mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-07 17:00:43 +00:00
ccebff2c85
git-svn-id: https://svn.eduke32.com/eduke32@7225 1a8010ca-5511-0410-912e-c29ae57300e0
572 lines
14 KiB
C
572 lines
14 KiB
C
/*-
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _LIBKERN_QUAD_H_
|
|
#define _LIBKERN_QUAD_H_
|
|
|
|
/*
|
|
* Quad arithmetic.
|
|
*
|
|
* This library makes the following assumptions:
|
|
*
|
|
* - The type long long (aka quad_t) exists.
|
|
*
|
|
* - A quad variable is exactly twice as long as `long'.
|
|
*
|
|
* - The machine's arithmetic is two's complement.
|
|
*
|
|
* This library can provide 128-bit arithmetic on a machine with 128-bit
|
|
* quads and 64-bit longs, for instance, or 96-bit arithmetic on machines
|
|
* with 48-bit longs.
|
|
*/
|
|
/*
|
|
#include <sys/cdefs.h>
|
|
#include <sys/types.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/syslimits.h>
|
|
*/
|
|
|
|
#include <limits.h>
|
|
typedef long long quad_t;
|
|
typedef unsigned long long u_quad_t;
|
|
typedef unsigned long u_long;
|
|
#ifndef CHAR_BIT
|
|
# define CHAR_BIT __CHAR_BIT__
|
|
#endif
|
|
|
|
/*
|
|
* Define the order of 32-bit words in 64-bit words.
|
|
* For little endian only.
|
|
*/
|
|
#define _QUAD_HIGHWORD 1
|
|
#define _QUAD_LOWWORD 0
|
|
|
|
/*
|
|
* Depending on the desired operation, we view a `long long' (aka quad_t) in
|
|
* one or more of the following formats.
|
|
*/
|
|
union uu {
|
|
quad_t q; /* as a (signed) quad */
|
|
quad_t uq; /* as an unsigned quad */
|
|
long sl[2]; /* as two signed longs */
|
|
u_long ul[2]; /* as two unsigned longs */
|
|
};
|
|
|
|
/*
|
|
* Define high and low longwords.
|
|
*/
|
|
#define H _QUAD_HIGHWORD
|
|
#define L _QUAD_LOWWORD
|
|
|
|
/*
|
|
* Total number of bits in a quad_t and in the pieces that make it up.
|
|
* These are used for shifting, and also below for halfword extraction
|
|
* and assembly.
|
|
*/
|
|
#define QUAD_BITS (sizeof(quad_t) * CHAR_BIT)
|
|
#define LONG_BITS (sizeof(long) * CHAR_BIT)
|
|
#define HALF_BITS (sizeof(long) * CHAR_BIT / 2)
|
|
|
|
/*
|
|
* Extract high and low shortwords from longword, and move low shortword of
|
|
* longword to upper half of long, i.e., produce the upper longword of
|
|
* ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.)
|
|
*
|
|
* These are used in the multiply code, to split a longword into upper
|
|
* and lower halves, and to reassemble a product as a quad_t, shifted left
|
|
* (sizeof(long)*CHAR_BIT/2).
|
|
*/
|
|
#define HHALF(x) ((x) >> HALF_BITS)
|
|
#define LHALF(x) ((x) & ((1 << HALF_BITS) - 1))
|
|
#define LHUP(x) ((x) << HALF_BITS)
|
|
|
|
typedef unsigned int qshift_t;
|
|
|
|
quad_t __ashldi3(quad_t, qshift_t);
|
|
quad_t __ashrdi3(quad_t, qshift_t);
|
|
int __cmpdi2(quad_t a, quad_t b);
|
|
quad_t __divdi3(quad_t a, quad_t b);
|
|
quad_t __lshrdi3(quad_t, qshift_t);
|
|
quad_t __moddi3(quad_t a, quad_t b);
|
|
u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem);
|
|
u_quad_t __udivdi3(u_quad_t a, u_quad_t b);
|
|
u_quad_t __umoddi3(u_quad_t a, u_quad_t b);
|
|
int __ucmpdi2(u_quad_t a, u_quad_t b);
|
|
|
|
#endif /* !_LIBKERN_QUAD_H_ */
|
|
|
|
#if defined (_X86_) && !defined (__x86_64__)
|
|
/*
|
|
* Shift a (signed) quad value left (arithmetic shift left).
|
|
* This is the same as logical shift left!
|
|
*/
|
|
quad_t
|
|
__ashldi3(a, shift)
|
|
quad_t a;
|
|
qshift_t shift;
|
|
{
|
|
union uu aa;
|
|
|
|
aa.q = a;
|
|
if (shift >= LONG_BITS) {
|
|
aa.ul[H] = shift >= QUAD_BITS ? 0 :
|
|
aa.ul[L] << (shift - LONG_BITS);
|
|
aa.ul[L] = 0;
|
|
} else if (shift > 0) {
|
|
aa.ul[H] = (aa.ul[H] << shift) |
|
|
(aa.ul[L] >> (LONG_BITS - shift));
|
|
aa.ul[L] <<= shift;
|
|
}
|
|
return (aa.q);
|
|
}
|
|
|
|
/*
|
|
* Shift a (signed) quad value right (arithmetic shift right).
|
|
*/
|
|
quad_t
|
|
__ashrdi3(a, shift)
|
|
quad_t a;
|
|
qshift_t shift;
|
|
{
|
|
union uu aa;
|
|
|
|
aa.q = a;
|
|
if (shift >= LONG_BITS) {
|
|
long s;
|
|
|
|
/*
|
|
* Smear bits rightward using the machine's right-shift
|
|
* method, whether that is sign extension or zero fill,
|
|
* to get the `sign word' s. Note that shifting by
|
|
* LONG_BITS is undefined, so we shift (LONG_BITS-1),
|
|
* then 1 more, to get our answer.
|
|
*/
|
|
s = (aa.sl[H] >> (LONG_BITS - 1)) >> 1;
|
|
aa.ul[L] = shift >= QUAD_BITS ? s :
|
|
aa.sl[H] >> (shift - LONG_BITS);
|
|
aa.ul[H] = s;
|
|
} else if (shift > 0) {
|
|
aa.ul[L] = (aa.ul[L] >> shift) |
|
|
(aa.ul[H] << (LONG_BITS - shift));
|
|
aa.sl[H] >>= shift;
|
|
}
|
|
return (aa.q);
|
|
}
|
|
|
|
/*
|
|
* Return 0, 1, or 2 as a <, =, > b respectively.
|
|
* Both a and b are considered signed---which means only the high word is
|
|
* signed.
|
|
*/
|
|
int
|
|
__cmpdi2(a, b)
|
|
quad_t a, b;
|
|
{
|
|
union uu aa, bb;
|
|
|
|
aa.q = a;
|
|
bb.q = b;
|
|
return (aa.sl[H] < bb.sl[H] ? 0 : aa.sl[H] > bb.sl[H] ? 2 :
|
|
aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1);
|
|
}
|
|
|
|
/*
|
|
* Divide two signed quads.
|
|
* ??? if -1/2 should produce -1 on this machine, this code is wrong
|
|
*/
|
|
quad_t
|
|
__divdi3(a, b)
|
|
quad_t a, b;
|
|
{
|
|
u_quad_t ua, ub, uq;
|
|
int neg;
|
|
|
|
if (a < 0)
|
|
ua = -(u_quad_t)a, neg = 1;
|
|
else
|
|
ua = a, neg = 0;
|
|
if (b < 0)
|
|
ub = -(u_quad_t)b, neg ^= 1;
|
|
else
|
|
ub = b;
|
|
uq = __qdivrem(ua, ub, (u_quad_t *)0);
|
|
return (neg ? -uq : uq);
|
|
}
|
|
|
|
/*
|
|
* Shift an (unsigned) quad value right (logical shift right).
|
|
*/
|
|
quad_t
|
|
__lshrdi3(a, shift)
|
|
quad_t a;
|
|
qshift_t shift;
|
|
{
|
|
union uu aa;
|
|
|
|
aa.q = a;
|
|
if (shift >= LONG_BITS) {
|
|
aa.ul[L] = shift >= QUAD_BITS ? 0 :
|
|
aa.ul[H] >> (shift - LONG_BITS);
|
|
aa.ul[H] = 0;
|
|
} else if (shift > 0) {
|
|
aa.ul[L] = (aa.ul[L] >> shift) |
|
|
(aa.ul[H] << (LONG_BITS - shift));
|
|
aa.ul[H] >>= shift;
|
|
}
|
|
return (aa.q);
|
|
}
|
|
|
|
/*
|
|
* Return remainder after dividing two signed quads.
|
|
*
|
|
* XXX
|
|
* If -1/2 should produce -1 on this machine, this code is wrong.
|
|
*/
|
|
quad_t
|
|
__moddi3(a, b)
|
|
quad_t a, b;
|
|
{
|
|
u_quad_t ua, ub, ur;
|
|
int neg;
|
|
|
|
if (a < 0)
|
|
ua = -(u_quad_t)a, neg = 1;
|
|
else
|
|
ua = a, neg = 0;
|
|
if (b < 0)
|
|
ub = -(u_quad_t)b;
|
|
else
|
|
ub = b;
|
|
(void)__qdivrem(ua, ub, &ur);
|
|
return (neg ? -ur : ur);
|
|
}
|
|
|
|
|
|
/*
|
|
* Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
|
|
* section 4.3.1, pp. 257--259.
|
|
*/
|
|
|
|
#define B (1 << HALF_BITS) /* digit base */
|
|
|
|
/* Combine two `digits' to make a single two-digit number. */
|
|
#define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
|
|
|
|
/* select a type for digits in base B: use unsigned short if they fit */
|
|
#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
|
|
typedef unsigned short digit;
|
|
#else
|
|
typedef u_long digit;
|
|
#endif
|
|
|
|
/*
|
|
* Shift p[0]..p[len] left `sh' bits, ignoring any bits that
|
|
* `fall out' the left (there never will be any such anyway).
|
|
* We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
|
|
*/
|
|
static void
|
|
__shl(register digit *p, register int len, register int sh)
|
|
{
|
|
register int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
|
|
p[i] = LHALF(p[i] << sh);
|
|
}
|
|
|
|
/*
|
|
* __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
|
|
*
|
|
* We do this in base 2-sup-HALF_BITS, so that all intermediate products
|
|
* fit within u_long. As a consequence, the maximum length dividend and
|
|
* divisor are 4 `digits' in this base (they are shorter if they have
|
|
* leading zeros).
|
|
*/
|
|
u_quad_t
|
|
__qdivrem(uq, vq, arq)
|
|
u_quad_t uq, vq, *arq;
|
|
{
|
|
union uu tmp;
|
|
digit *u, *v, *q;
|
|
register digit v1, v2;
|
|
u_long qhat, rhat, t;
|
|
int m, n, d, j, i;
|
|
digit uspace[5], vspace[5], qspace[5];
|
|
|
|
/*
|
|
* Take care of special cases: divide by zero, and u < v.
|
|
*/
|
|
if (vq == 0) {
|
|
/* divide by zero. */
|
|
static volatile const unsigned int zero = 0;
|
|
|
|
tmp.ul[H] = tmp.ul[L] = 1 / zero;
|
|
if (arq)
|
|
*arq = uq;
|
|
return (tmp.q);
|
|
}
|
|
if (uq < vq) {
|
|
if (arq)
|
|
*arq = uq;
|
|
return (0);
|
|
}
|
|
u = &uspace[0];
|
|
v = &vspace[0];
|
|
q = &qspace[0];
|
|
|
|
/*
|
|
* Break dividend and divisor into digits in base B, then
|
|
* count leading zeros to determine m and n. When done, we
|
|
* will have:
|
|
* u = (u[1]u[2]...u[m+n]) sub B
|
|
* v = (v[1]v[2]...v[n]) sub B
|
|
* v[1] != 0
|
|
* 1 < n <= 4 (if n = 1, we use a different division algorithm)
|
|
* m >= 0 (otherwise u < v, which we already checked)
|
|
* m + n = 4
|
|
* and thus
|
|
* m = 4 - n <= 2
|
|
*/
|
|
tmp.uq = uq;
|
|
u[0] = 0;
|
|
u[1] = HHALF(tmp.ul[H]);
|
|
u[2] = LHALF(tmp.ul[H]);
|
|
u[3] = HHALF(tmp.ul[L]);
|
|
u[4] = LHALF(tmp.ul[L]);
|
|
tmp.uq = vq;
|
|
v[1] = HHALF(tmp.ul[H]);
|
|
v[2] = LHALF(tmp.ul[H]);
|
|
v[3] = HHALF(tmp.ul[L]);
|
|
v[4] = LHALF(tmp.ul[L]);
|
|
for (n = 4; v[1] == 0; v++) {
|
|
if (--n == 1) {
|
|
u_long rbj; /* r*B+u[j] (not root boy jim) */
|
|
digit q1, q2, q3, q4;
|
|
|
|
/*
|
|
* Change of plan, per exercise 16.
|
|
* r = 0;
|
|
* for j = 1..4:
|
|
* q[j] = floor((r*B + u[j]) / v),
|
|
* r = (r*B + u[j]) % v;
|
|
* We unroll this completely here.
|
|
*/
|
|
t = v[2]; /* nonzero, by definition */
|
|
q1 = u[1] / t;
|
|
rbj = COMBINE(u[1] % t, u[2]);
|
|
q2 = rbj / t;
|
|
rbj = COMBINE(rbj % t, u[3]);
|
|
q3 = rbj / t;
|
|
rbj = COMBINE(rbj % t, u[4]);
|
|
q4 = rbj / t;
|
|
if (arq)
|
|
*arq = rbj % t;
|
|
tmp.ul[H] = COMBINE(q1, q2);
|
|
tmp.ul[L] = COMBINE(q3, q4);
|
|
return (tmp.q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By adjusting q once we determine m, we can guarantee that
|
|
* there is a complete four-digit quotient at &qspace[1] when
|
|
* we finally stop.
|
|
*/
|
|
for (m = 4 - n; u[1] == 0; u++)
|
|
m--;
|
|
for (i = 4 - m; --i >= 0;)
|
|
q[i] = 0;
|
|
q += 4 - m;
|
|
|
|
/*
|
|
* Here we run Program D, translated from MIX to C and acquiring
|
|
* a few minor changes.
|
|
*
|
|
* D1: choose multiplier 1 << d to ensure v[1] >= B/2.
|
|
*/
|
|
d = 0;
|
|
for (t = v[1]; t < B / 2; t <<= 1)
|
|
d++;
|
|
if (d > 0) {
|
|
__shl(&u[0], m + n, d); /* u <<= d */
|
|
__shl(&v[1], n - 1, d); /* v <<= d */
|
|
}
|
|
/*
|
|
* D2: j = 0.
|
|
*/
|
|
j = 0;
|
|
v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
|
|
v2 = v[2]; /* for D3 */
|
|
do {
|
|
register digit uj0, uj1, uj2;
|
|
|
|
/*
|
|
* D3: Calculate qhat (\^q, in TeX notation).
|
|
* Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
|
|
* let rhat = (u[j]*B + u[j+1]) mod v[1].
|
|
* While rhat < B and v[2]*qhat > rhat*B+u[j+2],
|
|
* decrement qhat and increase rhat correspondingly.
|
|
* Note that if rhat >= B, v[2]*qhat < rhat*B.
|
|
*/
|
|
uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
|
|
uj1 = u[j + 1]; /* for D3 only */
|
|
uj2 = u[j + 2]; /* for D3 only */
|
|
if (uj0 == v1) {
|
|
qhat = B;
|
|
rhat = uj1;
|
|
goto qhat_too_big;
|
|
} else {
|
|
u_long nn = COMBINE(uj0, uj1);
|
|
qhat = nn / v1;
|
|
rhat = nn % v1;
|
|
}
|
|
while (v2 * qhat > COMBINE(rhat, uj2)) {
|
|
qhat_too_big:
|
|
qhat--;
|
|
if ((rhat += v1) >= B)
|
|
break;
|
|
}
|
|
/*
|
|
* D4: Multiply and subtract.
|
|
* The variable `t' holds any borrows across the loop.
|
|
* We split this up so that we do not require v[0] = 0,
|
|
* and to eliminate a final special case.
|
|
*/
|
|
for (t = 0, i = n; i > 0; i--) {
|
|
t = u[i + j] - v[i] * qhat - t;
|
|
u[i + j] = LHALF(t);
|
|
t = (B - HHALF(t)) & (B - 1);
|
|
}
|
|
t = u[j] - t;
|
|
u[j] = LHALF(t);
|
|
/*
|
|
* D5: test remainder.
|
|
* There is a borrow if and only if HHALF(t) is nonzero;
|
|
* in that (rare) case, qhat was too large (by exactly 1).
|
|
* Fix it by adding v[1..n] to u[j..j+n].
|
|
*/
|
|
if (HHALF(t)) {
|
|
qhat--;
|
|
for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
|
|
t += u[i + j] + v[i];
|
|
u[i + j] = LHALF(t);
|
|
t = HHALF(t);
|
|
}
|
|
u[j] = LHALF(u[j] + t);
|
|
}
|
|
q[j] = qhat;
|
|
} while (++j <= m); /* D7: loop on j. */
|
|
|
|
/*
|
|
* If caller wants the remainder, we have to calculate it as
|
|
* u[m..m+n] >> d (this is at most n digits and thus fits in
|
|
* u[m+1..m+n], but we may need more source digits).
|
|
*/
|
|
if (arq) {
|
|
if (d) {
|
|
for (i = m + n; i > m; --i)
|
|
u[i] = (u[i] >> d) |
|
|
LHALF(u[i - 1] << (HALF_BITS - d));
|
|
u[i] = 0;
|
|
}
|
|
tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
|
|
tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
|
|
*arq = tmp.q;
|
|
}
|
|
|
|
tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
|
|
tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
|
|
return (tmp.q);
|
|
}
|
|
|
|
/*
|
|
* Return 0, 1, or 2 as a <, =, > b respectively.
|
|
* Neither a nor b are considered signed.
|
|
*/
|
|
int
|
|
__ucmpdi2(a, b)
|
|
u_quad_t a, b;
|
|
{
|
|
union uu aa, bb;
|
|
|
|
aa.uq = a;
|
|
bb.uq = b;
|
|
return (aa.ul[H] < bb.ul[H] ? 0 : aa.ul[H] > bb.ul[H] ? 2 :
|
|
aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1);
|
|
}
|
|
|
|
/*
|
|
* Divide two unsigned quads.
|
|
*/
|
|
u_quad_t
|
|
__udivdi3(a, b)
|
|
u_quad_t a, b;
|
|
{
|
|
|
|
return (__qdivrem(a, b, (u_quad_t *)0));
|
|
}
|
|
|
|
/*
|
|
* Return remainder after dividing two unsigned quads.
|
|
*/
|
|
u_quad_t
|
|
__umoddi3(a, b)
|
|
u_quad_t a, b;
|
|
{
|
|
u_quad_t r;
|
|
|
|
(void)__qdivrem(a, b, &r);
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* Divide two unsigned quads.
|
|
* This function is new in GCC 7.
|
|
*/
|
|
u_quad_t
|
|
__udivmoddi4(a, b, rem)
|
|
u_quad_t a, b, *rem;
|
|
{
|
|
u_quad_t ua, ub, uq, ur;
|
|
|
|
ua = a;
|
|
ub = b;
|
|
uq = __qdivrem(ua, ub, &ur);
|
|
if (rem)
|
|
*rem = ur;
|
|
return uq;
|
|
}
|
|
#else
|
|
static int __attribute__((unused)) dummy;
|
|
#endif /* defined (_X86_) && !defined (__x86_64__) */
|
|
|