &= ~C;
}
NEXTOP;
OP(MOVE):
ASSERTD(a); ASSERTD(B);
reg.d[a] = reg.d[B];
NEXTOP;
OP(MOVEF):
ASSERTF(a); ASSERTF(B);
reg.f[a] = reg.f[B];
NEXTOP;
OP(MOVES):
ASSERTS(a); ASSERTS(B);
reg.s[a] = reg.s[B];
NEXTOP;
OP(MOVEA):
{
ASSERTA(a); ASSERTA(B);
b = B;
reg.a[a] = reg.a[b];
NEXTOP;
}
OP(MOVEV2):
{
ASSERTF(a); ASSERTF(B);
b = B;
reg.f[a] = reg.f[b];
reg.f[a + 1] = reg.f[b + 1];
NEXTOP;
}
OP(MOVEV3):
{
ASSERTF(a); ASSERTF(B);
b = B;
reg.f[a] = reg.f[b];
reg.f[a + 1] = reg.f[b + 1];
reg.f[a + 2] = reg.f[b + 2];
NEXTOP;
}
OP(DYNCAST_R) :
ASSERTA(a); ASSERTA(B); ASSERTA(C);
b = B;
reg.a[a] = (reg.a[b] && ((DObject*)(reg.a[b]))->IsKindOf((PClass*)(reg.a[C]))) ? reg.a[b] : nullptr;
NEXTOP;
OP(DYNCAST_K) :
ASSERTA(a); ASSERTA(B); ASSERTKA(C);
b = B;
reg.a[a] = (reg.a[b] && ((DObject*)(reg.a[b]))->IsKindOf((PClass*)(konsta[C].o))) ? reg.a[b] : nullptr;
NEXTOP;
OP(DYNCASTC_R) :
ASSERTA(a); ASSERTA(B); ASSERTA(C);
b = B;
reg.a[a] = (reg.a[b] && ((PClass*)(reg.a[b]))->IsDescendantOf((PClass*)(reg.a[C]))) ? reg.a[b] : nullptr;
NEXTOP;
OP(DYNCASTC_K) :
ASSERTA(a); ASSERTA(B); ASSERTKA(C);
b = B;
reg.a[a] = (reg.a[b] && ((PClass*)(reg.a[b]))->IsDescendantOf((PClass*)(konsta[C].o))) ? reg.a[b] : nullptr;
NEXTOP;
OP(CAST):
if (C == CAST_I2F)
{
ASSERTF(a); ASSERTD(B);
reg.f[a] = reg.d[B];
}
else if (C == CAST_F2I)
{
ASSERTD(a); ASSERTF(B);
reg.d[a] = (int)reg.f[B];
}
else
{
DoCast(reg, f, a, B, C);
}
NEXTOP;
OP(CASTB):
if (C == CASTB_I)
{
ASSERTD(a); ASSERTD(B);
reg.d[a] = !!reg.d[B];
}
else if (C == CASTB_F)
{
ASSERTD(a); ASSERTF(B);
reg.d[a] = reg.f[B] != 0;
}
else if (C == CASTB_A)
{
ASSERTD(a); ASSERTA(B);
reg.d[a] = reg.a[B] != nullptr;
}
else
{
ASSERTD(a); ASSERTS(B);
reg.d[a] = reg.s[B].Len() > 0;
}
NEXTOP;
OP(TEST):
ASSERTD(a);
if (reg.d[a] != BC)
{
pc++;
}
NEXTOP;
OP(TESTN):
ASSERTD(a);
if (-reg.d[a] != BC)
{
pc++;
}
NEXTOP;
OP(JMP):
pc += JMPOFS(pc);
NEXTOP;
OP(IJMP):
ASSERTD(a);
pc += (reg.d[a]);
assert(pc[1].op == OP_JMP);
pc += 1 + JMPOFS(pc+1);
NEXTOP;
OP(PARAMI):
assert(f->NumParam < sfunc->MaxParam);
{
VMValue *param = &reg.param[f->NumParam++];
::new(param) VMValue(ABCs);
}
NEXTOP;
OP(PARAM):
assert(f->NumParam < sfunc->MaxParam);
{
VMValue *param = &reg.param[f->NumParam++];
b = BC;
if (a == REGT_NIL)
{
::new(param) VMValue();
}
else
{
switch(a)
{
case REGT_INT:
assert(b < f->NumRegD);
::new(param) VMValue(reg.d[b]);
break;
case REGT_INT | REGT_ADDROF:
assert(b < f->NumRegD);
::new(param) VMValue(&reg.d[b]);
break;
case REGT_INT | REGT_KONST:
assert(b < sfunc->NumKonstD);
::new(param) VMValue(konstd[b]);
break;
case REGT_STRING:
assert(b < f->NumRegS);
::new(param) VMValue(&reg.s[b]);
break;
case REGT_STRING | REGT_ADDROF:
assert(b < f->NumRegS);
::new(param) VMValue((void*)&reg.s[b]); // Note that this may not use the FString* version of the constructor!
break;
case REGT_STRING | REGT_KONST:
assert(b < sfunc->NumKonstS);
::new(param) VMValue(&konsts[b]);
break;
case REGT_POINTER:
assert(b < f->NumRegA);
::new(param) VMValue(reg.a[b]);
break;
case REGT_POINTER | REGT_ADDROF:
assert(b < f->NumRegA);
::new(param) VMValue(&reg.a[b]);
break;
case REGT_POINTER | REGT_KONST:
assert(b < sfunc->NumKonstA);
::new(param) VMValue(konsta[b].v);
break;
case REGT_FLOAT:
assert(b < f->NumRegF);
::new(param) VMValue(reg.f[b]);
break;
case REGT_FLOAT | REGT_MULTIREG2:
assert(b < f->NumRegF - 1);
assert(f->NumParam < sfunc->MaxParam);
::new(param) VMValue(reg.f[b]);
::new(param + 1) VMValue(reg.f[b + 1]);
f->NumParam++;
break;
case REGT_FLOAT | REGT_MULTIREG3:
assert(b < f->NumRegF - 2);
assert(f->NumParam < sfunc->MaxParam - 1);
::new(param) VMValue(reg.f[b]);
::new(param + 1) VMValue(reg.f[b + 1]);
::new(param + 2) VMValue(reg.f[b + 2]);
f->NumParam += 2;
break;
case REGT_FLOAT | REGT_ADDROF:
assert(b < f->NumRegF);
::new(param) VMValue(&reg.f[b]);
break;
case REGT_FLOAT | REGT_KONST:
assert(b < sfunc->NumKonstF);
::new(param) VMValue(konstf[b]);
break;
default:
assert(0);
break;
}
}
}
NEXTOP;
OP(VTBL):
ASSERTA(a); ASSERTA(B);
{
auto o = (DObject*)reg.a[B];
if (o == nullptr)
{
ThrowAbortException(X_READ_NIL, nullptr);
return 0;
}
auto p = o->GetClass();
assert(C < p->Virtuals.Size());
reg.a[a] = p->Virtuals[C];
}
NEXTOP;
OP(SCOPE):
{
ASSERTA(a); ASSERTKA(C);
auto o = (DObject*)reg.a[a];
if (o == nullptr)
{
ThrowAbortException(X_READ_NIL, nullptr);
return 0;
}
FScopeBarrier::ValidateCall(o->GetClass(), (VMFunction*)konsta[C].v, B - 1);
}
NEXTOP;
OP(CALL_K):
ASSERTKA(a);
ptr = konsta[a].o;
goto Do_CALL;
OP(CALL):
ASSERTA(a);
ptr = reg.a[a];
Do_CALL:
assert(B <= f->NumParam);
assert(C <= MAX_RETURNS);
{
VMFunction *call = (VMFunction *)ptr;
VMReturn returns[MAX_RETURNS];
int numret;
b = B;
FillReturns(reg, f, returns, pc+1, C);
if (call->VarFlags & VARF_Native)
{
try
{
VMCycles[0].Unclock();
numret = static_cast<VMNativeFunction *>(call)->NativeCall(VM_INVOKE(reg.param + f->NumParam - b, b, returns, C, call->RegTypes));
VMCycles[0].Clock();
}
catch (CVMAbortException &err)
{
err.MaybePrintMessage();
err.stacktrace.AppendFormat("Called from %s\n", call->PrintableName.GetChars());
// PrintParameters(reg.param + f->NumParam - B, B);
throw;
}
}
else
{
auto sfunc = static_cast<VMScriptFunction *>(call);
numret = sfunc->ScriptCall(sfunc, reg.param + f->NumParam - b, b, returns, C);
}
assert(numret == C && "Number of parameters returned differs from what was expected by the caller");
f->NumParam -= B;
pc += C; // Skip RESULTs
}
NEXTOP;
OP(RET):
if (B == REGT_NIL)
{ // No return values
return 0;
}
assert(ret != NULL || numret == 0);
{
int retnum = a & ~RET_FINAL;
if (retnum < numret)
{
SetReturn(reg, f, &ret[retnum], B, C);
}
if (a & RET_FINAL)
{
return retnum < numret ? retnum + 1 : numret;
}
}
NEXTOP;
OP(RETI):
assert(ret != NULL || numret == 0);
{
int retnum = a & ~RET_FINAL;
if (retnum < numret)
{
ret[retnum].SetInt(BCs);
}
if (a & RET_FINAL)
{
return retnum < numret ? retnum + 1 : numret;
}
}
NEXTOP;
OP(RESULT):
// This instruction is just a placeholder to indicate where a return
// value should be stored. It does nothing on its own and should not
// be executed.
assert(0);
NEXTOP;
#if 0
OP(TRY):
assert(try_depth < MAX_TRY_DEPTH);
if (try_depth >= MAX_TRY_DEPTH)
{
ThrowAbortException(X_TOO_MANY_TRIES, nullptr);
}
assert((pc + JMPOFS(pc) + 1)->op == OP_CATCH);
exception_frames[try_depth++] = pc + JMPOFS(pc) + 1;
NEXTOP;
OP(UNTRY):
assert(a <= try_depth);
try_depth -= a;
NEXTOP;
#endif
OP(THROW):
#if 0
if (a == 0)
{
ASSERTA(B);
ThrowVMException((VMException *)reg.a[B]);
}
else if (a == 1)
{
ASSERTKA(B);
assert(AssertObject(konsta[B].o));
ThrowVMException((VMException *)konsta[B].o);
}
else
#endif
{
ThrowAbortException(EVMAbortException(BC), nullptr);
}
NEXTOP;
#if 0
OP(CATCH):
// This instruction is handled by our own catch handler and should
// not be executed by the normal VM code.
assert(0);
NEXTOP;
#endif
OP(BOUND):
if (reg.d[a] >= BC)
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Max.index = %u, current index = %u\n", BC, reg.d[a]);
return 0;
}
else if (reg.d[a] < 0)
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Negative current index = %i\n", reg.d[a]);
return 0;
}
NEXTOP;
OP(BOUND_K):
ASSERTKD(BC);
if (reg.d[a] >= konstd[BC])
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Max.index = %u, current index = %u\n", konstd[BC], reg.d[a]);
return 0;
}
else if (reg.d[a] < 0)
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Negative current index = %i\n", reg.d[a]);
return 0;
}
NEXTOP;
OP(BOUND_R):
ASSERTD(B);
if (reg.d[a] >= reg.d[B])
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Max.index = %u, current index = %u\n", reg.d[B], reg.d[a]);
return 0;
}
else if (reg.d[a] < 0)
{
ThrowAbortException(X_ARRAY_OUT_OF_BOUNDS, "Negative current index = %i\n", reg.d[a]);
return 0;
}
NEXTOP;
OP(CONCAT):
ASSERTS(a); ASSERTS(B); ASSERTS(C);
reg.s[a] = reg.s[B] + reg.s[C];
NEXTOP;
OP(LENS):
ASSERTD(a); ASSERTS(B);
reg.d[a] = (int)reg.s[B].Len();
NEXTOP;
OP(CMPS):
// String comparison is a fairly expensive operation, so I've
// chosen to conserve a few opcodes by condensing all the
// string comparisons into a single one.
{
const FString *b, *c;
int test, method;
bool cmp;
if (a & CMP_BK)
{
ASSERTKS(B);
b = &konsts[B];
}
else
{
ASSERTS(B);
b = &reg.s[B];
}
if (a & CMP_CK)
{
ASSERTKS(C);
c = &konsts[C];
}
else
{
ASSERTS(C);
c = &reg.s[C];
}
test = (a & CMP_APPROX) ? b->CompareNoCase(*c) : b->Compare(*c);
method = a & CMP_METHOD_MASK;
if (method == CMP_EQ)
{
cmp = !test;
}
else if (method == CMP_LT)
{
cmp = (test < 0);
}
else
{
assert(method == CMP_LE);
cmp = (test <= 0);
}
if (cmp == (a & CMP_CHECK))
{
assert(pc[1].op == OP_JMP);
pc += 1 + JMPOFS(pc+1);
}
else
{
pc += 1;
}
}
NEXTOP;
OP(SLL_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] << reg.d[C];
NEXTOP;
OP(SLL_RI):
ASSERTD(a); ASSERTD(B); assert(C <= 31);
reg.d[a] = reg.d[B] << C;
NEXTOP;
OP(SLL_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
reg.d[a] = konstd[B] << reg.d[C];
NEXTOP;
OP(SRL_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = (unsigned)reg.d[B] >> reg.d[C];
NEXTOP;
OP(SRL_RI):
ASSERTD(a); ASSERTD(B); assert(C <= 31);
reg.d[a] = (unsigned)reg.d[B] >> C;
NEXTOP;
OP(SRL_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
reg.d[a] = (unsigned)konstd[B] >> reg.d[C];
NEXTOP;
OP(SRA_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] >> reg.d[C];
NEXTOP;
OP(SRA_RI):
ASSERTD(a); ASSERTD(B); assert(C <= 31);
reg.d[a] = reg.d[B] >> C;
NEXTOP;
OP(SRA_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
reg.d[a] = konstd[B] >> reg.d[C];
NEXTOP;
OP(ADD_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] + reg.d[C];
NEXTOP;
OP(ADD_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] + konstd[C];
NEXTOP;
OP(ADDI):
ASSERTD(a); ASSERTD(B);
reg.d[a] = reg.d[B] + Cs;
NEXTOP;
OP(SUB_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] - reg.d[C];
NEXTOP;
OP(SUB_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] - konstd[C];
NEXTOP;
OP(SUB_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
reg.d[a] = konstd[B] - reg.d[C];
NEXTOP;
OP(MUL_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] * reg.d[C];
NEXTOP;
OP(MUL_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] * konstd[C];
NEXTOP;
OP(DIV_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = reg.d[B] / reg.d[C];
NEXTOP;
OP(DIV_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
if (konstd[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = reg.d[B] / konstd[C];
NEXTOP;
OP(DIV_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = konstd[B] / reg.d[C];
NEXTOP;
OP(DIVU_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = int((unsigned)reg.d[B] / (unsigned)reg.d[C]);
NEXTOP;
OP(DIVU_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
if (konstd[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = int((unsigned)reg.d[B] / (unsigned)konstd[C]);
NEXTOP;
OP(DIVU_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = int((unsigned)konstd[B] / (unsigned)reg.d[C]);
NEXTOP;
OP(MOD_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = reg.d[B] % reg.d[C];
NEXTOP;
OP(MOD_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
if (konstd[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = reg.d[B] % konstd[C];
NEXTOP;
OP(MOD_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = konstd[B] % reg.d[C];
NEXTOP;
OP(MODU_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = int((unsigned)reg.d[B] % (unsigned)reg.d[C]);
NEXTOP;
OP(MODU_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
if (konstd[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = int((unsigned)reg.d[B] % (unsigned)konstd[C]);
NEXTOP;
OP(MODU_KR):
ASSERTD(a); ASSERTKD(B); ASSERTD(C);
if (reg.d[C] == 0)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.d[a] = int((unsigned)konstd[B] % (unsigned)reg.d[C]);
NEXTOP;
OP(AND_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] & reg.d[C];
NEXTOP;
OP(AND_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] & konstd[C];
NEXTOP;
OP(OR_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] | reg.d[C];
NEXTOP;
OP(OR_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] | konstd[C];
NEXTOP;
OP(XOR_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] ^ reg.d[C];
NEXTOP;
OP(XOR_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] ^ konstd[C];
NEXTOP;
OP(MIN_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] < reg.d[C] ? reg.d[B] : reg.d[C];
NEXTOP;
OP(MIN_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] < konstd[C] ? reg.d[B] : konstd[C];
NEXTOP;
OP(MAX_RR):
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = reg.d[B] > reg.d[C] ? reg.d[B] : reg.d[C];
NEXTOP;
OP(MAX_RK):
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = reg.d[B] > konstd[C] ? reg.d[B] : konstd[C];
NEXTOP;
OP(MINU_RR) :
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = (unsigned)reg.d[B] < (unsigned)reg.d[C] ? reg.d[B] : reg.d[C];
NEXTOP;
OP(MINU_RK) :
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = (unsigned)reg.d[B] < (unsigned)konstd[C] ? reg.d[B] : konstd[C];
NEXTOP;
OP(MAXU_RR) :
ASSERTD(a); ASSERTD(B); ASSERTD(C);
reg.d[a] = (unsigned)reg.d[B] > (unsigned)reg.d[C] ? reg.d[B] : reg.d[C];
NEXTOP;
OP(MAXU_RK) :
ASSERTD(a); ASSERTD(B); ASSERTKD(C);
reg.d[a] = (unsigned)reg.d[B] > (unsigned)konstd[C] ? reg.d[B] : konstd[C];
NEXTOP;
OP(ABS):
ASSERTD(a); ASSERTD(B);
reg.d[a] = abs(reg.d[B]);
NEXTOP;
OP(NEG):
ASSERTD(a); ASSERTD(B);
reg.d[a] = -reg.d[B];
NEXTOP;
OP(NOT):
ASSERTD(a); ASSERTD(B);
reg.d[a] = ~reg.d[B];
NEXTOP;
OP(EQ_R):
ASSERTD(B); ASSERTD(C);
CMPJMP(reg.d[B] == reg.d[C]);
NEXTOP;
OP(EQ_K):
ASSERTD(B); ASSERTKD(C);
CMPJMP(reg.d[B] == konstd[C]);
NEXTOP;
OP(LT_RR):
ASSERTD(B); ASSERTD(C);
CMPJMP(reg.d[B] < reg.d[C]);
NEXTOP;
OP(LT_RK):
ASSERTD(B); ASSERTKD(C);
CMPJMP(reg.d[B] < konstd[C]);
NEXTOP;
OP(LT_KR):
ASSERTKD(B); ASSERTD(C);
CMPJMP(konstd[B] < reg.d[C]);
NEXTOP;
OP(LE_RR):
ASSERTD(B); ASSERTD(C);
CMPJMP(reg.d[B] <= reg.d[C]);
NEXTOP;
OP(LE_RK):
ASSERTD(B); ASSERTKD(C);
CMPJMP(reg.d[B] <= konstd[C]);
NEXTOP;
OP(LE_KR):
ASSERTKD(B); ASSERTD(C);
CMPJMP(konstd[B] <= reg.d[C]);
NEXTOP;
OP(LTU_RR):
ASSERTD(B); ASSERTD(C);
CMPJMP((VM_UWORD)reg.d[B] < (VM_UWORD)reg.d[C]);
NEXTOP;
OP(LTU_RK):
ASSERTD(B); ASSERTKD(C);
CMPJMP((VM_UWORD)reg.d[B] < (VM_UWORD)konstd[C]);
NEXTOP;
OP(LTU_KR):
ASSERTKD(B); ASSERTD(C);
CMPJMP((VM_UWORD)konstd[B] < (VM_UWORD)reg.d[C]);
NEXTOP;
OP(LEU_RR):
ASSERTD(B); ASSERTD(C);
CMPJMP((VM_UWORD)reg.d[B] <= (VM_UWORD)reg.d[C]);
NEXTOP;
OP(LEU_RK):
ASSERTD(B); ASSERTKD(C);
CMPJMP((VM_UWORD)reg.d[B] <= (VM_UWORD)konstd[C]);
NEXTOP;
OP(LEU_KR):
ASSERTKD(B); ASSERTD(C);
CMPJMP((VM_UWORD)konstd[B] <= (VM_UWORD)reg.d[C]);
NEXTOP;
OP(ADDF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = reg.f[B] + reg.f[C];
NEXTOP;
OP(ADDF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
reg.f[a] = reg.f[B] + konstf[C];
NEXTOP;
OP(SUBF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = reg.f[B] - reg.f[C];
NEXTOP;
OP(SUBF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
reg.f[a] = reg.f[B] - konstf[C];
NEXTOP;
OP(SUBF_KR):
ASSERTF(a); ASSERTKF(B); ASSERTF(C);
reg.f[a] = konstf[B] - reg.f[C];
NEXTOP;
OP(MULF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = reg.f[B] * reg.f[C];
NEXTOP;
OP(MULF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
reg.f[a] = reg.f[B] * konstf[C];
NEXTOP;
OP(DIVF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
if (reg.f[C] == 0.)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.f[a] = reg.f[B] / reg.f[C];
NEXTOP;
OP(DIVF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
if (konstf[C] == 0.)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.f[a] = reg.f[B] / konstf[C];
NEXTOP;
OP(DIVF_KR):
ASSERTF(a); ASSERTKF(B); ASSERTF(C);
if (reg.f[C] == 0.)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.f[a] = konstf[B] / reg.f[C];
NEXTOP;
OP(MODF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
fb = reg.f[B]; fc = reg.f[C];
Do_MODF:
if (fc == 0.)
{
ThrowAbortException(X_DIVISION_BY_ZERO, nullptr);
return 0;
}
reg.f[a] = luai_nummod(fb, fc);
NEXTOP;
OP(MODF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
fb = reg.f[B]; fc = konstf[C];
goto Do_MODF;
NEXTOP;
OP(MODF_KR):
ASSERTF(a); ASSERTKF(B); ASSERTF(C);
fb = konstf[B]; fc = reg.f[C];
goto Do_MODF;
NEXTOP;
OP(POWF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = g_pow(reg.f[B], reg.f[C]);
NEXTOP;
OP(POWF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
reg.f[a] = g_pow(reg.f[B], konstf[C]);
NEXTOP;
OP(POWF_KR):
ASSERTF(a); ASSERTKF(B); ASSERTF(C);
reg.f[a] = g_pow(konstf[B], reg.f[C]);
NEXTOP;
OP(MINF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = reg.f[B] < reg.f[C] ? reg.f[B] : reg.f[C];
NEXTOP;
OP(MINF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
reg.f[a] = reg.f[B] < konstf[C] ? reg.f[B] : konstf[C];
NEXTOP;
OP(MAXF_RR):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = reg.f[B] > reg.f[C] ? reg.f[B] : reg.f[C];
NEXTOP;
OP(MAXF_RK):
ASSERTF(a); ASSERTF(B); ASSERTKF(C);
reg.f[a] = reg.f[B] > konstf[C] ? reg.f[B] : konstf[C];
NEXTOP;
OP(ATAN2):
ASSERTF(a); ASSERTF(B); ASSERTF(C);
reg.f[a] = g_atan2(reg.f[B], reg.f[C]) * (180 / M_PI);
NEXTOP;
OP(FLOP):
ASSERTF(a); ASSERTF(B);
fb = reg.f[B];
reg.f[a] = (C == FLOP_ABS) ? fabs(fb) : (C == FLOP_NEG) ? -fb : DoFLOP(C, fb);
NEXTOP;
OP(EQF_R):
ASSERTF(B); ASSERTF(C);
if (a & CMP_APPROX)
{
CMPJMP(fabs(reg.f[C] - reg.f[B]) < VM_EPSILON);
}
else
{
CMPJMP(reg.f[C] == reg.f[B]);
}
NEXTOP;
OP(EQF_K):
ASSERTF(B); ASSERTKF(C);
if (a & CMP_APPROX)
{
CMPJMP(fabs(konstf[C] - reg.f[B]) < VM_EPSILON);
}
else
{
CMPJMP(konstf[C] == reg.f[B]);
}
NEXTOP;
OP(LTF_RR):
ASSERTF(B); ASSERTF(C);
if (a & CMP_APPROX)
{
CMPJMP((reg.f[B] - reg.f[C]) < -VM_EPSILON);
}
else
{
CMPJMP(reg.f[B] < reg.f[C]);
}
NEXTOP;
OP(LTF_RK):
ASSERTF(B); ASSERTKF(C);
if (a & CMP_APPROX)
{
CMPJMP((reg.f[B] - konstf[C]) < -VM_EPSILON);
}
else
{
CMPJMP(reg.f[B] < konstf[C]);
}
NEXTOP;
OP(LTF_KR):
ASSERTKF(B); ASSERTF(C);
if (a & CMP_APPROX)
{
CMPJMP((konstf[B] - reg.f[C]) < -VM_EPSILON);
}
else
{
CMPJMP(konstf[B] < reg.f[C]);
}
NEXTOP;
OP(LEF_RR):
ASSERTF(B); ASSERTF(C);
if (a & CMP_APPROX)
{
CMPJMP((reg.f[B] - reg.f[C]) <= -VM_EPSILON);
}
else
{
CMPJMP(reg.f[B] <= reg.f[C]);
}
NEXTOP;
OP(LEF_RK):
ASSERTF(B); ASSERTKF(C);
if (a & CMP_APPROX)
{
CMPJMP((reg.f[B] - konstf[C]) <= -VM_EPSILON);
}
else
{
CMPJMP(reg.f[B] <= konstf[C]);
}
NEXTOP;
OP(LEF_KR):
ASSERTKF(B); ASSERTF(C);
if (a & CMP_APPROX)
{
CMPJMP((konstf[B] - reg.f[C]) <= -VM_EPSILON);
}
else
{
CMPJMP(konstf[B] <= reg.f[C]);
}
NEXTOP;
OP(NEGV2):
ASSERTF(a+1); ASSERTF(B+1);
reg.f[a] = -reg.f[B];
reg.f[a+1] = -reg.f[B+1];
NEXTOP;
OP(ADDV2_RR):
ASSERTF(a+1); ASSERTF(B+1); ASSERTF(C+1);
fcp = &reg.f[C];
fbp = &reg.f[B];
reg.f[a] = fbp[0] + fcp[0];
reg.f[a+1] = fbp[1] + fcp[1];
NEXTOP;
OP(SUBV2_RR):
ASSERTF(a+1); ASSERTF(B+1); ASSERTF(C+1);
fbp = &reg.f[B];
fcp = &reg.f[C];
reg.f[a] = fbp[0] - fcp[0];
reg.f[a+1] = fbp[1] - fcp[1];
NEXTOP;
OP(DOTV2_RR):
ASSERTF(a); ASSERTF(B+1); ASSERTF(C+1);
reg.f[a] = reg.f[B] * reg.f[C] + reg.f[B+1] * reg.f[C+1];
NEXTOP;
OP(MULVF2_RR):
ASSERTF(a+1); ASSERTF(B+1); ASSERTF(C);
fc = reg.f[C];
fbp = &reg.f[B];
Do_MULV2:
reg.f[a] = fbp[0] * fc;
reg.f[a+1] = fbp[1] * fc;
NEXTOP;
OP(MULVF2_RK):
ASSERTF(a+1); ASSERTF(B+1); ASSERTKF(C);
fc = konstf[C];
fbp = &reg.f[B];
goto Do_MULV2;
OP(DIVVF2_RR):
ASSERTF(a+1); ASSERTF(B+1); ASSERTF(C);
fc = reg.f[C];
fbp = &reg.f[B];
Do_DIVV2:
reg.f[a] = fbp[0] / fc;
reg.f[a+1] = fbp[1] / fc;
NEXTOP;
OP(DIVVF2_RK):
ASSERTF(a+1); ASSERTF(B+1); ASSERTKF(C);
fc = konstf[C];
fbp = &reg.f[B];
goto Do_DIVV2;
OP(LENV2):
ASSERTF(a); ASSERTF(B+1);
reg.f[a] = g_sqrt(reg.f[B] * reg.f[B] + reg.f[B+1] * reg.f[B+1]);
NEXTOP;
OP(EQV2_R):
ASSERTF(B+1); ASSERTF(C+1);
fcp = &reg.f[C];
Do_EQV2:
if (a & CMP_APPROX)
{
CMPJMP(fabs(reg.f[B ] - fcp[0]) < VM_EPSILON &&
fabs(reg.f[B+1] - fcp[1]) < VM_EPSILON);
}
else
{
CMPJMP(reg.f[B] == fcp[0] && reg.f[B+1] == fcp[1]);
}
NEXTOP;
OP(EQV2_K):
ASSERTF(B+1); ASSERTKF(C+1);
fcp = &konstf[C];
goto Do_EQV2;
OP(NEGV3):
ASSERTF(a+2); ASSERTF(B+2);
reg.f[a] = -reg.f[B];
reg.f[a+1] = -reg.f[B+1];
reg.f[a+2] = -reg.f[B+2];
NEXTOP;
OP(ADDV3_RR):
ASSERTF(a+2); ASSERTF(B+2); ASSERTF(C+2);
fcp = &reg.f[C];
fbp = &reg.f[B];
reg.f[a] = fbp[0] + fcp[0];
reg.f[a+1] = fbp[1] + fcp[1];
reg.f[a+2] = fbp[2] + fcp[2];
NEXTOP;
OP(SUBV3_RR):
ASSERTF(a+2); ASSERTF(B+2); ASSERTF(C+2);
fbp = &reg.f[B];
fcp = &reg.f[C];
reg.f[a] = fbp[0] - fcp[0];
reg.f[a+1] = fbp[1] - fcp[1];
reg.f[a+2] = fbp[2] - fcp[2];
NEXTOP;
OP(DOTV3_RR):
ASSERTF(a); ASSERTF(B+2); ASSERTF(C+2);
reg.f[a] = reg.f[B] * reg.f[C] + reg.f[B+1] * reg.f[C+1] + reg.f[B+2] * reg.f[C+2];
NEXTOP;
OP(CROSSV_RR):
ASSERTF(a+2); ASSERTF(B+2); ASSERTF(C+2);
fbp = &reg.f[B];
fcp = &reg.f[C];
{
double t[3];
t[2] = fbp[0] * fcp[1] - fbp[1] * fcp[0];
t[1] = fbp[2] * fcp[0] - fbp[0] * fcp[2];
t[0] = fbp[1] * fcp[2] - fbp[2] * fcp[1];
reg.f[a] = t[0]; reg.f[a+1] = t[1]; reg.f[a+2] = t[2];
}
NEXTOP;
OP(MULVF3_RR):
ASSERTF(a+2); ASSERTF(B+2); ASSERTF(C);
fc = reg.f[C];
fbp = &reg.f[B];
Do_MULV3:
reg.f[a] = fbp[0] * fc;
reg.f[a+1] = fbp[1] * fc;
reg.f[a+2] = fbp[2] * fc;
NEXTOP;
OP(MULVF3_RK):
ASSERTF(a+2); ASSERTF(B+2); ASSERTKF(C);
fc = konstf[C];
fbp = &reg.f[B];
goto Do_MULV3;
OP(DIVVF3_RR):
ASSERTF(a+2); ASSERTF(B+2); ASSERTF(C);
fc = reg.f[C];
fbp = &reg.f[B];
Do_DIVV3:
reg.f[a] = fbp[0] / fc;
reg.f[a+1] = fbp[1] / fc;
reg.f[a+2] = fbp[2] / fc;
NEXTOP;
OP(DIVVF3_RK):
ASSERTF(a+2); ASSERTF(B+2); ASSERTKF(C);
fc = konstf[C];
fbp = &reg.f[B];
goto Do_DIVV3;
OP(LENV3):
ASSERTF(a); ASSERTF(B+2);
reg.f[a] = g_sqrt(reg.f[B] * reg.f[B] + reg.f[B+1] * reg.f[B+1] + reg.f[B+2] * reg.f[B+2]);
NEXTOP;
OP(EQV3_R):
ASSERTF(B+2); ASSERTF(C+2);
fcp = &reg.f[C];
Do_EQV3:
if (a & CMP_APPROX)
{
CMPJMP(fabs(reg.f[B ] - fcp[0]) < VM_EPSILON &&
fabs(reg.f[B+1] - fcp[1]) < VM_EPSILON &&
fabs(reg.f[B+2] - fcp[2]) < VM_EPSILON);
}
else
{
CMPJMP(reg.f[B] == fcp[0] && reg.f[B+1] == fcp[1] && reg.f[B+2] == fcp[2]);
}
NEXTOP;
OP(EQV3_K):
ASSERTF(B+2); ASSERTKF(C+2);
fcp = &konstf[C];
goto Do_EQV3;
OP(ADDA_RR):
ASSERTA(a); ASSERTA(B); ASSERTD(C);
c = reg.d[C];
Do_ADDA:
if (reg.a[B] == NULL) // Leave NULL pointers as NULL pointers
{
c = 0;
}
reg.a[a] = (VM_UBYTE *)reg.a[B] + c;
NEXTOP;
OP(ADDA_RK):
ASSERTA(a); ASSERTA(B); ASSERTKD(C);
c = konstd[C];
goto Do_ADDA;
OP(SUBA):
ASSERTD(a); ASSERTA(B); ASSERTA(C);
reg.d[a] = (VM_UWORD)((VM_UBYTE *)reg.a[B] - (VM_UBYTE *)reg.a[C]);
NEXTOP;
OP(EQA_R):
ASSERTA(B); ASSERTA(C);
CMPJMP(reg.a[B] == reg.a[C]);
NEXTOP;
OP(EQA_K):
ASSERTA(B); ASSERTKA(C);
CMPJMP(reg.a[B] == konsta[C].v);
NEXTOP;
OP(NOP):
NEXTOP;
}
}
#if 0
catch(VMException *exception)
{
// Try to find a handler for the exception.
PClass *extype = exception->GetClass();
while(--try_depth >= 0)
{
pc = exception_frames[try_depth];
assert(pc->op == OP_CATCH);
while (pc->a > 1)
{
// CATCH must be followed by JMP if it doesn't terminate a catch chain.
assert(pc[1].op == OP_JMP);
PClass *type;
int b = pc->b;
if (pc->a == 2)
{
ASSERTA(b);
type = (PClass *)reg.a[b];
}
else
{
assert(pc->a == 3);
ASSERTKA(b);
type = (PClass *)konsta[b].o;
}
ASSERTA(pc->c);
if (type == extype)
{
// Found a handler. Store the exception in pC, skip the JMP,
// and begin executing its code.
reg.a[pc->c] = exception;
pc += 2;
goto begin;
}
// This catch didn't handle it. Try the next one.
pc += 1 + JMPOFS(pc + 1);
assert(pc->op == OP_CATCH);
}
if (pc->a == 1)
{
// Catch any type of VMException. This terminates the chain.
ASSERTA(pc->c);
reg.a[pc->c] = exception;
pc += 1;
goto begin;
}
// This frame failed. Try the next one out.
}
// Nothing caught it. Rethrow and let somebody else deal with it.
throw;
}
#endif
catch (CVMAbortException &err)
{
err.MaybePrintMessage();
err.stacktrace.AppendFormat("Called from %s at %s, line %d\n", sfunc->PrintableName.GetChars(), sfunc->SourceFileName.GetChars(), sfunc->PCToLine(pc));
// PrintParameters(reg.param + f->NumParam - B, B);
throw;
}
return 0;
}
static double DoFLOP(int flop, double v)
{
switch(flop)
{
case FLOP_ABS: return fabs(v);
case FLOP_NEG: return -v;
case FLOP_EXP: return g_exp(v);
case FLOP_LOG: return g_log(v);
case FLOP_LOG10: return g_log10(v);
case FLOP_SQRT: return g_sqrt(v);
case FLOP_CEIL: return ceil(v);
case FLOP_FLOOR: return floor(v);
case FLOP_ACOS: return g_acos(v);
case FLOP_ASIN: return g_asin(v);
case FLOP_ATAN: return g_atan(v);
case FLOP_COS: return g_cos(v);
case FLOP_SIN: return g_sin(v);
case FLOP_TAN: return g_tan(v);
case FLOP_ACOS_DEG: return g_acos(v) * (180 / M_PI);
case FLOP_ASIN_DEG: return g_asin(v) * (180 / M_PI);
case FLOP_ATAN_DEG: return g_atan(v) * (180 / M_PI);
case FLOP_COS_DEG: return g_cosdeg(v);
case FLOP_SIN_DEG: return g_sindeg(v);
case FLOP_TAN_DEG: return g_tan(v * (M_PI / 180));
case FLOP_COSH: return g_cosh(v);
case FLOP_SINH: return g_sinh(v);
case FLOP_TANH: return g_tanh(v);
case FLOP_ROUND: return round(v);
}
assert(0);
return 0;
}
static void DoCast(const VMRegisters &reg, const VMFrame *f, int a, int b, int cast)
{
switch (cast)
{
case CAST_I2F:
ASSERTF(a); ASSERTD(b);
reg.f[a] = reg.d[b];
break;
case CAST_U2F:
ASSERTF(a); ASSERTD(b);
reg.f[a] = unsigned(reg.d[b]);
break;
case CAST_I2S:
ASSERTS(a); ASSERTD(b);
reg.s[a].Format("%d", reg.d[b]);
break;
case CAST_U2S:
ASSERTS(a); ASSERTD(b);
reg.s[a].Format("%u", reg.d[b]);
break;
case CAST_F2I:
ASSERTD(a); ASSERTF(b);
reg.d[a] = (int)reg.f[b];
break;
case CAST_F2U:
ASSERTD(a); ASSERTF(b);
reg.d[a] = (int)(unsigned)reg.f[b];
break;
case CAST_F2S:
ASSERTS(a); ASSERTF(b);
reg.s[a].Format("%.5f", reg.f[b]); // keep this small. For more precise conversion there should be a conversion function.
break;
case CAST_V22S:
ASSERTS(a); ASSERTF(b+1);
reg.s[a].Format("(%.5f, %.5f)", reg.f[b], reg.f[b + 1]);
break;
case CAST_V32S:
ASSERTS(a); ASSERTF(b + 2);
reg.s[a].Format("(%.5f, %.5f, %.5f)", reg.f[b], reg.f[b + 1], reg.f[b + 2]);
break;
case CAST_P2S:
{
ASSERTS(a); ASSERTA(b);
if (reg.a[b] == nullptr) reg.s[a] = "null";
else reg.s[a].Format("%p", reg.a[b]);
break;
}
case CAST_S2I:
ASSERTD(a); ASSERTS(b);
reg.d[a] = (VM_SWORD)reg.s[b].ToLong();
break;
case CAST_S2F:
ASSERTF(a); ASSERTS(b);
reg.f[a] = reg.s[b].ToDouble();
break;
case CAST_S2N:
ASSERTD(a); ASSERTS(b);
reg.d[a] = reg.s[b].Len() == 0? NAME_None : FName(reg.s[b]).GetIndex();
break;
case CAST_N2S:
{
ASSERTS(a); ASSERTD(b);
FName name = FName(ENamedName(reg.d[b]));
reg.s[a] = name.IsValidName() ? name.GetChars() : "";
break;
}
case CAST_S2Co:
ASSERTD(a); ASSERTS(b);
reg.d[a] = V_GetColor(NULL, reg.s[b]);
break;
case CAST_Co2S:
ASSERTS(a); ASSERTD(b);
reg.s[a].Format("%02x %02x %02x", PalEntry(reg.d[b]).r, PalEntry(reg.d[b]).g, PalEntry(reg.d[b]).b);
break;
case CAST_S2So:
ASSERTD(a); ASSERTS(b);
reg.d[a] = FSoundID(reg.s[b]);
break;
case CAST_So2S:
ASSERTS(a); ASSERTD(b);
reg.s[a] = soundEngine->GetSoundName(reg.d[b]);
break;
case CAST_SID2S:
ASSERTS(a); ASSERTD(b);
VM_CastSpriteIDToString(&reg.s[a], reg.d[b]);
break;
case CAST_TID2S:
{
ASSERTS(a); ASSERTD(b);
auto tex = TexMan.GetTexture(*(FTextureID*)&(reg.d[b]));
reg.s[a] = tex == nullptr ? "(null)" : tex->GetName().GetChars();
break;
}
default:
assert(0);
}
}
//===========================================================================
//
// FillReturns
//
// Fills in an array of pointers to locations to store return values in.
//
//===========================================================================
static void FillReturns(const VMRegisters &reg, VMFrame *frame, VMReturn *returns, const VMOP *retval, int numret)
{
int i, type, regnum;
VMReturn *ret;
assert(REGT_INT == 0 && REGT_FLOAT == 1 && REGT_STRING == 2 && REGT_POINTER == 3);
for (i = 0, ret = returns; i < numret; ++i, ++ret, ++retval)
{
assert(retval->op == OP_RESULT); // opcode
ret->RegType = type = retval->b;
regnum = retval->c;
assert(!(type & REGT_KONST));
type &= REGT_TYPE;
if (type < REGT_STRING)
{
if (type == REGT_INT)
{
assert(regnum < frame->NumRegD);
ret->Location = &reg.d[regnum];
}
else // type == REGT_FLOAT
{
assert(regnum < frame->NumRegF);
ret->Location = &reg.f[regnum];
}
}
else if (type == REGT_STRING)
{
assert(regnum < frame->NumRegS);
ret->Location = &reg.s[regnum];
}
else
{
assert(type == REGT_POINTER);
assert(regnum < frame->NumRegA);
ret->Location = &reg.a[regnum];
}
}
}
//===========================================================================
//
// SetReturn
//
// Used by script code to set a return value.
//
//===========================================================================
static void SetReturn(const VMRegisters &reg, VMFrame *frame, VMReturn *ret, VM_UBYTE regtype, int regnum)
{
const void *src;
VMScriptFunction *func = static_cast<VMScriptFunction *>(frame->Func);
assert(func != NULL && !(func->VarFlags & VARF_Native));
assert((regtype & ~REGT_KONST) == ret->RegType);
switch (regtype & REGT_TYPE)
{
case REGT_INT:
assert(!(regtype & REGT_MULTIREG));
if (regtype & REGT_KONST)
{
assert(regnum < func->NumKonstD);
src = &func->KonstD[regnum];
}
else
{
assert(regnum < frame->NumRegD);
src = &reg.d[regnum];
}
ret->SetInt(*(int *)src);
break;
case REGT_FLOAT:
if (regtype & REGT_KONST)
{
assert(regnum < func->NumKonstF);
src = &func->KonstF[regnum];
}
else
{
assert(regnum < frame->NumRegF);
src = &reg.f[regnum];
}
if (regtype & REGT_MULTIREG3)
{
ret->SetVector((double *)src);
}
else if (regtype & REGT_MULTIREG2)
{
ret->SetVector2((double *)src);
}
else
{
ret->SetFloat(*(double *)src);
}
break;
case REGT_STRING:
assert(!(regtype & REGT_MULTIREG));
if (regtype & REGT_KONST)
{
assert(regnum < func->NumKonstS);
src = &func->KonstS[regnum];
}
else
{
assert(regnum < frame->NumRegS);
src = &reg.s[regnum];
}
ret->SetString(*(const FString *)src);
break;
case REGT_POINTER:
assert(!(regtype & REGT_MULTIREG));
if (regtype & REGT_KONST)
{
assert(regnum < func->NumKonstA);
ret->SetPointer(func->KonstA[regnum].v);
}
else
{
assert(regnum < frame->NumRegA);
ret->SetPointer(reg.a[regnum]);
}
break;
}
}
static int Exec(VMFunction *func, VMValue *params, int numparams, VMReturn *ret, int numret)
{
VMCalls[0]++;
VMFrameStack *stack = &GlobalVMStack;
VMFrame *newf = stack->AllocFrame(static_cast<VMScriptFunction*>(func));
VMFillParams(params, newf, numparams);
try
{
numret = ExecScriptFunc(stack, ret, numret);
}
catch (...)
{
stack->PopFrame();
throw;
}
stack->PopFrame();
return numret;
}