raze-gles/source/core/sectorgeometry.cpp

342 lines
10 KiB
C++
Raw Normal View History

/*
** sectorgeometry.cpp
**
** caches the triangle meshes used for rendering sector planes.
**
**---------------------------------------------------------------------------
** Copyright 2021 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
**
*/
#include "sectorgeometry.h"
#include "build.h"
#include "gamefuncs.h"
#include "texturemanager.h"
#include "earcut.hpp"
SectorGeometry sectorGeometry;
//==========================================================================
//
// CalcPlane fixme - this should be stored in the sector, not be recalculated each frame.
//
//==========================================================================
static FVector3 CalcNormal(sectortype* sector, int plane)
{
FVector3 pt[3];
auto wal = &wall[sector->wallptr];
auto wal2 = &wall[wal->point2];
pt[0] = { (float)WallStartX(wal), (float)WallStartY(wal), 0 };
pt[1] = { (float)WallEndX(wal), (float)WallEndY(wal), 0 };
PlanesAtPoint(sector, wal->x, wal->y, plane ? &pt[0].Z : nullptr, plane? nullptr : &pt[0].Z);
PlanesAtPoint(sector, wal2->x, wal2->y, plane ? &pt[1].Z : nullptr, plane ? nullptr : &pt[1].Z);
if (pt[0].X == pt[1].X)
{
if (pt[0].Y == pt[1].Y) return { 0.f, 0.f, plane ? -1.f : 1.f };
pt[2].X = pt[0].X + 4;
pt[2].Y = pt[0].Y;
}
else
{
pt[2].X = pt[0].X;
pt[2].Y = pt[0].Y + 4;
}
PlanesAtPoint(sector, pt[2].X * 16, pt[2].Y * 16, plane ? &pt[2].Z : nullptr, plane ? nullptr : &pt[2].Z);
auto normal = (pt[2] - pt[0]) ^ (pt[1] - pt[0]);
if ((pt[2].Z < 0 && !plane) || (pt[2].Z > 0 && plane)) return -pt[2];
return pt[2];
}
//==========================================================================
//
// The math used here to calculate texture positioning was derived from
// Polymer but required several fixes for correctness.
//
//==========================================================================
class UVCalculator
{
sectortype* sect;
int myplane;
int stat;
float z1;
int ix1;
int iy1;
int ix2;
int iy2;
float sinalign, cosalign;
FGameTexture* tex;
float xpanning, ypanning;
float xscaled, yscaled;
public:
// Moved in from pragmas.h
UVCalculator(sectortype* sec, int plane, FGameTexture* tx)
{
float xpan, ypan;
sect = sec;
tex = tx;
myplane = plane;
auto firstwall = &wall[sec->wallptr];
ix1 = firstwall->x;
iy1 = firstwall->y;
ix2 = wall[firstwall->point2].x;
iy2 = wall[firstwall->point2].y;
if (plane == 0)
{
stat = sec->floorstat;
xpan = sec->floorxpan_;
ypan = sec->floorypan_;
PlanesAtPoint(sec, ix1, iy1, nullptr, &z1);
}
else
{
stat = sec->ceilingstat;
xpan = sec->ceilingxpan_;
ypan = sec->ceilingypan_;
PlanesAtPoint(sec, ix1, iy1, &z1, nullptr);
}
DVector2 dv = { double(ix2 - ix1), -double(iy2 - iy1) };
auto vang = dv.Angle() - 90.;
cosalign = vang.Cos();
sinalign = vang.Sin();
int pow2width = 1 << sizeToBits((int)tx->GetDisplayWidth());
if (pow2width < (int)tx->GetDisplayWidth()) pow2width *= 2;
int pow2height = 1 << sizeToBits((int)tx->GetDisplayHeight());
if (pow2height < (int)tx->GetDisplayHeight()) pow2height *= 2;
xpanning = pow2width * xpan / (256.f * tx->GetDisplayWidth());
ypanning = pow2height * ypan / (256.f * tx->GetDisplayHeight());
float scalefactor = (stat & CSTAT_SECTOR_TEXHALF) ? 8.0f : 16.0f;
if ((stat & (CSTAT_SECTOR_SLOPE | CSTAT_SECTOR_ALIGN)) == (CSTAT_SECTOR_ALIGN))
{
// This is necessary to adjust for some imprecisions in the math.
// To calculate the inverse Build performs an integer division with significant loss of precision
// that can cause the texture to be shifted by multiple pixels.
// The code below calculates the amount of this deviation so that it can be added back to the formula.
int len = ksqrt(uhypsq(ix2 - ix1, iy2 - iy1));
if (len != 0)
{
int i = 1048576 / len;
scalefactor *= 1048576.f / (i * len);
}
}
xscaled = scalefactor * (int)tx->GetDisplayWidth();
yscaled = scalefactor * (int)tx->GetDisplayHeight();
}
FVector2 GetUV(int x, int y, float z)
{
float tv, tu;
if (stat & CSTAT_SECTOR_ALIGN)
{
float dx = (float)(x - ix1);
float dy = (float)(y - iy1);
tu = -(dx * sinalign + dy * cosalign);
tv = (dx * cosalign - dy * sinalign);
if (stat & CSTAT_SECTOR_SLOPE)
{
float dz = (z - z1) * 16;
float newtv = sqrt(tv * tv + dz * dz);
tv = tv < 0 ? -newtv : newtv;
}
}
else
{
tu = x;
tv = -y;
}
if (stat & CSTAT_SECTOR_SWAPXY)
std::swap(tu, tv);
if (stat & CSTAT_SECTOR_XFLIP) tu = -tu;
if (stat & CSTAT_SECTOR_YFLIP) tv = -tv;
return { tu / xscaled + xpanning, tv / yscaled + ypanning };
}
};
//==========================================================================
//
//
//
//==========================================================================
void SectorGeometry::MakeVertices(unsigned int secnum, int plane)
{
auto sec = &sector[secnum];
int numvertices = sec->wallnum;
TArray<FVector3> points(numvertices, true);
using Point = std::pair<float, float>;
std::vector<std::vector<Point>> polygon;
std::vector<Point>* curPoly;
polygon.resize(1);
curPoly = &polygon.back();
int fz = sec->floorz, cz = sec->ceilingz;
sec->floorz = sec->ceilingz = 0;
for (int i = 0; i < numvertices; i++)
{
auto wal = &wall[sec->wallptr + i];
float X = WallStartX(wal);
float Y = WallStartY(wal);
if (fabs(X) > 32768. || fabs(Y) > 32768.)
{
// If we get here there's some fuckery going around with the coordinates. Let's better abort and wait for things to realign.
return;
}
curPoly->push_back(std::make_pair(X, Y));
if (wal->point2 != sec->wallptr+i+1 && i < numvertices - 1)
{
polygon.resize(polygon.size() + 1);
curPoly = &polygon.back();
}
}
// Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible.
int outer = 0;
float minx = FLT_MAX;
float miny = FLT_MAX;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
if (pt.first < minx || (pt.first == minx && pt.second < miny))
{
minx = pt.first;
miny = pt.second;
outer = a;
}
}
}
if (outer != 0) std::swap(polygon[0], polygon[outer]);
auto indices = mapbox::earcut(polygon);
int p = 0;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
float planez;
PlanesAtPoint(sec, (pt.first * 16), (pt.second * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr);
FVector3 point = { pt.first, pt.second, planez };
points[p++] = point;
}
}
auto& entry = data[secnum].planes[plane];
entry.vertices.Resize(indices.size());
entry.texcoords.Resize(indices.size());
entry.normal = CalcNormal(sec, plane);
auto texture = tileGetTexture(plane ? sec->ceilingpicnum : sec->floorpicnum);
UVCalculator uvcalc(sec, plane, texture);
for(unsigned i = 0; i < entry.vertices.Size(); i++)
{
auto& pt = points[indices[i]];
entry.vertices[i] = pt;
entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16), int(pt.Y * -16), pt.Z);
}
sec->floorz = fz;
sec->ceilingz = cz;
}
//==========================================================================
//
//
//
//==========================================================================
void SectorGeometry::ValidateSector(unsigned int secnum, int plane)
{
auto sec = &sector[secnum];
auto compare = &data[secnum].compare[plane];
if (plane == 0)
{
if (sec->floorheinum == compare->floorheinum &&
sec->floorpicnum == compare->floorpicnum &&
((sec->floorstat ^ compare->floorstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
sec->floorxpan_ == compare->floorxpan_ &&
sec->floorypan_ == compare->floorypan_ &&
wall[sec->wallptr].pos == data[secnum].poscompare[0] &&
wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[0] &&
!(sec->dirty & 1) && data[secnum].planes[plane].vertices.Size() ) return;
sec->dirty &= ~1;
}
else
{
if (sec->ceilingheinum == compare->ceilingheinum &&
sec->ceilingpicnum == compare->ceilingpicnum &&
((sec->ceilingstat ^ compare->ceilingstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
sec->ceilingxpan_ == compare->ceilingxpan_ &&
sec->ceilingypan_ == compare->ceilingypan_ &&
wall[sec->wallptr].pos == data[secnum].poscompare[1] &&
wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[1] &&
!(sec->dirty & 2) && data[secnum].planes[1].vertices.Size()) return;
sec->dirty &= ~2;
}
*compare = *sec;
data[secnum].poscompare[plane] = wall[sec->wallptr].pos;
data[secnum].poscompare2[plane] = wall[wall[sec->wallptr].point2].pos;
MakeVertices(secnum, plane);
}