raze-gles/polymer/eduke32/build/src/cache1d.c

2005 lines
56 KiB
C
Raw Normal View History

// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
//
// This file has been modified from Ken Silverman's original release
// by Jonathon Fowler (jf@jonof.id.au)
#ifdef CACHE1D_COMPRESS_ONLY
// Standalone libcache1d.so containing only the compression/decompression
// functions.
# include <stdint.h>
# include <stdio.h>
# include <string.h>
# include <stddef.h>
# include <assert.h>
# define BFILE FILE
# define C1D_STATIC
# define B_LITTLE16(x) (x)
# define B_LITTLE32(x) (x)
# define Bmemset memset
# define Bmemcpy memcpy
# define Bassert assert
# define bsize_t size_t
#else
// cache1d.o for EDuke32
# define C1D_STATIC static
#include "compat.h"
#ifdef _WIN32
// for FILENAME_CASE_CHECK
# include <shellapi.h>
#endif
#include "cache1d.h"
#include "pragmas.h"
#include "baselayer.h"
#include "crc32.h"
#ifdef WITHKPLIB
#include "kplib.h"
//Insert '|' in front of filename
//Doing this tells kzopen to load the file only if inside a .ZIP file
static intptr_t kzipopen(const char *filnam)
{
uint32_t i;
char newst[BMAX_PATH+8];
newst[0] = '|';
for (i=0; filnam[i] && (i < sizeof(newst)-2); i++) newst[i+1] = filnam[i];
newst[i+1] = 0;
return(kzopen(newst));
}
#endif
char *kpzbuf = NULL;
int32_t kpzbufsiz;
int32_t kpzbufloadfil(int32_t const handle)
{
int32_t const leng = kfilelength(handle);
if (leng > kpzbufsiz)
{
kpzbuf = (char *) Xrealloc(kpzbuf, leng+1);
kpzbufsiz = leng;
if (!kpzbuf)
return 0;
}
kpzbuf[leng] = 0; // FIXME: buf[leng] read in kpegrend(), see BUF_LENG_READ
kread(handle, kpzbuf, leng);
return leng;
}
int32_t kpzbufload(char const * const filnam)
{
int32_t const handle = kopen4load(filnam, 0);
if (handle < 0)
return 0;
int32_t const leng = kpzbufloadfil(handle);
kclose(handle);
return leng;
}
// This module keeps track of a standard linear cacheing system.
// To use this module, here's all you need to do:
//
// Step 1: Allocate a nice BIG buffer, like from 1MB-4MB and
// Call initcache(int32_t cachestart, int32_t cachesize) where
//
// cachestart = (intptr_t)(pointer to start of BIG buffer)
// cachesize = length of BIG buffer
//
// Step 2: Call allocache(intptr_t *bufptr, int32_t bufsiz, char *lockptr)
// whenever you need to allocate a buffer, where:
//
// *bufptr = pointer to multi-byte pointer to buffer
// Confused? Using this method, cache2d can remove
// previously allocated things from the cache safely by
// setting the multi-byte pointer to 0.
// bufsiz = number of bytes to allocate
// *lockptr = pointer to locking char which tells whether
// the region can be removed or not. If *lockptr = 0 then
// the region is not locked else its locked.
//
// Step 3: If you need to remove everything from the cache, or every
// unlocked item from the cache, you can call uninitcache();
// Call uninitcache(0) to remove all unlocked items, or
// Call uninitcache(1) to remove everything.
// After calling uninitcache, it is still ok to call allocache
// without first calling initcache.
#define MAXCACHEOBJECTS 9216
#if !defined DEBUG_ALLOCACHE_AS_MALLOC
static int32_t cachesize = 0;
static char zerochar = 0;
static intptr_t cachestart = 0;
static int32_t agecount = 0;
static int32_t lockrecip[200];
int32_t cacnum = 0;
cactype cac[MAXCACHEOBJECTS];
#endif
char toupperlookup[256] =
{
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
0x60,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0xbe,0xbf,
0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xcf,
0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff
};
static void reportandexit(const char *errormessage);
void initcache(intptr_t dacachestart, int32_t dacachesize)
{
#ifndef DEBUG_ALLOCACHE_AS_MALLOC
int32_t i;
for (i=1; i<200; i++)
lockrecip[i] = tabledivide32_noinline(1<<28, 200-i);
// The following code was relocated here from engine.c, since this
// function is only ever called once (from there), and it seems to
// really belong here:
//
// initcache((FP_OFF(pic)+15)&0xfffffff0,(cachesize-((-FP_OFF(pic))&15))&0xfffffff0);
//
// I'm not sure why it's necessary, but the code is making sure the
// cache starts on a multiple of 16 bytes? -- SA
//printf("BEFORE: cachestart = %x, cachesize = %d\n", dacachestart, dacachesize);
cachestart = ((uintptr_t)dacachestart+15)&~(uintptr_t)0xf;
cachesize = (dacachesize-(((uintptr_t)(dacachestart))&0xf))&~(uintptr_t)0xf;
//printf("AFTER : cachestart = %x, cachesize = %d\n", cachestart, cachesize);
cac[0].leng = cachesize;
cac[0].lock = &zerochar;
cacnum = 1;
initprintf("Initialized %.1fM cache\n", (float)(dacachesize/1024.f/1024.f));
#else
UNREFERENCED_PARAMETER(dacachestart);
UNREFERENCED_PARAMETER(dacachesize);
#endif
}
#ifdef DEBUG_ALLOCACHE_AS_MALLOC
void allocache(intptr_t *newhandle, int32_t newbytes, char *newlockptr)
{
UNREFERENCED_PARAMETER(newlockptr);
*newhandle = (intptr_t)Xmalloc(newbytes);
}
#else
static inline void inc_and_check_cacnum(void)
{
if (++cacnum > MAXCACHEOBJECTS)
reportandexit("Too many objects in cache! (cacnum > MAXCACHEOBJECTS)");
}
void allocache(intptr_t *newhandle, int32_t newbytes, char *newlockptr)
{
int32_t i, z, bestz=0, bestval, besto=0, o1, sucklen, suckz;
//printf(" ==> asking for %d bytes, ", newbytes);
// Make all requests a multiple of 16 bytes
newbytes = (newbytes+15)&0xfffffff0;
//printf("allocated %d bytes\n", newbytes);
if ((unsigned)newbytes > (unsigned)cachesize)
{
Bprintf("Cachesize: %d\n",cachesize);
Bprintf("*Newhandle: 0x%" PRIxPTR ", Newbytes: %d, *Newlock: %d\n",(intptr_t)newhandle,newbytes,*newlockptr);
reportandexit("BUFFER TOO BIG TO FIT IN CACHE!");
}
if (*newlockptr == 0)
{
reportandexit("ALLOCACHE CALLED WITH LOCK OF 0!");
}
//Find best place
bestval = 0x7fffffff; o1 = cachesize;
for (z=cacnum-1; z>=0; z--)
{
int32_t zz, o2, daval;
o1 -= cac[z].leng;
o2 = o1+newbytes;
if (o2 > cachesize)
continue;
daval = 0;
for (i=o1,zz=z; i<o2; i+=cac[zz++].leng)
{
if (*cac[zz].lock == 0)
continue;
if (*cac[zz].lock >= 200)
{
daval = 0x7fffffff;
break;
}
// Potential for eviction increases with
// - smaller item size
// - smaller lock byte value (but in [1 .. 199])
daval += mulscale32(cac[zz].leng+65536, lockrecip[*cac[zz].lock]);
if (daval >= bestval)
break;
}
if (daval < bestval)
{
bestval = daval; besto = o1; bestz = z;
if (bestval == 0) break;
}
}
//printf("%d %d %d\n",besto,newbytes,*newlockptr);
if (bestval == 0x7fffffff)
reportandexit("CACHE SPACE ALL LOCKED UP!");
//Suck things out
for (sucklen=-newbytes,suckz=bestz; sucklen<0; sucklen+=cac[suckz++].leng)
if (*cac[suckz].lock)
*cac[suckz].hand = 0;
//Remove all blocks except 1
suckz -= bestz+1;
cacnum -= suckz;
Bmemmove(&cac[bestz], &cac[bestz+suckz], (cacnum-bestz)*sizeof(cactype));
cac[bestz].hand = newhandle;
*newhandle = cachestart + besto;
cac[bestz].leng = newbytes;
cac[bestz].lock = newlockptr;
//Add new empty block if necessary
if (sucklen <= 0)
return;
bestz++;
if (bestz == cacnum)
{
inc_and_check_cacnum();
cac[bestz].leng = sucklen;
cac[bestz].lock = &zerochar;
return;
}
if (*cac[bestz].lock == 0)
{
cac[bestz].leng += sucklen;
return;
}
inc_and_check_cacnum();
for (z=cacnum-1; z>bestz; z--)
cac[z] = cac[z-1];
cac[bestz].leng = sucklen;
cac[bestz].lock = &zerochar;
}
#endif
void agecache(void)
{
#ifndef DEBUG_ALLOCACHE_AS_MALLOC
int32_t cnt = (cacnum>>4);
if (agecount >= cacnum)
agecount = cacnum-1;
if (agecount < 0 || !cnt)
return;
for (; cnt>=0; cnt--)
{
// If we have pointer to lock char and it's in [2 .. 199], decrease.
if (cac[agecount].lock && (((*cac[agecount].lock)-2)&255) < 198)
(*cac[agecount].lock)--;
agecount--;
if (agecount < 0)
agecount = cacnum-1;
}
#endif
}
static void reportandexit(const char *errormessage)
{
#ifndef DEBUG_ALLOCACHE_AS_MALLOC
int32_t i, j;
//setvmode(0x3);
j = 0;
for (i=0; i<cacnum; i++)
{
Bprintf("%d- ",i);
if (cac[i].hand) Bprintf("ptr: 0x%" PRIxPTR ", ",*cac[i].hand);
else Bprintf("ptr: NULL, ");
Bprintf("leng: %d, ",cac[i].leng);
if (cac[i].lock) Bprintf("lock: %d\n",*cac[i].lock);
else Bprintf("lock: NULL\n");
j += cac[i].leng;
}
Bprintf("Cachesize = %d\n",cachesize);
Bprintf("Cacnum = %d\n",cacnum);
Bprintf("Cache length sum = %d\n",j);
#endif
initprintf("ERROR: %s\n",errormessage);
Bexit(1);
}
#include <errno.h>
typedef struct _searchpath
{
struct _searchpath *next;
char *path;
size_t pathlen; // to save repeated calls to strlen()
int32_t user;
} searchpath_t;
static searchpath_t *searchpathhead = NULL;
static size_t maxsearchpathlen = 0;
int32_t pathsearchmode = 0;
char *listsearchpath(int32_t initp)
{
static searchpath_t *sp;
if (initp)
sp = searchpathhead;
else if (sp != NULL)
sp = sp->next;
return sp ? sp->path : NULL;
}
int32_t addsearchpath_user(const char *p, int32_t user)
{
struct Bstat st;
char *s;
searchpath_t *srch;
char *path = Xstrdup(p);
if (path[Bstrlen(path)-1] == '\\')
path[Bstrlen(path)-1] = 0; // hack for stat() returning ENOENT on paths ending in a backslash
if (Bstat(path, &st) < 0)
{
Bfree(path);
if (errno == ENOENT) return -2;
return -1;
}
if (!(st.st_mode & BS_IFDIR))
{
Bfree(path);
return -1;
}
srch = (searchpath_t *)Xmalloc(sizeof(searchpath_t));
srch->next = searchpathhead;
srch->pathlen = Bstrlen(path)+1;
srch->path = (char *)Xmalloc(srch->pathlen + 1);
Bstrcpy(srch->path, path);
for (s=srch->path; *s; s++) { }
s--;
if (s<srch->path || toupperlookup[*s] != '/')
Bstrcat(srch->path, "/");
searchpathhead = srch;
if (srch->pathlen > maxsearchpathlen)
maxsearchpathlen = srch->pathlen;
Bcorrectfilename(srch->path,0);
srch->user = user;
initprintf("Using %s for game data\n", srch->path);
Bfree(path);
return 0;
}
int32_t removesearchpath(const char *p)
{
searchpath_t *srch;
char *s;
char *path = (char *)Xmalloc(Bstrlen(p) + 2);
Bstrcpy(path, p);
if (path[Bstrlen(path)-1] == '\\')
path[Bstrlen(path)-1] = 0;
for (s=path; *s; s++) { }
s--;
if (s<path || toupperlookup[*s] != '/')
Bstrcat(path, "/");
Bcorrectfilename(path,0);
for (srch = searchpathhead; srch; srch = srch->next)
{
if (!Bstrncmp(path, srch->path, srch->pathlen))
{
// initprintf("Removing %s from path stack\n", path);
if (srch == searchpathhead)
searchpathhead = srch->next;
else
{
searchpath_t *sp;
for (sp = searchpathhead; sp; sp = sp->next)
{
if (sp->next == srch)
{
// initprintf("matched %s\n", srch->path);
sp->next = srch->next;
break;
}
}
}
Bfree(srch->path);
Bfree(srch);
break;
}
}
Bfree(path);
return 0;
}
void removesearchpaths_withuser(int32_t usermask)
{
searchpath_t *next;
for (searchpath_t *srch = searchpathhead; srch; srch = next)
{
next = srch->next;
if (srch->user & usermask)
{
if (srch == searchpathhead)
searchpathhead = srch->next;
else
{
searchpath_t *sp;
for (sp = searchpathhead; sp; sp = sp->next)
{
if (sp->next == srch)
{
sp->next = srch->next;
break;
}
}
}
Bfree(srch->path);
Bfree(srch);
}
}
}
int32_t findfrompath(const char *fn, char **where)
{
// pathsearchmode == 0: tests current dir and then the dirs of the path stack
// pathsearchmode == 1: tests fn without modification, then like for pathsearchmode == 0
if (pathsearchmode)
{
// test unmolested filename first
if (access(fn, F_OK) >= 0)
{
*where = Xstrdup(fn);
return 0;
}
#ifndef _WIN32
else
{
char *tfn = Bstrtolower(Xstrdup(fn));
if (access(tfn, F_OK) >= 0)
{
*where = tfn;
return 0;
}
Bstrupr(tfn);
if (access(tfn, F_OK) >= 0)
{
*where = tfn;
return 0;
}
Bfree(tfn);
}
#endif
}
char const *cpfn;
for (cpfn = fn; toupperlookup[*cpfn] == '/'; cpfn++) { }
char *ffn = Xstrdup(cpfn);
Bcorrectfilename(ffn,0); // compress relative paths
int32_t allocsiz = max(maxsearchpathlen, 2); // "./" (aka. curdir)
allocsiz += strlen(ffn);
allocsiz += 1; // a nul
char *pfn = (char *)Xmalloc(allocsiz);
strcpy(pfn, "./");
strcat(pfn, ffn);
if (access(pfn, F_OK) >= 0)
{
*where = pfn;
Bfree(ffn);
return 0;
}
for (searchpath_t *sp = searchpathhead; sp; sp = sp->next)
{
char *tfn = Xstrdup(ffn);
strcpy(pfn, sp->path);
strcat(pfn, ffn);
//initprintf("Trying %s\n", pfn);
if (access(pfn, F_OK) >= 0)
{
*where = pfn;
Bfree(ffn);
Bfree(tfn);
return 0;
}
#ifndef _WIN32
//Check with all lowercase
strcpy(pfn, sp->path);
Bstrtolower(tfn);
strcat(pfn, tfn);
if (access(pfn, F_OK) >= 0)
{
*where = pfn;
Bfree(ffn);
Bfree(tfn);
return 0;
}
//Check again with uppercase
strcpy(pfn, sp->path);
Bstrupr(tfn);
strcat(pfn, tfn);
if (access(pfn, F_OK) >= 0)
{
*where = pfn;
Bfree(ffn);
Bfree(tfn);
return 0;
}
#endif
Bfree(tfn);
}
Bfree(pfn); Bfree(ffn);
return -1;
}
#if defined(_WIN32) && defined(DEBUGGINGAIDS)
# define FILENAME_CASE_CHECK
#endif
static int32_t openfrompath_internal(const char *fn, char **where, int32_t flags, int32_t mode)
{
if (findfrompath(fn, where) < 0)
return -1;
return Bopen(*where, flags, mode);
}
int32_t openfrompath(const char *fn, int32_t flags, int32_t mode)
{
char *pfn = NULL;
int32_t h = openfrompath_internal(fn, &pfn, flags, mode);
Bfree(pfn);
return h;
}
BFILE *fopenfrompath(const char *fn, const char *mode)
{
int32_t fh;
BFILE *h;
int32_t bmode = 0, smode = 0;
const char *c;
for (c=mode; c[0];)
{
if (c[0] == 'r' && c[1] == '+') { bmode = BO_RDWR; smode = BS_IREAD|BS_IWRITE; c+=2; }
else if (c[0] == 'r') { bmode = BO_RDONLY; smode = BS_IREAD; c+=1; }
else if (c[0] == 'w' && c[1] == '+') { bmode = BO_RDWR|BO_CREAT|BO_TRUNC; smode = BS_IREAD|BS_IWRITE; c+=2; }
else if (c[0] == 'w') { bmode = BO_WRONLY|BO_CREAT|BO_TRUNC; smode = BS_IREAD|BS_IWRITE; c+=2; }
else if (c[0] == 'a' && c[1] == '+') { bmode = BO_RDWR|BO_CREAT; smode=BS_IREAD|BS_IWRITE; c+=2; }
else if (c[0] == 'a') { bmode = BO_WRONLY|BO_CREAT; smode=BS_IREAD|BS_IWRITE; c+=1; }
else if (c[0] == 'b') { bmode |= BO_BINARY; c+=1; }
else if (c[1] == 't') { bmode |= BO_TEXT; c+=1; }
else c++;
}
fh = openfrompath(fn,bmode,smode);
if (fh < 0) return NULL;
h = fdopen(fh,mode);
if (!h) close(fh);
return h;
}
#define MAXGROUPFILES 8 // Warning: Fix groupfil if this is changed
#define MAXOPENFILES 64 // Warning: Fix filehan if this is changed
enum {
GRP_RESERVED_ID_START = 254,
GRP_ZIP = GRP_RESERVED_ID_START,
GRP_FILESYSTEM = GRP_RESERVED_ID_START + 1,
};
EDUKE32_STATIC_ASSERT(MAXGROUPFILES <= GRP_RESERVED_ID_START);
int32_t numgroupfiles = 0;
static int32_t gnumfiles[MAXGROUPFILES];
static intptr_t groupfil[MAXGROUPFILES] = {-1,-1,-1,-1,-1,-1,-1,-1};
static int32_t groupfilpos[MAXGROUPFILES];
static uint8_t groupfilgrp[MAXGROUPFILES];
static char *gfilelist[MAXGROUPFILES];
static char *groupname[MAXGROUPFILES];
static int32_t *gfileoffs[MAXGROUPFILES];
static int32_t groupcrc[MAXGROUPFILES];
static uint8_t filegrp[MAXOPENFILES];
static int32_t filepos[MAXOPENFILES];
static intptr_t filehan[MAXOPENFILES] =
{
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
};
#ifdef WITHKPLIB
static char filenamsav[MAXOPENFILES][260];
static int32_t kzcurhand = -1;
int32_t cache1d_file_fromzip(int32_t fil)
{
return (filegrp[fil] == GRP_ZIP);
}
#endif
static int32_t kopen_internal(const char *filename, char **lastpfn, char searchfirst, char checkcase, char tryzip, int32_t newhandle, uint8_t *arraygrp, intptr_t *arrayhan, int32_t *arraypos);
static int32_t kread_grp(int32_t handle, void *buffer, int32_t leng);
static int32_t klseek_grp(int32_t handle, int32_t offset, int32_t whence);
static void kclose_grp(int32_t handle);
static void initgroupfile_crc32(int32_t handle)
{
int32_t b, crcval = 0;
#define BUFFER_SIZE (1024 * 1024 * 8)
uint8_t *buf = (uint8_t *)Xmalloc(BUFFER_SIZE);
klseek_grp(handle, 0, BSEEK_SET);
do
{
b = kread_grp(handle, buf, BUFFER_SIZE);
if (b > 0) crcval = Bcrc32((uint8_t *)buf, b, crcval);
}
while (b == BUFFER_SIZE);
groupcrc[handle] = crcval;
klseek_grp(handle, 0, BSEEK_SET);
Bfree(buf);
}
int32_t initgroupfile(const char *filename)
{
char buf[70];
// translate all backslashes (0x5c) to forward slashes (0x2f)
toupperlookup[0x5c] = 0x2f;
if (filename == NULL)
return -1;
// Technically you should be able to load more zips even if your GRPs are maxed out,
// but this system is already enough of a disaster.
if (numgroupfiles >= MAXGROUPFILES)
return -1;
char *zfn = NULL;
if (kopen_internal(filename, &zfn, 0, 0, 0, numgroupfiles, groupfilgrp, groupfil, groupfilpos) < 0)
return -1;
#ifdef WITHKPLIB
// check if ZIP
if (zfn)
{
kread_grp(numgroupfiles, buf, 4);
if (buf[0] == 0x50 && buf[1] == 0x4B && buf[2] == 0x03 && buf[3] == 0x04)
{
kclose_grp(numgroupfiles);
kzaddstack(zfn);
Bfree(zfn);
return 0;
}
klseek_grp(numgroupfiles,0,BSEEK_SET);
Bfree(zfn);
}
#else
Bfree(zfn);
#endif
// check if GRP
kread_grp(numgroupfiles,buf,16);
if (!Bmemcmp(buf, "KenSilverman", 12))
{
gnumfiles[numgroupfiles] = B_LITTLE32(*((int32_t *)&buf[12]));
gfilelist[numgroupfiles] = (char *)Xmalloc(gnumfiles[numgroupfiles]<<4);
gfileoffs[numgroupfiles] = (int32_t *)Xmalloc((gnumfiles[numgroupfiles]+1)<<2);
kread_grp(numgroupfiles,gfilelist[numgroupfiles],gnumfiles[numgroupfiles]<<4);
int32_t j = (gnumfiles[numgroupfiles]+1)<<4, k;
for (int32_t i=0; i<gnumfiles[numgroupfiles]; i++)
{
k = B_LITTLE32(*((int32_t *)&gfilelist[numgroupfiles][(i<<4)+12]));
gfilelist[numgroupfiles][(i<<4)+12] = 0;
gfileoffs[numgroupfiles][i] = j;
j += k;
}
gfileoffs[numgroupfiles][gnumfiles[numgroupfiles]] = j;
initgroupfile_crc32(numgroupfiles);
groupname[numgroupfiles] = Xstrdup(filename);
numgroupfiles++;
return 0;
}
klseek_grp(numgroupfiles, 0, BSEEK_SET);
// check if SSI
// this performs several checks because there is no "SSI" magic
int32_t version;
kread_grp(numgroupfiles, &version, 4);
version = B_LITTLE32(version);
while (version == 1 || version == 2) // if
{
char zerobuf[70];
Bmemset(zerobuf, 0, 70);
int32_t numfiles;
kread_grp(numgroupfiles, &numfiles, 4);
numfiles = B_LITTLE32(numfiles);
uint8_t temp, temp2;
// get the string length
kread_grp(numgroupfiles, &temp, 1);
if (temp > 31) // 32 bytes allocated for the string
break;
// seek to the end of the string
klseek_grp(numgroupfiles, temp, BSEEK_CUR);
// verify everything remaining is a null terminator
temp = 32 - temp;
kread_grp(numgroupfiles, buf, temp);
if (Bmemcmp(buf, zerobuf, temp))
break;
if (version == 2)
{
// get the string length
kread_grp(numgroupfiles, &temp, 1);
if (temp > 11) // 12 bytes allocated for the string
break;
// seek to the end of the string
klseek_grp(numgroupfiles, temp, BSEEK_CUR);
// verify everything remaining is a null terminator
temp = 12 - temp;
kread_grp(numgroupfiles, buf, temp);
if (Bmemcmp(buf, zerobuf, temp))
break;
}
temp2 = 0;
for (uint8_t i=0;i<3;i++)
{
// get the string length
kread_grp(numgroupfiles, &temp, 1);
if (temp > 70) // 70 bytes allocated for the string
{
temp2 = 1;
break;
}
// seek to the end of the string
klseek_grp(numgroupfiles, temp, BSEEK_CUR);
// verify everything remaining is a null terminator
temp = 70 - temp;
if (temp == 0)
continue;
kread_grp(numgroupfiles, buf, temp);
temp2 |= Bmemcmp(buf, zerobuf, temp);
}
if (temp2)
break;
// Passed all the tests: read data.
gnumfiles[numgroupfiles] = numfiles;
gfilelist[numgroupfiles] = (char *)Xmalloc(gnumfiles[numgroupfiles]<<4);
gfileoffs[numgroupfiles] = (int32_t *)Xmalloc((gnumfiles[numgroupfiles]+1)<<2);
int32_t j = (version == 2 ? 267 : 254) + (numfiles * 121), k;
for (int32_t i = 0; i < numfiles; i++)
{
// get the string length
kread_grp(numgroupfiles, &temp, 1);
if (temp > 12)
temp = 12;
// read the file name
kread_grp(numgroupfiles, &gfilelist[numgroupfiles][i<<4], temp);
gfilelist[numgroupfiles][(i<<4)+temp] = 0;
// skip to the end of the 12 bytes
klseek_grp(numgroupfiles, 12-temp, BSEEK_CUR);
// get the file size
kread_grp(numgroupfiles, &k, 4);
k = B_LITTLE32(k);
// record the offset of the file in the SSI
gfileoffs[numgroupfiles][i] = j;
j += k;
// skip unknown data
klseek_grp(numgroupfiles, 104, BSEEK_CUR);
}
gfileoffs[numgroupfiles][gnumfiles[numgroupfiles]] = j;
initgroupfile_crc32(numgroupfiles);
groupname[numgroupfiles] = Xstrdup(filename);
numgroupfiles++;
return 0;
}
kclose_grp(numgroupfiles);
return -1;
}
void uninitgroupfile(void)
{
int32_t i;
for (i=numgroupfiles-1; i>=0; i--)
if (groupfil[i] != -1)
{
DO_FREE_AND_NULL(gfilelist[i]);
DO_FREE_AND_NULL(gfileoffs[i]);
DO_FREE_AND_NULL(groupname[i]);
Bclose(groupfil[i]);
groupfil[i] = -1;
}
numgroupfiles = 0;
// JBF 20040111: "close" any files open in groups
for (i=0; i<MAXOPENFILES; i++)
{
if (filegrp[i] < GRP_RESERVED_ID_START) // JBF 20040130: not external or ZIPped
filehan[i] = -1;
}
}
#ifdef FILENAME_CASE_CHECK
// See
// http://stackoverflow.com/questions/74451/getting-actual-file-name-with-proper-casing-on-windows
// for relevant discussion.
static char fnbuf[BMAX_PATH];
int fnofs;
int32_t (*check_filename_casing_fn)(void) = NULL;
// -1: failure, 0: match, 1: mismatch
static int32_t check_filename_mismatch(const char * const filename, int ofs)
{
if (!GetShortPathNameA(filename, fnbuf, BMAX_PATH)) return -1;
if (!GetLongPathNameA(fnbuf, fnbuf, BMAX_PATH)) return -1;
fnofs = ofs;
int len = Bstrlen(fnbuf+ofs);
char const * const fn = filename+ofs;
if (!Bstrncmp(fnbuf+ofs, fn, len))
return 0;
char * const tfn = Bstrtolower(Xstrdup(fn));
if (!Bstrncmp(fnbuf+ofs, tfn, len))
{
Bfree(tfn);
return 0;
}
Bstrupr(tfn);
if (!Bstrncmp(fnbuf+ofs, tfn, len))
{
Bfree(tfn);
return 0;
}
Bfree(tfn);
return 1;
}
#endif
static int32_t kopen_internal(const char *filename, char **lastpfn, char searchfirst, char checkcase, char tryzip, int32_t newhandle, uint8_t *arraygrp, intptr_t *arrayhan, int32_t *arraypos)
{
int32_t fil;
if (searchfirst == 0 && (fil = openfrompath_internal(filename, lastpfn, BO_BINARY|BO_RDONLY, BS_IREAD)) >= 0)
{
#ifdef FILENAME_CASE_CHECK
if (checkcase && check_filename_casing_fn && check_filename_casing_fn())
{
int32_t status;
char *cp, *lastslash;
// convert all slashes to backslashes because SHGetFileInfo()
// complains else!
lastslash = *lastpfn;
for (cp=*lastpfn; *cp; cp++)
if (*cp=='/')
{
*cp = '\\';
lastslash = cp;
}
if (lastslash != *lastpfn)
lastslash++;
status = check_filename_mismatch(*lastpfn, lastslash-*lastpfn);
if (status == -1)
{
// initprintf("SHGetFileInfo failed with error code %lu\n", GetLastError());
}
else if (status == 1)
{
initprintf("warning: case mismatch: passed \"%s\", real \"%s\"\n",
lastslash, fnbuf+fnofs);
}
}
#else
UNREFERENCED_PARAMETER(checkcase);
#endif
arraygrp[newhandle] = GRP_FILESYSTEM;
arrayhan[newhandle] = fil;
arraypos[newhandle] = 0;
return newhandle;
}
for (; toupperlookup[*filename] == '/'; filename++) { }
#ifdef WITHKPLIB
if (tryzip)
{
intptr_t i;
if ((kzcurhand != newhandle) && (kztell() >= 0))
{
if (kzcurhand >= 0) arraypos[kzcurhand] = kztell();
kzclose();
kzcurhand = -1;
}
if (searchfirst != 1 && (i = kzipopen(filename)) != 0)
{
kzcurhand = newhandle;
arraygrp[newhandle] = GRP_ZIP;
arrayhan[newhandle] = i;
arraypos[newhandle] = 0;
strcpy(filenamsav[newhandle],filename);
return newhandle;
}
}
#else
UNREFERENCED_PARAMETER(tryzip);
#endif
for (int32_t k = searchfirst != 1 ? numgroupfiles-1 : 0; k >= 0; --k)
{
if (groupfil[k] < 0)
continue;
for (int32_t i = gnumfiles[k]-1; i >= 0; --i)
{
char const * const gfileptr = (char *)&gfilelist[k][i<<4];
unsigned int j;
for (j = 0; j < 13; ++j)
{
if (!filename[j]) break;
if (toupperlookup[filename[j]] != toupperlookup[gfileptr[j]])
goto gnumfiles_continue;
}
if (j<13 && gfileptr[j]) continue; // JBF: because e1l1.map might exist before e1l1
if (j==13 && filename[j]) continue; // JBF: long file name
arraygrp[newhandle] = k;
arrayhan[newhandle] = i;
arraypos[newhandle] = 0;
return newhandle;
gnumfiles_continue: ;
}
}
return -1;
}
void krename(int32_t crcval, int32_t filenum, const char *newname)
{
for (int32_t k=numgroupfiles-1; k>=0; k--)
{
if (groupfil[k] >= 0 && groupcrc[k] == crcval)
{
Bstrncpy((char *)&gfilelist[k][filenum<<4], newname, 12);
return;
}
}
}
char const * kfileparent(int32_t const handle)
{
int32_t const groupnum = filegrp[handle];
if ((unsigned)groupnum >= MAXGROUPFILES || groupfil[groupnum] == -1)
return NULL;
return groupname[groupnum];
}
int32_t kopen4load(const char *filename, char searchfirst)
{
int32_t newhandle = MAXOPENFILES-1;
if (filename==NULL)
return -1;
while (filehan[newhandle] != -1)
{
newhandle--;
if (newhandle < 0)
{
Bprintf("TOO MANY FILES OPEN IN FILE GROUPING SYSTEM!");
Bexit(0);
}
}
char *lastpfn = NULL;
int32_t h = kopen_internal(filename, &lastpfn, searchfirst, 1, 1, newhandle, filegrp, filehan, filepos);
Bfree(lastpfn);
return h;
}
int32_t kread_internal(int32_t handle, void *buffer, int32_t leng, uint8_t *arraygrp, intptr_t *arrayhan, int32_t *arraypos)
{
int32_t filenum = arrayhan[handle];
int32_t groupnum = arraygrp[handle];
if (groupnum == GRP_FILESYSTEM) return(Bread(filenum,buffer,leng));
#ifdef WITHKPLIB
else if (groupnum == GRP_ZIP)
{
if (kzcurhand != handle)
{
if (kztell() >= 0) { arraypos[kzcurhand] = kztell(); kzclose(); }
kzcurhand = handle;
kzipopen(filenamsav[handle]);
kzseek(arraypos[handle],SEEK_SET);
}
return(kzread(buffer,leng));
}
#endif
if (EDUKE32_PREDICT_FALSE(groupfil[groupnum] == -1))
return 0;
int32_t rootgroupnum = groupnum;
int32_t i = 0;
while (groupfilgrp[rootgroupnum] != GRP_FILESYSTEM)
{
i += gfileoffs[groupfilgrp[rootgroupnum]][groupfil[rootgroupnum]];
rootgroupnum = groupfilgrp[rootgroupnum];
}
if (EDUKE32_PREDICT_TRUE(groupfil[rootgroupnum] != -1))
{
i += gfileoffs[groupnum][filenum]+arraypos[handle];
if (i != groupfilpos[rootgroupnum])
{
Blseek(groupfil[rootgroupnum],i,BSEEK_SET);
groupfilpos[rootgroupnum] = i;
}
leng = min(leng,(gfileoffs[groupnum][filenum+1]-gfileoffs[groupnum][filenum])-arraypos[handle]);
leng = Bread(groupfil[rootgroupnum],buffer,leng);
arraypos[handle] += leng;
groupfilpos[rootgroupnum] += leng;
return(leng);
}
return(0);
}
int32_t klseek_internal(int32_t handle, int32_t offset, int32_t whence, uint8_t *arraygrp, intptr_t *arrayhan, int32_t *arraypos)
{
int32_t i, groupnum;
groupnum = arraygrp[handle];
if (groupnum == GRP_FILESYSTEM) return(Blseek(arrayhan[handle],offset,whence));
#ifdef WITHKPLIB
else if (groupnum == GRP_ZIP)
{
if (kzcurhand != handle)
{
if (kztell() >= 0) { arraypos[kzcurhand] = kztell(); kzclose(); }
kzcurhand = handle;
kzipopen(filenamsav[handle]);
kzseek(arraypos[handle],SEEK_SET);
}
return(kzseek(offset,whence));
}
#endif
if (groupfil[groupnum] != -1)
{
switch (whence)
{
case BSEEK_SET:
arraypos[handle] = offset; break;
case BSEEK_END:
i = arrayhan[handle];
arraypos[handle] = (gfileoffs[groupnum][i+1]-gfileoffs[groupnum][i])+offset;
break;
case BSEEK_CUR:
arraypos[handle] += offset; break;
}
return(arraypos[handle]);
}
return(-1);
}
int32_t kfilelength_internal(int32_t handle, uint8_t *arraygrp, intptr_t *arrayhan, int32_t *arraypos)
{
int32_t i, groupnum;
groupnum = arraygrp[handle];
if (groupnum == GRP_FILESYSTEM)
{
// return(filelength(arrayhan[handle]))
return Bfilelength(arrayhan[handle]);
}
#ifdef WITHKPLIB
else if (groupnum == GRP_ZIP)
{
if (kzcurhand != handle)
{
if (kztell() >= 0) { arraypos[kzcurhand] = kztell(); kzclose(); }
kzcurhand = handle;
kzipopen(filenamsav[handle]);
kzseek(arraypos[handle],SEEK_SET);
}
return kzfilelength();
}
#endif
i = arrayhan[handle];
return(gfileoffs[groupnum][i+1]-gfileoffs[groupnum][i]);
}
int32_t ktell_internal(int32_t handle, uint8_t *arraygrp, intptr_t *arrayhan, int32_t *arraypos)
{
int32_t groupnum = arraygrp[handle];
if (groupnum == GRP_FILESYSTEM) return(Blseek(arrayhan[handle],0,BSEEK_CUR));
#ifdef WITHKPLIB
else if (groupnum == GRP_ZIP)
{
if (kzcurhand != handle)
{
if (kztell() >= 0) { arraypos[kzcurhand] = kztell(); kzclose(); }
kzcurhand = handle;
kzipopen(filenamsav[handle]);
kzseek(arraypos[handle],SEEK_SET);
}
return kztell();
}
#endif
if (groupfil[groupnum] != -1)
return arraypos[handle];
return(-1);
}
void kclose_internal(int32_t handle, uint8_t *arraygrp, intptr_t *arrayhan)
{
if (handle < 0) return;
if (arraygrp[handle] == GRP_FILESYSTEM) Bclose(arrayhan[handle]);
#ifdef WITHKPLIB
else if (arraygrp[handle] == GRP_ZIP)
{
kzclose();
kzcurhand = -1;
}
#endif
arrayhan[handle] = -1;
}
int32_t kread(int32_t handle, void *buffer, int32_t leng)
{
return kread_internal(handle, buffer, leng, filegrp, filehan, filepos);
}
int32_t klseek(int32_t handle, int32_t offset, int32_t whence)
{
return klseek_internal(handle, offset, whence, filegrp, filehan, filepos);
}
int32_t kfilelength(int32_t handle)
{
return kfilelength_internal(handle, filegrp, filehan, filepos);
}
int32_t ktell(int32_t handle)
{
return ktell_internal(handle, filegrp, filehan, filepos);
}
void kclose(int32_t handle)
{
return kclose_internal(handle, filegrp, filehan);
}
static int32_t kread_grp(int32_t handle, void *buffer, int32_t leng)
{
return kread_internal(handle, buffer, leng, groupfilgrp, groupfil, groupfilpos);
}
static int32_t klseek_grp(int32_t handle, int32_t offset, int32_t whence)
{
return klseek_internal(handle, offset, whence, groupfilgrp, groupfil, groupfilpos);
}
static void kclose_grp(int32_t handle)
{
return kclose_internal(handle, groupfilgrp, groupfil);
}
static int32_t klistaddentry(CACHE1D_FIND_REC **rec, const char *name, int32_t type, int32_t source)
{
CACHE1D_FIND_REC *r = NULL, *attach = NULL;
if (*rec)
{
int32_t insensitive, v;
CACHE1D_FIND_REC *last = NULL;
for (attach = *rec; attach; last = attach, attach = attach->next)
{
if (type == CACHE1D_FIND_DRIVE) continue; // we just want to get to the end for drives
#ifdef _WIN32
insensitive = 1;
#else
if (source == CACHE1D_SOURCE_GRP || attach->source == CACHE1D_SOURCE_GRP)
insensitive = 1;
else if (source == CACHE1D_SOURCE_ZIP || attach->source == CACHE1D_SOURCE_ZIP)
insensitive = 1;
else
{
extern int16_t editstatus; // XXX
insensitive = !editstatus;
}
// ^ in the game, don't show file list case-sensitive
#endif
if (insensitive) v = Bstrcasecmp(name, attach->name);
else v = Bstrcmp(name, attach->name);
// sorted list
if (v > 0) continue; // item to add is bigger than the current one
// so look for something bigger than us
if (v < 0) // item to add is smaller than the current one
{
attach = NULL; // so wedge it between the current item and the one before
break;
}
// matched
if (source >= attach->source) return 1; // item to add is of lower priority
r = attach;
break;
}
// wasn't found in the list, so attach to the end
if (!attach) attach = last;
}
if (r)
{
r->type = type;
r->source = source;
return 0;
}
r = (CACHE1D_FIND_REC *)Xmalloc(sizeof(CACHE1D_FIND_REC)+strlen(name)+1);
r->name = (char *)r + sizeof(CACHE1D_FIND_REC); strcpy(r->name, name);
r->type = type;
r->source = source;
r->usera = r->userb = NULL;
if (!attach) // we are the first item
{
r->prev = NULL;
r->next = *rec;
if (*rec)(*rec)->prev = r;
*rec = r;
}
else
{
r->prev = attach;
r->next = attach->next;
if (attach->next) attach->next->prev = r;
attach->next = r;
}
return 0;
}
void klistfree(CACHE1D_FIND_REC *rec)
{
CACHE1D_FIND_REC *n;
while (rec)
{
n = rec->next;
Bfree(rec);
rec = n;
}
}
CACHE1D_FIND_REC *klistpath(const char *_path, const char *mask, int32_t type)
{
CACHE1D_FIND_REC *rec = NULL;
char *path;
// pathsearchmode == 0: enumerates a path in the virtual filesystem
// pathsearchmode == 1: enumerates the system filesystem path passed in
path = Xstrdup(_path);
// we don't need any leading dots and slashes or trailing slashes either
{
int32_t i,j;
for (i=0; path[i] == '.' || toupperlookup[path[i]] == '/';) i++;
for (j=0; (path[j] = path[i]); j++,i++) ;
while (j>0 && toupperlookup[path[j-1]] == '/') j--;
path[j] = 0;
//initprintf("Cleaned up path = \"%s\"\n",path);
}
if (*path && (type & CACHE1D_FIND_DIR))
{
if (klistaddentry(&rec, "..", CACHE1D_FIND_DIR, CACHE1D_SOURCE_CURDIR) < 0) goto failure;
}
if (!(type & CACHE1D_OPT_NOSTACK)) // current directory and paths in the search stack
{
searchpath_t *search = NULL;
BDIR *dir;
struct Bdirent *dirent;
static const char *const CUR_DIR = "./";
// Adjusted for the following "autoload" dir fix - NY00123
const char *d = pathsearchmode ? _path : CUR_DIR;
int32_t stackdepth = CACHE1D_SOURCE_CURDIR;
char buf[BMAX_PATH];
do
{
if (d==CUR_DIR && (type & CACHE1D_FIND_NOCURDIR))
goto next;
strcpy(buf, d);
if (!pathsearchmode)
{
// Fix for "autoload" dir in multi-user environments - NY00123
strcat(buf, path);
if (*path) strcat(buf, "/");
}
dir = Bopendir(buf);
if (dir)
{
while ((dirent = Breaddir(dir)))
{
if ((dirent->name[0] == '.' && dirent->name[1] == 0) ||
(dirent->name[0] == '.' && dirent->name[1] == '.' && dirent->name[2] == 0))
continue;
if ((type & CACHE1D_FIND_DIR) && !(dirent->mode & BS_IFDIR)) continue;
if ((type & CACHE1D_FIND_FILE) && (dirent->mode & BS_IFDIR)) continue;
if (!Bwildmatch(dirent->name, mask)) continue;
switch (klistaddentry(&rec, dirent->name,
(dirent->mode & BS_IFDIR) ? CACHE1D_FIND_DIR : CACHE1D_FIND_FILE,
stackdepth))
{
case -1: goto failure;
//case 1: initprintf("%s:%s dropped for lower priority\n", d,dirent->name); break;
//case 0: initprintf("%s:%s accepted\n", d,dirent->name); break;
default:
break;
}
}
Bclosedir(dir);
}
next:
if (pathsearchmode)
break;
if (!search)
{
search = searchpathhead;
stackdepth = CACHE1D_SOURCE_PATH;
}
else
{
search = search->next;
stackdepth++;
}
if (search)
d = search->path;
}
while (search);
}
#ifdef WITHKPLIB
if (!(type & CACHE1D_FIND_NOCURDIR)) // TEMP, until we have sorted out fs.listpath() API
if (!pathsearchmode) // next, zip files
{
char buf[BMAX_PATH+4];
int32_t i, j, ftype;
strcpy(buf,path);
if (*path) strcat(buf,"/");
strcat(buf,mask);
for (kzfindfilestart(buf); kzfindfile(buf);)
{
if (buf[0] != '|') continue; // local files we don't need
// scan for the end of the string and shift
// everything left a char in the process
for (i=1; (buf[i-1]=buf[i]); i++)
{
/* do nothing */
}
i-=2;
if (i < 0)
i = 0;
// if there's a slash at the end, this is a directory entry
if (toupperlookup[buf[i]] == '/') { ftype = CACHE1D_FIND_DIR; buf[i] = 0; }
else ftype = CACHE1D_FIND_FILE;
// skip over the common characters at the beginning of the base path and the zip entry
for (j=0; buf[j] && path[j]; j++)
{
if (toupperlookup[ path[j] ] == toupperlookup[ buf[j] ]) continue;
break;
}
// we've now hopefully skipped the common path component at the beginning.
// if that's true, we should be staring at a null byte in path and either any character in buf
// if j==0, or a slash if j>0
if ((!path[0] && buf[j]) || (!path[j] && toupperlookup[ buf[j] ] == '/'))
{
if (j>0) j++;
// yep, so now we shift what follows back to the start of buf and while we do that,
// keep an eye out for any more slashes which would mean this entry has sub-entities
// and is useless to us.
for (i = 0; (buf[i] = buf[j]) && toupperlookup[buf[j]] != '/'; i++,j++) ;
if (toupperlookup[buf[j]] == '/') continue; // damn, try next entry
}
else
{
// if we're here it means we have a situation where:
// path = foo
// buf = foobar...
// or
// path = foobar
// buf = foo...
// which would mean the entry is higher up in the directory tree and is also useless
continue;
}
if ((type & CACHE1D_FIND_DIR) && ftype != CACHE1D_FIND_DIR) continue;
if ((type & CACHE1D_FIND_FILE) && ftype != CACHE1D_FIND_FILE) continue;
// the entry is in the clear
switch (klistaddentry(&rec, buf, ftype, CACHE1D_SOURCE_ZIP))
{
case -1:
goto failure;
//case 1: initprintf("<ZIP>:%s dropped for lower priority\n", buf); break;
//case 0: initprintf("<ZIP>:%s accepted\n", buf); break;
default:
break;
}
}
}
#endif
// then, grp files
if (!(type & CACHE1D_FIND_NOCURDIR)) // TEMP, until we have sorted out fs.listpath() API
if (!pathsearchmode && !*path && (type & CACHE1D_FIND_FILE))
{
char buf[13];
int32_t i,j;
buf[12] = 0;
for (i=0; i<MAXGROUPFILES; i++)
{
if (groupfil[i] == -1) continue;
for (j=gnumfiles[i]-1; j>=0; j--)
{
Bmemcpy(buf,&gfilelist[i][j<<4],12);
if (!Bwildmatch(buf,mask)) continue;
switch (klistaddentry(&rec, buf, CACHE1D_FIND_FILE, CACHE1D_SOURCE_GRP))
{
case -1:
goto failure;
//case 1: initprintf("<GRP>:%s dropped for lower priority\n", workspace); break;
//case 0: initprintf("<GRP>:%s accepted\n", workspace); break;
default:
break;
}
}
}
}
if (pathsearchmode && (type & CACHE1D_FIND_DRIVE))
{
char *drives, *drp;
drives = Bgetsystemdrives();
if (drives)
{
for (drp=drives; *drp; drp+=strlen(drp)+1)
{
if (klistaddentry(&rec, drp, CACHE1D_FIND_DRIVE, CACHE1D_SOURCE_DRIVE) < 0)
{
Bfree(drives);
goto failure;
}
}
Bfree(drives);
}
}
Bfree(path);
// XXX: may be NULL if no file was listed, and thus indistinguishable from
// an error condition.
return rec;
failure:
Bfree(path);
klistfree(rec);
return NULL;
}
#endif // #ifdef CACHE1D_COMPRESS_ONLY / else
//Internal LZW variables
#define LZWSIZE 16384 //Watch out for shorts!
#define LZWSIZEPAD (LZWSIZE+(LZWSIZE>>4))
// lzwrawbuf LZWSIZE+1 (formerly): see (*) below
// XXX: lzwrawbuf size increased again :-/
static char lzwtmpbuf[LZWSIZEPAD], lzwrawbuf[LZWSIZEPAD], lzwcompbuf[LZWSIZEPAD];
static int16_t lzwbuf2[LZWSIZEPAD], lzwbuf3[LZWSIZEPAD];
static int32_t lzwcompress(const char *lzwinbuf, int32_t uncompleng, char *lzwoutbuf);
static int32_t lzwuncompress(const char *lzwinbuf, int32_t compleng, char *lzwoutbuf);
#ifndef CACHE1D_COMPRESS_ONLY
static int32_t kdfread_func(intptr_t fil, void *outbuf, int32_t length)
{
return kread((int32_t)fil, outbuf, length);
}
static void dfwrite_func(intptr_t fp, const void *inbuf, int32_t length)
{
Bfwrite(inbuf, length, 1, (BFILE *)fp);
}
#else
# define kdfread_func NULL
# define dfwrite_func NULL
#endif
// These two follow the argument order of the C functions "read" and "write":
// handle, buffer, length.
C1D_STATIC int32_t (*c1d_readfunc)(intptr_t, void *, int32_t) = kdfread_func;
C1D_STATIC void (*c1d_writefunc)(intptr_t, const void *, int32_t) = dfwrite_func;
////////// COMPRESSED READ //////////
static uint32_t decompress_part(intptr_t f, uint32_t *kgoalptr)
{
int16_t leng;
// Read compressed length first.
if (c1d_readfunc(f, &leng, 2) != 2)
return 1;
leng = B_LITTLE16(leng);
if (c1d_readfunc(f,lzwcompbuf, leng) != leng)
return 1;
*kgoalptr = lzwuncompress(lzwcompbuf, leng, lzwrawbuf);
return 0;
}
// Read from 'f' into 'buffer'.
C1D_STATIC int32_t c1d_read_compressed(void *buffer, bsize_t dasizeof, bsize_t count, intptr_t f)
{
char *ptr = (char *)buffer;
if (dasizeof > LZWSIZE)
{
count *= dasizeof;
dasizeof = 1;
}
uint32_t kgoal;
if (decompress_part(f, &kgoal))
return -1;
Bmemcpy(ptr, lzwrawbuf, (int32_t)dasizeof);
uint32_t k = (int32_t)dasizeof;
for (uint32_t i=1; i<count; i++)
{
if (k >= kgoal)
{
k = decompress_part(f, &kgoal);
if (k) return -1;
}
uint32_t j = 0;
if (dasizeof >= 4)
{
for (; j<dasizeof-4; j+=4)
{
ptr[j+dasizeof] = ((ptr[j]+lzwrawbuf[j+k])&255);
ptr[j+1+dasizeof] = ((ptr[j+1]+lzwrawbuf[j+1+k])&255);
ptr[j+2+dasizeof] = ((ptr[j+2]+lzwrawbuf[j+2+k])&255);
ptr[j+3+dasizeof] = ((ptr[j+3]+lzwrawbuf[j+3+k])&255);
}
}
for (; j<dasizeof; j++)
ptr[j+dasizeof] = ((ptr[j]+lzwrawbuf[j+k])&255);
k += dasizeof;
ptr += dasizeof;
}
return count;
}
int32_t kdfread(void *buffer, bsize_t dasizeof, bsize_t count, int32_t fil)
{
return c1d_read_compressed(buffer, dasizeof, count, (intptr_t)fil);
}
////////// COMPRESSED WRITE //////////
static uint32_t compress_part(uint32_t k, intptr_t f)
{
const int16_t leng = (int16_t)lzwcompress(lzwrawbuf, k, lzwcompbuf);
const int16_t swleng = B_LITTLE16(leng);
c1d_writefunc(f, &swleng, 2);
c1d_writefunc(f, lzwcompbuf, leng);
return 0;
}
// Write from 'buffer' to 'f'.
C1D_STATIC void c1d_write_compressed(const void *buffer, bsize_t dasizeof, bsize_t count, intptr_t f)
{
char const *ptr = (char const *)buffer;
if (dasizeof > LZWSIZE)
{
count *= dasizeof;
dasizeof = 1;
}
Bmemcpy(lzwrawbuf, ptr, (int32_t)dasizeof);
uint32_t k = dasizeof;
if (k > LZWSIZE-dasizeof)
k = compress_part(k, f);
for (uint32_t i=1; i<count; i++)
{
uint32_t j = 0;
if (dasizeof >= 4)
{
for (; j<dasizeof-4; j+=4)
{
lzwrawbuf[j+k] = ((ptr[j+dasizeof]-ptr[j])&255);
lzwrawbuf[j+1+k] = ((ptr[j+1+dasizeof]-ptr[j+1])&255);
lzwrawbuf[j+2+k] = ((ptr[j+2+dasizeof]-ptr[j+2])&255);
lzwrawbuf[j+3+k] = ((ptr[j+3+dasizeof]-ptr[j+3])&255);
}
}
for (; j<dasizeof; j++)
lzwrawbuf[j+k] = ((ptr[j+dasizeof]-ptr[j])&255);
k += dasizeof;
if (k > LZWSIZE-dasizeof)
k = compress_part(k, f);
ptr += dasizeof;
}
if (k > 0)
compress_part(k, f);
}
void dfwrite(const void *buffer, bsize_t dasizeof, bsize_t count, BFILE *fil)
{
c1d_write_compressed(buffer, dasizeof, count, (intptr_t)fil);
}
////////// CORE COMPRESSION FUNCTIONS //////////
static int32_t lzwcompress(const char *lzwinbuf, int32_t uncompleng, char *lzwoutbuf)
{
int32_t i, addr, addrcnt, *intptr;
int32_t bytecnt1, bitcnt, numbits, oneupnumbits;
int16_t *shortptr;
int16_t *const lzwcodehead = lzwbuf2;
int16_t *const lzwcodenext = lzwbuf3;
for (i=255; i>=4; i-=4)
{
lzwtmpbuf[i] = i, lzwcodenext[i] = (i+1)&255;
lzwtmpbuf[i-1] = i-1, lzwcodenext[i-1] = (i) &255;
lzwtmpbuf[i-2] = i-2, lzwcodenext[i-2] = (i-1)&255;
lzwtmpbuf[i-3] = i-3, lzwcodenext[i-3] = (i-2)&255;
lzwcodehead[i] = lzwcodehead[i-1] = lzwcodehead[i-2] = lzwcodehead[i-3] = -1;
}
for (; i>=0; i--)
{
lzwtmpbuf[i] = i;
lzwcodenext[i] = (i+1)&255;
lzwcodehead[i] = -1;
}
Bmemset(lzwoutbuf, 0, 4+uncompleng+1);
// clearbuf(lzwoutbuf,((uncompleng+15)+3)>>2,0L);
addrcnt = 256; bytecnt1 = 0; bitcnt = (4<<3);
numbits = 8; oneupnumbits = (1<<8);
do
{
addr = lzwinbuf[bytecnt1];
do
{
int32_t newaddr;
if (++bytecnt1 == uncompleng)
break; // (*) see XXX below
if (lzwcodehead[addr] < 0)
{
lzwcodehead[addr] = addrcnt;
break;
}
newaddr = lzwcodehead[addr];
while (lzwtmpbuf[newaddr] != lzwinbuf[bytecnt1])
{
if (lzwcodenext[newaddr] < 0)
{
lzwcodenext[newaddr] = addrcnt;
break;
}
newaddr = lzwcodenext[newaddr];
}
if (lzwcodenext[newaddr] == addrcnt)
break;
addr = newaddr;
}
while (addr >= 0);
lzwtmpbuf[addrcnt] = lzwinbuf[bytecnt1]; // XXX: potential oob access of lzwinbuf via (*) above
lzwcodehead[addrcnt] = -1;
lzwcodenext[addrcnt] = -1;
intptr = (int32_t *)&lzwoutbuf[bitcnt>>3];
intptr[0] |= B_LITTLE32(addr<<(bitcnt&7));
bitcnt += numbits;
if ((addr&((oneupnumbits>>1)-1)) > ((addrcnt-1)&((oneupnumbits>>1)-1)))
bitcnt--;
addrcnt++;
if (addrcnt > oneupnumbits)
{ numbits++; oneupnumbits <<= 1; }
}
while ((bytecnt1 < uncompleng) && (bitcnt < (uncompleng<<3)));
intptr = (int32_t *)&lzwoutbuf[bitcnt>>3];
intptr[0] |= B_LITTLE32(addr<<(bitcnt&7));
bitcnt += numbits;
if ((addr&((oneupnumbits>>1)-1)) > ((addrcnt-1)&((oneupnumbits>>1)-1)))
bitcnt--;
shortptr = (int16_t *)lzwoutbuf;
shortptr[0] = B_LITTLE16((int16_t)uncompleng);
if (((bitcnt+7)>>3) < uncompleng)
{
shortptr[1] = B_LITTLE16((int16_t)addrcnt);
return (bitcnt+7)>>3;
}
// Failed compressing, mark this in the stream.
shortptr[1] = 0;
for (i=0; i<uncompleng-4; i+=4)
{
lzwoutbuf[i+4] = lzwinbuf[i];
lzwoutbuf[i+5] = lzwinbuf[i+1];
lzwoutbuf[i+6] = lzwinbuf[i+2];
lzwoutbuf[i+7] = lzwinbuf[i+3];
}
for (; i<uncompleng; i++)
lzwoutbuf[i+4] = lzwinbuf[i];
return uncompleng+4;
}
static int32_t lzwuncompress(const char *lzwinbuf, int32_t compleng, char *lzwoutbuf)
{
int32_t currstr, numbits, oneupnumbits;
int32_t i, bitcnt, outbytecnt;
const int16_t *const shortptr = (const int16_t *)lzwinbuf;
const int32_t strtot = B_LITTLE16(shortptr[1]);
const int32_t uncompleng = B_LITTLE16(shortptr[0]);
if (strtot == 0)
{
if (lzwoutbuf==lzwrawbuf && lzwinbuf==lzwcompbuf)
{
Bassert((compleng-4)+3+0u < sizeof(lzwrawbuf));
Bassert((compleng-4)+3+0u < sizeof(lzwcompbuf)-4);
}
Bmemcpy(lzwoutbuf, lzwinbuf+4, (compleng-4)+3);
return uncompleng;
}
for (i=255; i>=4; i-=4)
{
lzwbuf2[i] = lzwbuf3[i] = i;
lzwbuf2[i-1] = lzwbuf3[i-1] = i-1;
lzwbuf2[i-2] = lzwbuf3[i-2] = i-2;
lzwbuf2[i-3] = lzwbuf3[i-3] = i-3;
}
lzwbuf2[i] = lzwbuf3[i] = i;
lzwbuf2[i-1] = lzwbuf3[i-1] = i-1;
lzwbuf2[i-2] = lzwbuf3[i-2] = i-2;
currstr = 256; bitcnt = (4<<3); outbytecnt = 0;
numbits = 8; oneupnumbits = (1<<8);
do
{
const int32_t *const intptr = (const int32_t *)&lzwinbuf[bitcnt>>3];
int32_t dat = ((B_LITTLE32(intptr[0])>>(bitcnt&7)) & (oneupnumbits-1));
int32_t leng;
bitcnt += numbits;
if ((dat&((oneupnumbits>>1)-1)) > ((currstr-1)&((oneupnumbits>>1)-1)))
{ dat &= ((oneupnumbits>>1)-1); bitcnt--; }
lzwbuf3[currstr] = dat;
for (leng=0; dat>=256; leng++,dat=lzwbuf3[dat])
lzwtmpbuf[leng] = lzwbuf2[dat];
lzwoutbuf[outbytecnt++] = dat;
for (i=leng-1; i>=4; i-=4, outbytecnt+=4)
{
lzwoutbuf[outbytecnt] = lzwtmpbuf[i];
lzwoutbuf[outbytecnt+1] = lzwtmpbuf[i-1];
lzwoutbuf[outbytecnt+2] = lzwtmpbuf[i-2];
lzwoutbuf[outbytecnt+3] = lzwtmpbuf[i-3];
}
for (; i>=0; i--)
lzwoutbuf[outbytecnt++] = lzwtmpbuf[i];
lzwbuf2[currstr-1] = dat; lzwbuf2[currstr] = dat;
currstr++;
if (currstr > oneupnumbits)
{ numbits++; oneupnumbits <<= 1; }
}
while (currstr < strtot);
return uncompleng;
}
/*
* vim:ts=4:sw=4:
*/