/*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _LIBKERN_QUAD_H_ #define _LIBKERN_QUAD_H_ /* * Quad arithmetic. * * This library makes the following assumptions: * * - The type long long (aka quad_t) exists. * * - A quad variable is exactly twice as long as `long'. * * - The machine's arithmetic is two's complement. * * This library can provide 128-bit arithmetic on a machine with 128-bit * quads and 64-bit longs, for instance, or 96-bit arithmetic on machines * with 48-bit longs. */ /* #include #include #include #include */ #include typedef long long quad_t; typedef unsigned long long u_quad_t; typedef unsigned long u_long; #ifndef CHAR_BIT # define CHAR_BIT __CHAR_BIT__ #endif /* * Define the order of 32-bit words in 64-bit words. * For little endian only. */ #define _QUAD_HIGHWORD 1 #define _QUAD_LOWWORD 0 /* * Depending on the desired operation, we view a `long long' (aka quad_t) in * one or more of the following formats. */ union uu { quad_t q; /* as a (signed) quad */ quad_t uq; /* as an unsigned quad */ long sl[2]; /* as two signed longs */ u_long ul[2]; /* as two unsigned longs */ }; /* * Define high and low longwords. */ #define H _QUAD_HIGHWORD #define L _QUAD_LOWWORD /* * Total number of bits in a quad_t and in the pieces that make it up. * These are used for shifting, and also below for halfword extraction * and assembly. */ #define QUAD_BITS (sizeof(quad_t) * CHAR_BIT) #define LONG_BITS (sizeof(long) * CHAR_BIT) #define HALF_BITS (sizeof(long) * CHAR_BIT / 2) /* * Extract high and low shortwords from longword, and move low shortword of * longword to upper half of long, i.e., produce the upper longword of * ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.) * * These are used in the multiply code, to split a longword into upper * and lower halves, and to reassemble a product as a quad_t, shifted left * (sizeof(long)*CHAR_BIT/2). */ #define HHALF(x) ((x) >> HALF_BITS) #define LHALF(x) ((x) & ((1 << HALF_BITS) - 1)) #define LHUP(x) ((x) << HALF_BITS) typedef unsigned int qshift_t; quad_t __ashldi3(quad_t, qshift_t); quad_t __ashrdi3(quad_t, qshift_t); int __cmpdi2(quad_t a, quad_t b); quad_t __divdi3(quad_t a, quad_t b); quad_t __lshrdi3(quad_t, qshift_t); quad_t __moddi3(quad_t a, quad_t b); u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem); u_quad_t __udivdi3(u_quad_t a, u_quad_t b); u_quad_t __umoddi3(u_quad_t a, u_quad_t b); int __ucmpdi2(u_quad_t a, u_quad_t b); #endif /* !_LIBKERN_QUAD_H_ */ #if defined (_X86_) && !defined (__x86_64__) /* * Shift a (signed) quad value left (arithmetic shift left). * This is the same as logical shift left! */ quad_t __ashldi3(a, shift) quad_t a; qshift_t shift; { union uu aa; aa.q = a; if (shift >= LONG_BITS) { aa.ul[H] = shift >= QUAD_BITS ? 0 : aa.ul[L] << (shift - LONG_BITS); aa.ul[L] = 0; } else if (shift > 0) { aa.ul[H] = (aa.ul[H] << shift) | (aa.ul[L] >> (LONG_BITS - shift)); aa.ul[L] <<= shift; } return (aa.q); } /* * Shift a (signed) quad value right (arithmetic shift right). */ quad_t __ashrdi3(a, shift) quad_t a; qshift_t shift; { union uu aa; aa.q = a; if (shift >= LONG_BITS) { long s; /* * Smear bits rightward using the machine's right-shift * method, whether that is sign extension or zero fill, * to get the `sign word' s. Note that shifting by * LONG_BITS is undefined, so we shift (LONG_BITS-1), * then 1 more, to get our answer. */ s = (aa.sl[H] >> (LONG_BITS - 1)) >> 1; aa.ul[L] = shift >= QUAD_BITS ? s : aa.sl[H] >> (shift - LONG_BITS); aa.ul[H] = s; } else if (shift > 0) { aa.ul[L] = (aa.ul[L] >> shift) | (aa.ul[H] << (LONG_BITS - shift)); aa.sl[H] >>= shift; } return (aa.q); } /* * Return 0, 1, or 2 as a <, =, > b respectively. * Both a and b are considered signed---which means only the high word is * signed. */ int __cmpdi2(a, b) quad_t a, b; { union uu aa, bb; aa.q = a; bb.q = b; return (aa.sl[H] < bb.sl[H] ? 0 : aa.sl[H] > bb.sl[H] ? 2 : aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1); } /* * Divide two signed quads. * ??? if -1/2 should produce -1 on this machine, this code is wrong */ quad_t __divdi3(a, b) quad_t a, b; { u_quad_t ua, ub, uq; int neg; if (a < 0) ua = -(u_quad_t)a, neg = 1; else ua = a, neg = 0; if (b < 0) ub = -(u_quad_t)b, neg ^= 1; else ub = b; uq = __qdivrem(ua, ub, (u_quad_t *)0); return (neg ? -uq : uq); } /* * Shift an (unsigned) quad value right (logical shift right). */ quad_t __lshrdi3(a, shift) quad_t a; qshift_t shift; { union uu aa; aa.q = a; if (shift >= LONG_BITS) { aa.ul[L] = shift >= QUAD_BITS ? 0 : aa.ul[H] >> (shift - LONG_BITS); aa.ul[H] = 0; } else if (shift > 0) { aa.ul[L] = (aa.ul[L] >> shift) | (aa.ul[H] << (LONG_BITS - shift)); aa.ul[H] >>= shift; } return (aa.q); } /* * Return remainder after dividing two signed quads. * * XXX * If -1/2 should produce -1 on this machine, this code is wrong. */ quad_t __moddi3(a, b) quad_t a, b; { u_quad_t ua, ub, ur; int neg; if (a < 0) ua = -(u_quad_t)a, neg = 1; else ua = a, neg = 0; if (b < 0) ub = -(u_quad_t)b; else ub = b; (void)__qdivrem(ua, ub, &ur); return (neg ? -ur : ur); } /* * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), * section 4.3.1, pp. 257--259. */ #define B (1 << HALF_BITS) /* digit base */ /* Combine two `digits' to make a single two-digit number. */ #define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) /* select a type for digits in base B: use unsigned short if they fit */ #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff typedef unsigned short digit; #else typedef u_long digit; #endif /* * Shift p[0]..p[len] left `sh' bits, ignoring any bits that * `fall out' the left (there never will be any such anyway). * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. */ static void __shl(register digit *p, register int len, register int sh) { register int i; for (i = 0; i < len; i++) p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); p[i] = LHALF(p[i] << sh); } /* * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. * * We do this in base 2-sup-HALF_BITS, so that all intermediate products * fit within u_long. As a consequence, the maximum length dividend and * divisor are 4 `digits' in this base (they are shorter if they have * leading zeros). */ u_quad_t __qdivrem(uq, vq, arq) u_quad_t uq, vq, *arq; { union uu tmp; digit *u, *v, *q; register digit v1, v2; u_long qhat, rhat, t; int m, n, d, j, i; digit uspace[5], vspace[5], qspace[5]; /* * Take care of special cases: divide by zero, and u < v. */ if (vq == 0) { /* divide by zero. */ static volatile const unsigned int zero = 0; tmp.ul[H] = tmp.ul[L] = 1 / zero; if (arq) *arq = uq; return (tmp.q); } if (uq < vq) { if (arq) *arq = uq; return (0); } u = &uspace[0]; v = &vspace[0]; q = &qspace[0]; /* * Break dividend and divisor into digits in base B, then * count leading zeros to determine m and n. When done, we * will have: * u = (u[1]u[2]...u[m+n]) sub B * v = (v[1]v[2]...v[n]) sub B * v[1] != 0 * 1 < n <= 4 (if n = 1, we use a different division algorithm) * m >= 0 (otherwise u < v, which we already checked) * m + n = 4 * and thus * m = 4 - n <= 2 */ tmp.uq = uq; u[0] = 0; u[1] = HHALF(tmp.ul[H]); u[2] = LHALF(tmp.ul[H]); u[3] = HHALF(tmp.ul[L]); u[4] = LHALF(tmp.ul[L]); tmp.uq = vq; v[1] = HHALF(tmp.ul[H]); v[2] = LHALF(tmp.ul[H]); v[3] = HHALF(tmp.ul[L]); v[4] = LHALF(tmp.ul[L]); for (n = 4; v[1] == 0; v++) { if (--n == 1) { u_long rbj; /* r*B+u[j] (not root boy jim) */ digit q1, q2, q3, q4; /* * Change of plan, per exercise 16. * r = 0; * for j = 1..4: * q[j] = floor((r*B + u[j]) / v), * r = (r*B + u[j]) % v; * We unroll this completely here. */ t = v[2]; /* nonzero, by definition */ q1 = u[1] / t; rbj = COMBINE(u[1] % t, u[2]); q2 = rbj / t; rbj = COMBINE(rbj % t, u[3]); q3 = rbj / t; rbj = COMBINE(rbj % t, u[4]); q4 = rbj / t; if (arq) *arq = rbj % t; tmp.ul[H] = COMBINE(q1, q2); tmp.ul[L] = COMBINE(q3, q4); return (tmp.q); } } /* * By adjusting q once we determine m, we can guarantee that * there is a complete four-digit quotient at &qspace[1] when * we finally stop. */ for (m = 4 - n; u[1] == 0; u++) m--; for (i = 4 - m; --i >= 0;) q[i] = 0; q += 4 - m; /* * Here we run Program D, translated from MIX to C and acquiring * a few minor changes. * * D1: choose multiplier 1 << d to ensure v[1] >= B/2. */ d = 0; for (t = v[1]; t < B / 2; t <<= 1) d++; if (d > 0) { __shl(&u[0], m + n, d); /* u <<= d */ __shl(&v[1], n - 1, d); /* v <<= d */ } /* * D2: j = 0. */ j = 0; v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ v2 = v[2]; /* for D3 */ do { register digit uj0, uj1, uj2; /* * D3: Calculate qhat (\^q, in TeX notation). * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and * let rhat = (u[j]*B + u[j+1]) mod v[1]. * While rhat < B and v[2]*qhat > rhat*B+u[j+2], * decrement qhat and increase rhat correspondingly. * Note that if rhat >= B, v[2]*qhat < rhat*B. */ uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ uj1 = u[j + 1]; /* for D3 only */ uj2 = u[j + 2]; /* for D3 only */ if (uj0 == v1) { qhat = B; rhat = uj1; goto qhat_too_big; } else { u_long nn = COMBINE(uj0, uj1); qhat = nn / v1; rhat = nn % v1; } while (v2 * qhat > COMBINE(rhat, uj2)) { qhat_too_big: qhat--; if ((rhat += v1) >= B) break; } /* * D4: Multiply and subtract. * The variable `t' holds any borrows across the loop. * We split this up so that we do not require v[0] = 0, * and to eliminate a final special case. */ for (t = 0, i = n; i > 0; i--) { t = u[i + j] - v[i] * qhat - t; u[i + j] = LHALF(t); t = (B - HHALF(t)) & (B - 1); } t = u[j] - t; u[j] = LHALF(t); /* * D5: test remainder. * There is a borrow if and only if HHALF(t) is nonzero; * in that (rare) case, qhat was too large (by exactly 1). * Fix it by adding v[1..n] to u[j..j+n]. */ if (HHALF(t)) { qhat--; for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ t += u[i + j] + v[i]; u[i + j] = LHALF(t); t = HHALF(t); } u[j] = LHALF(u[j] + t); } q[j] = qhat; } while (++j <= m); /* D7: loop on j. */ /* * If caller wants the remainder, we have to calculate it as * u[m..m+n] >> d (this is at most n digits and thus fits in * u[m+1..m+n], but we may need more source digits). */ if (arq) { if (d) { for (i = m + n; i > m; --i) u[i] = (u[i] >> d) | LHALF(u[i - 1] << (HALF_BITS - d)); u[i] = 0; } tmp.ul[H] = COMBINE(uspace[1], uspace[2]); tmp.ul[L] = COMBINE(uspace[3], uspace[4]); *arq = tmp.q; } tmp.ul[H] = COMBINE(qspace[1], qspace[2]); tmp.ul[L] = COMBINE(qspace[3], qspace[4]); return (tmp.q); } /* * Return 0, 1, or 2 as a <, =, > b respectively. * Neither a nor b are considered signed. */ int __ucmpdi2(a, b) u_quad_t a, b; { union uu aa, bb; aa.uq = a; bb.uq = b; return (aa.ul[H] < bb.ul[H] ? 0 : aa.ul[H] > bb.ul[H] ? 2 : aa.ul[L] < bb.ul[L] ? 0 : aa.ul[L] > bb.ul[L] ? 2 : 1); } /* * Divide two unsigned quads. */ u_quad_t __udivdi3(a, b) u_quad_t a, b; { return (__qdivrem(a, b, (u_quad_t *)0)); } /* * Return remainder after dividing two unsigned quads. */ u_quad_t __umoddi3(a, b) u_quad_t a, b; { u_quad_t r; (void)__qdivrem(a, b, &r); return (r); } /* * Divide two unsigned quads. * This function is new in GCC 7. */ u_quad_t __udivmoddi4(a, b, rem) u_quad_t a, b, *rem; { u_quad_t ua, ub, uq, ur; ua = a; ub = b; uq = __qdivrem(ua, ub, &ur); if (rem) *rem = ur; return uq; } #else static int __attribute__((unused)) dummy; #endif /* defined (_X86_) && !defined (__x86_64__) */