raze-gles/libraries/game-music-emu/gme/Sap_Apu.cpp
Christoph Oelckers 718112a8fe - added external libraries for music format playback and decompression from GZDoom.
Currently none of these is being used, but eventually they will, once more code gets ported over.
So it's better to have them right away and avoid editing the project file too much, only to revert that later.
2019-09-22 08:59:48 +02:00

334 lines
8.5 KiB
C++

// Game_Music_Emu https://bitbucket.org/mpyne/game-music-emu/
#include "Sap_Apu.h"
#include <string.h>
/* Copyright (C) 2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const max_frequency = 12000; // pure waves above this frequency are silenced
static void gen_poly( blargg_ulong mask, int count, byte* out )
{
blargg_ulong n = 1;
do
{
int bits = 0;
int b = 0;
do
{
// implemented using "Galios configuration"
bits |= (n & 1) << b;
n = (n >> 1) ^ (mask & -(n & 1));
}
while ( b++ < 7 );
*out++ = bits;
}
while ( --count );
}
// poly5
int const poly5_len = (1 << 5) - 1;
blargg_ulong const poly5_mask = (1UL << poly5_len) - 1;
blargg_ulong const poly5 = 0x167C6EA1;
inline blargg_ulong run_poly5( blargg_ulong in, int shift )
{
return (in << shift & poly5_mask) | (in >> (poly5_len - shift));
}
#define POLY_MASK( width, tap1, tap2 ) \
((1UL << (width - 1 - tap1)) | (1UL << (width - 1 - tap2)))
Sap_Apu_Impl::Sap_Apu_Impl()
{
gen_poly( POLY_MASK( 4, 1, 0 ), sizeof poly4, poly4 );
gen_poly( POLY_MASK( 9, 5, 0 ), sizeof poly9, poly9 );
gen_poly( POLY_MASK( 17, 5, 0 ), sizeof poly17, poly17 );
if ( 0 ) // comment out to recauculate poly5 constant
{
byte poly5 [4];
gen_poly( POLY_MASK( 5, 2, 0 ), sizeof poly5, poly5 );
blargg_ulong n = poly5 [3] * 0x1000000L + poly5 [2] * 0x10000L +
poly5 [1] * 0x100L + poly5 [0];
blargg_ulong rev = n & 1;
for ( int i = 1; i < poly5_len; i++ )
rev |= (n >> i & 1) << (poly5_len - i);
debug_printf( "poly5: 0x%08lX\n", rev );
}
}
Sap_Apu::Sap_Apu()
{
impl = 0;
for ( int i = 0; i < osc_count; i++ )
osc_output( i, 0 );
}
void Sap_Apu::reset( Sap_Apu_Impl* new_impl )
{
impl = new_impl;
last_time = 0;
poly5_pos = 0;
poly4_pos = 0;
polym_pos = 0;
control = 0;
for ( int i = 0; i < osc_count; i++ )
memset( &oscs [i], 0, offsetof (osc_t,output) );
}
inline void Sap_Apu::calc_periods()
{
// 15/64 kHz clock
int divider = 28;
if ( this->control & 1 )
divider = 114;
for ( int i = 0; i < osc_count; i++ )
{
osc_t* const osc = &oscs [i];
int const osc_reload = osc->regs [0]; // cache
blargg_long period = (osc_reload + 1) * divider;
static byte const fast_bits [osc_count] = { 1 << 6, 1 << 4, 1 << 5, 1 << 3 };
if ( this->control & fast_bits [i] )
{
period = osc_reload + 4;
if ( i & 1 )
{
period = osc_reload * 0x100L + osc [-1].regs [0] + 7;
if ( !(this->control & fast_bits [i - 1]) )
period = (period - 6) * divider;
if ( (osc [-1].regs [1] & 0x1F) > 0x10 )
debug_printf( "Use of slave channel in 16-bit mode not supported\n" );
}
}
osc->period = period;
}
}
void Sap_Apu::run_until( blip_time_t end_time )
{
calc_periods();
Sap_Apu_Impl* const impl = this->impl; // cache
// 17/9-bit poly selection
byte const* polym = impl->poly17;
int polym_len = poly17_len;
if ( this->control & 0x80 )
{
polym_len = poly9_len;
polym = impl->poly9;
}
polym_pos %= polym_len;
for ( int i = 0; i < osc_count; i++ )
{
osc_t* const osc = &oscs [i];
blip_time_t time = last_time + osc->delay;
blip_time_t const period = osc->period;
// output
Blip_Buffer* output = osc->output;
if ( output )
{
output->set_modified();
int const osc_control = osc->regs [1]; // cache
int volume = (osc_control & 0x0F) * 2;
if ( !volume || osc_control & 0x10 || // silent, DAC mode, or inaudible frequency
((osc_control & 0xA0) == 0xA0 && period < 1789773 / 2 / max_frequency) )
{
if ( !(osc_control & 0x10) )
volume >>= 1; // inaudible frequency = half volume
int delta = volume - osc->last_amp;
if ( delta )
{
osc->last_amp = volume;
impl->synth.offset( last_time, delta, output );
}
// TODO: doesn't maintain high pass flip-flop (very minor issue)
}
else
{
// high pass
static byte const hipass_bits [osc_count] = { 1 << 2, 1 << 1, 0, 0 };
blip_time_t period2 = 0; // unused if no high pass
blip_time_t time2 = end_time;
if ( this->control & hipass_bits [i] )
{
period2 = osc [2].period;
time2 = last_time + osc [2].delay;
if ( osc->invert )
{
// trick inner wave loop into inverting output
osc->last_amp -= volume;
volume = -volume;
}
}
if ( time < end_time || time2 < end_time )
{
// poly source
static byte const poly1 [] = { 0x55, 0x55 }; // square wave
byte const* poly = poly1;
int poly_len = 8 * sizeof poly1; // can be just 2 bits, but this is faster
int poly_pos = osc->phase & 1;
int poly_inc = 1;
if ( !(osc_control & 0x20) )
{
poly = polym;
poly_len = polym_len;
poly_pos = polym_pos;
if ( osc_control & 0x40 )
{
poly = impl->poly4;
poly_len = poly4_len;
poly_pos = poly4_pos;
}
poly_inc = period % poly_len;
poly_pos = (poly_pos + osc->delay) % poly_len;
}
poly_inc -= poly_len; // allows more optimized inner loop below
// square/poly5 wave
blargg_ulong wave = poly5;
check( poly5 & 1 ); // low bit is set for pure wave
int poly5_inc = 0;
if ( !(osc_control & 0x80) )
{
wave = run_poly5( wave, (osc->delay + poly5_pos) % poly5_len );
poly5_inc = period % poly5_len;
}
// Run wave and high pass interleved with each catching up to the other.
// Disabled high pass has no performance effect since inner wave loop
// makes no compromise for high pass, and only runs once in that case.
int osc_last_amp = osc->last_amp;
do
{
// run high pass
if ( time2 < time )
{
int delta = -osc_last_amp;
if ( volume < 0 )
delta += volume;
if ( delta )
{
osc_last_amp += delta - volume;
volume = -volume;
impl->synth.offset( time2, delta, output );
}
}
while ( time2 <= time ) // must advance *past* time to avoid hang
time2 += period2;
// run wave
blip_time_t end = end_time;
if ( end > time2 )
end = time2;
while ( time < end )
{
if ( wave & 1 )
{
int amp = volume & -(poly [poly_pos >> 3] >> (poly_pos & 7) & 1);
if ( (poly_pos += poly_inc) < 0 )
poly_pos += poly_len;
int delta = amp - osc_last_amp;
if ( delta )
{
osc_last_amp = amp;
impl->synth.offset( time, delta, output );
}
}
wave = run_poly5( wave, poly5_inc );
time += period;
}
}
while ( time < end_time || time2 < end_time );
osc->phase = poly_pos;
osc->last_amp = osc_last_amp;
}
osc->invert = 0;
if ( volume < 0 )
{
// undo inversion trickery
osc->last_amp -= volume;
osc->invert = 1;
}
}
}
// maintain divider
blip_time_t remain = end_time - time;
if ( remain > 0 )
{
blargg_long count = (remain + period - 1) / period;
osc->phase ^= count;
time += count * period;
}
osc->delay = time - end_time;
}
// advance polies
blip_time_t duration = end_time - last_time;
last_time = end_time;
poly4_pos = (poly4_pos + duration) % poly4_len;
poly5_pos = (poly5_pos + duration) % poly5_len;
polym_pos += duration; // will get %'d on next call
}
void Sap_Apu::write_data( blip_time_t time, unsigned addr, int data )
{
run_until( time );
int i = (addr ^ 0xD200) >> 1;
if ( i < osc_count )
{
oscs [i].regs [addr & 1] = data;
}
else if ( addr == 0xD208 )
{
control = data;
}
else if ( addr == 0xD209 )
{
oscs [0].delay = 0;
oscs [1].delay = 0;
oscs [2].delay = 0;
oscs [3].delay = 0;
}
/*
// TODO: are polynomials reset in this case?
else if ( addr == 0xD20F )
{
if ( (data & 3) == 0 )
polym_pos = 0;
}
*/
}
void Sap_Apu::end_frame( blip_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
}