mirror of
https://github.com/ZDoom/raze-gles.git
synced 2024-11-18 02:01:39 +00:00
1633 lines
64 KiB
C
1633 lines
64 KiB
C
|
/*
|
||
|
xxHash - Extremely Fast Hash algorithm
|
||
|
Development source file for `xxh3`
|
||
|
Copyright (C) 2019-present, Yann Collet.
|
||
|
|
||
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are
|
||
|
met:
|
||
|
|
||
|
* Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
copyright notice, this list of conditions and the following disclaimer
|
||
|
in the documentation and/or other materials provided with the
|
||
|
distribution.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
You can contact the author at :
|
||
|
- xxHash source repository : https://github.com/Cyan4973/xxHash
|
||
|
*/
|
||
|
|
||
|
/* Note :
|
||
|
This file is separated for development purposes.
|
||
|
It will be integrated into `xxhash.c` when development phase is complete.
|
||
|
*/
|
||
|
|
||
|
#ifndef XXH3_H
|
||
|
#define XXH3_H
|
||
|
|
||
|
|
||
|
/* === Dependencies === */
|
||
|
|
||
|
#undef XXH_INLINE_ALL /* in case it's already defined */
|
||
|
#define XXH_INLINE_ALL
|
||
|
#include "xxhash.h"
|
||
|
|
||
|
|
||
|
/* === Compiler specifics === */
|
||
|
|
||
|
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
|
||
|
# define XXH_RESTRICT restrict
|
||
|
#else
|
||
|
/* note : it might be useful to define __restrict or __restrict__ for some C++ compilers */
|
||
|
# define XXH_RESTRICT /* disable */
|
||
|
#endif
|
||
|
|
||
|
#if defined(__GNUC__)
|
||
|
# if defined(__AVX2__)
|
||
|
# include <immintrin.h>
|
||
|
# elif defined(__SSE2__)
|
||
|
# include <emmintrin.h>
|
||
|
# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
|
||
|
# define inline __inline__ /* clang bug */
|
||
|
# include <arm_neon.h>
|
||
|
# undef inline
|
||
|
# endif
|
||
|
#elif defined(_MSC_VER)
|
||
|
# include <intrin.h>
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Sanity check.
|
||
|
*
|
||
|
* XXH3 only requires these features to be efficient:
|
||
|
*
|
||
|
* - Usable unaligned access
|
||
|
* - A 32-bit or 64-bit ALU
|
||
|
* - If 32-bit, a decent ADC instruction
|
||
|
* - A 32 or 64-bit multiply with a 64-bit result
|
||
|
*
|
||
|
* Almost all 32-bit and 64-bit targets meet this, except for Thumb-1, the
|
||
|
* classic 16-bit only subset of ARM's instruction set.
|
||
|
*
|
||
|
* First of all, Thumb-1 lacks support for the UMULL instruction which
|
||
|
* performs the important long multiply. This means numerous __aeabi_lmul
|
||
|
* calls.
|
||
|
*
|
||
|
* Second of all, the 8 functional registers are just not enough.
|
||
|
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
|
||
|
* Lo registers, and this shuffling results in thousands more MOVs than A32.
|
||
|
*
|
||
|
* A32 and T32 don't have this limitation. They can access all 14 registers,
|
||
|
* do a 32->64 multiply with UMULL, and the flexible operand is helpful too.
|
||
|
*
|
||
|
* If compiling Thumb-1 for a target which supports ARM instructions, we
|
||
|
* will give a warning.
|
||
|
*
|
||
|
* Usually, if this happens, it is because of an accident and you probably
|
||
|
* need to specify -march, as you probably meant to compileh for a newer
|
||
|
* architecture.
|
||
|
*/
|
||
|
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
|
||
|
# warning "XXH3 is highly inefficient without ARM or Thumb-2."
|
||
|
#endif
|
||
|
|
||
|
/* ==========================================
|
||
|
* Vectorization detection
|
||
|
* ========================================== */
|
||
|
#define XXH_SCALAR 0
|
||
|
#define XXH_SSE2 1
|
||
|
#define XXH_AVX2 2
|
||
|
#define XXH_NEON 3
|
||
|
#define XXH_VSX 4
|
||
|
|
||
|
#ifndef XXH_VECTOR /* can be defined on command line */
|
||
|
# if defined(__AVX2__)
|
||
|
# define XXH_VECTOR XXH_AVX2
|
||
|
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
|
||
|
# define XXH_VECTOR XXH_SSE2
|
||
|
# elif defined(__GNUC__) /* msvc support maybe later */ \
|
||
|
&& (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
|
||
|
&& defined(__LITTLE_ENDIAN__) /* ARM big endian is a thing */
|
||
|
# define XXH_VECTOR XXH_NEON
|
||
|
# elif defined(__PPC64__) && defined(__POWER8_VECTOR__) && defined(__GNUC__)
|
||
|
# define XXH_VECTOR XXH_VSX
|
||
|
# else
|
||
|
# define XXH_VECTOR XXH_SCALAR
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/* control alignment of accumulator,
|
||
|
* for compatibility with fast vector loads */
|
||
|
#ifndef XXH_ACC_ALIGN
|
||
|
# if XXH_VECTOR == 0 /* scalar */
|
||
|
# define XXH_ACC_ALIGN 8
|
||
|
# elif XXH_VECTOR == 1 /* sse2 */
|
||
|
# define XXH_ACC_ALIGN 16
|
||
|
# elif XXH_VECTOR == 2 /* avx2 */
|
||
|
# define XXH_ACC_ALIGN 32
|
||
|
# elif XXH_VECTOR == 3 /* neon */
|
||
|
# define XXH_ACC_ALIGN 16
|
||
|
# elif XXH_VECTOR == 4 /* vsx */
|
||
|
# define XXH_ACC_ALIGN 16
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/* U64 XXH_mult32to64(U32 a, U64 b) { return (U64)a * (U64)b; } */
|
||
|
#if defined(_MSC_VER) && defined(_M_IX86)
|
||
|
# include <intrin.h>
|
||
|
# define XXH_mult32to64(x, y) __emulu(x, y)
|
||
|
#else
|
||
|
# define XXH_mult32to64(x, y) ((U64)((x) & 0xFFFFFFFF) * (U64)((y) & 0xFFFFFFFF))
|
||
|
#endif
|
||
|
|
||
|
/* VSX stuff. It's a lot because VSX support is mediocre across compilers and
|
||
|
* there is a lot of mischief with endianness. */
|
||
|
#if XXH_VECTOR == XXH_VSX
|
||
|
# include <altivec.h>
|
||
|
# undef vector
|
||
|
typedef __vector unsigned long long U64x2;
|
||
|
typedef __vector unsigned char U8x16;
|
||
|
typedef __vector unsigned U32x4;
|
||
|
|
||
|
#ifndef XXH_VSX_BE
|
||
|
# ifdef __BIG_ENDIAN__
|
||
|
# define XXH_VSX_BE 1
|
||
|
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
|
# warning "-maltivec=be is not recommended. Please use native endianness."
|
||
|
# define XXH_VSX_BE 1
|
||
|
# else
|
||
|
# define XXH_VSX_BE 0
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/* We need some helpers for big endian mode. */
|
||
|
#if XXH_VSX_BE
|
||
|
/* A wrapper for POWER9's vec_revb. */
|
||
|
# ifdef __POWER9_VECTOR__
|
||
|
# define XXH_vec_revb vec_revb
|
||
|
# else
|
||
|
XXH_FORCE_INLINE U64x2 XXH_vec_revb(U64x2 val)
|
||
|
{
|
||
|
U8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
|
||
|
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
|
||
|
return vec_perm(val, val, vByteSwap);
|
||
|
}
|
||
|
# endif
|
||
|
|
||
|
/* Power8 Crypto gives us vpermxor which is very handy for
|
||
|
* PPC64EB.
|
||
|
*
|
||
|
* U8x16 vpermxor(U8x16 a, U8x16 b, U8x16 mask)
|
||
|
* {
|
||
|
* U8x16 ret;
|
||
|
* for (int i = 0; i < 16; i++) {
|
||
|
* ret[i] = a[mask[i] & 0xF] ^ b[mask[i] >> 4];
|
||
|
* }
|
||
|
* return ret;
|
||
|
* }
|
||
|
*
|
||
|
* Because both of the main loops load the key, swap, and xor it with data,
|
||
|
* we can combine the key swap into this instruction.
|
||
|
*/
|
||
|
# ifdef vec_permxor
|
||
|
# define XXH_vec_permxor vec_permxor
|
||
|
# else
|
||
|
# define XXH_vec_permxor __builtin_crypto_vpermxor
|
||
|
# endif
|
||
|
#endif
|
||
|
/*
|
||
|
* Because we reinterpret the multiply, there are endian memes: vec_mulo actually becomes
|
||
|
* vec_mule.
|
||
|
*
|
||
|
* Additionally, the intrinsic wasn't added until GCC 8, despite existing for a while.
|
||
|
* Clang has an easy way to control this, we can just use the builtin which doesn't swap.
|
||
|
* GCC needs inline assembly. */
|
||
|
#if __has_builtin(__builtin_altivec_vmuleuw)
|
||
|
# define XXH_vec_mulo __builtin_altivec_vmulouw
|
||
|
# define XXH_vec_mule __builtin_altivec_vmuleuw
|
||
|
#else
|
||
|
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
|
||
|
XXH_FORCE_INLINE U64x2 XXH_vec_mulo(U32x4 a, U32x4 b) {
|
||
|
U64x2 result;
|
||
|
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
|
||
|
return result;
|
||
|
}
|
||
|
XXH_FORCE_INLINE U64x2 XXH_vec_mule(U32x4 a, U32x4 b) {
|
||
|
U64x2 result;
|
||
|
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
|
||
|
return result;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* ==========================================
|
||
|
* XXH3 default settings
|
||
|
* ========================================== */
|
||
|
|
||
|
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
|
||
|
|
||
|
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
|
||
|
# error "default keyset is not large enough"
|
||
|
#endif
|
||
|
|
||
|
XXH_ALIGN(64) static const BYTE kSecret[XXH_SECRET_DEFAULT_SIZE] = {
|
||
|
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
|
||
|
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
|
||
|
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
|
||
|
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
|
||
|
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
|
||
|
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
|
||
|
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
|
||
|
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
|
||
|
|
||
|
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
|
||
|
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
|
||
|
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
|
||
|
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* GCC for x86 has a tendency to use SSE in this loop. While it
|
||
|
* successfully avoids swapping (as MUL overwrites EAX and EDX), it
|
||
|
* slows it down because instead of free register swap shifts, it
|
||
|
* must use pshufd and punpckl/hd.
|
||
|
*
|
||
|
* To prevent this, we use this attribute to shut off SSE.
|
||
|
*/
|
||
|
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
|
||
|
__attribute__((__target__("no-sse")))
|
||
|
#endif
|
||
|
static XXH128_hash_t
|
||
|
XXH_mult64to128(U64 lhs, U64 rhs)
|
||
|
{
|
||
|
/*
|
||
|
* GCC/Clang __uint128_t method.
|
||
|
*
|
||
|
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
|
||
|
* This is usually the best way as it usually uses a native long 64-bit
|
||
|
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
|
||
|
*
|
||
|
* Usually.
|
||
|
*
|
||
|
* Despite being a 32-bit platform, Clang (and emscripten) define this
|
||
|
* type despite not having the arithmetic for it. This results in a
|
||
|
* laggy compiler builtin call which calculates a full 128-bit multiply.
|
||
|
* In that case it is best to use the portable one.
|
||
|
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
|
||
|
*/
|
||
|
#if defined(__GNUC__) && !defined(__wasm__) \
|
||
|
&& defined(__SIZEOF_INT128__) \
|
||
|
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
|
||
|
|
||
|
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
|
||
|
XXH128_hash_t const r128 = { (U64)(product), (U64)(product >> 64) };
|
||
|
return r128;
|
||
|
|
||
|
/*
|
||
|
* MSVC for x64's _umul128 method.
|
||
|
*
|
||
|
* U64 _umul128(U64 Multiplier, U64 Multiplicand, U64 *HighProduct);
|
||
|
*
|
||
|
* This compiles to single operand MUL on x64.
|
||
|
*/
|
||
|
#elif defined(_M_X64) || defined(_M_IA64)
|
||
|
|
||
|
#ifndef _MSC_VER
|
||
|
# pragma intrinsic(_umul128)
|
||
|
#endif
|
||
|
U64 product_high;
|
||
|
U64 const product_low = _umul128(lhs, rhs, &product_high);
|
||
|
XXH128_hash_t const r128 = { product_low, product_high };
|
||
|
return r128;
|
||
|
|
||
|
#else
|
||
|
/*
|
||
|
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
|
||
|
*
|
||
|
* This is a fast and simple grade school multiply, which is shown
|
||
|
* below with base 10 arithmetic instead of base 0x100000000.
|
||
|
*
|
||
|
* 9 3 // D2 lhs = 93
|
||
|
* x 7 5 // D2 rhs = 75
|
||
|
* ----------
|
||
|
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10)
|
||
|
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10)
|
||
|
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10)
|
||
|
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10)
|
||
|
* ---------
|
||
|
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21
|
||
|
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63
|
||
|
* ---------
|
||
|
* 6 9 7 5
|
||
|
*
|
||
|
* The reasons for adding the products like this are:
|
||
|
* 1. It avoids manual carry tracking. Just like how
|
||
|
* (9 * 9) + 9 + 9 = 99, the same applies with this for
|
||
|
* UINT64_MAX. This avoids a lot of complexity.
|
||
|
*
|
||
|
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
|
||
|
* instruction available in ARMv6+ A32/T32, which is shown below:
|
||
|
*
|
||
|
* void UMAAL(U32 *RdLo, U32 *RdHi, U32 Rn, U32 Rm)
|
||
|
* {
|
||
|
* U64 product = (U64)*RdLo * (U64)*RdHi + Rn + Rm;
|
||
|
* *RdLo = (U32)(product & 0xFFFFFFFF);
|
||
|
* *RdHi = (U32)(product >> 32);
|
||
|
* }
|
||
|
*
|
||
|
* This instruction was designed for efficient long multiplication,
|
||
|
* and allows this to be calculated in only 4 instructions which
|
||
|
* is comparable to some 64-bit ALUs.
|
||
|
*
|
||
|
* 3. It isn't terrible on other platforms. Usually this will be
|
||
|
* a couple of 32-bit ADD/ADCs.
|
||
|
*/
|
||
|
|
||
|
/* First calculate all of the cross products. */
|
||
|
U64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
|
||
|
U64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
|
||
|
U64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
|
||
|
U64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
|
||
|
|
||
|
/* Now add the products together. These will never overflow. */
|
||
|
U64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
|
||
|
U64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
|
||
|
U64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
|
||
|
|
||
|
XXH128_hash_t r128 = { lower, upper };
|
||
|
return r128;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We want to keep the attribute here because a target switch
|
||
|
* disables inlining.
|
||
|
*
|
||
|
* Does a 64-bit to 128-bit multiply, then XOR folds it.
|
||
|
* The reason for the separate function is to prevent passing
|
||
|
* too many structs around by value. This will hopefully inline
|
||
|
* the multiply, but we don't force it.
|
||
|
*/
|
||
|
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
|
||
|
__attribute__((__target__("no-sse")))
|
||
|
#endif
|
||
|
static U64
|
||
|
XXH3_mul128_fold64(U64 lhs, U64 rhs)
|
||
|
{
|
||
|
XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
|
||
|
return product.low64 ^ product.high64;
|
||
|
}
|
||
|
|
||
|
|
||
|
static XXH64_hash_t XXH3_avalanche(U64 h64)
|
||
|
{
|
||
|
h64 ^= h64 >> 37;
|
||
|
h64 *= PRIME64_3;
|
||
|
h64 ^= h64 >> 32;
|
||
|
return h64;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* ==========================================
|
||
|
* Short keys
|
||
|
* ========================================== */
|
||
|
|
||
|
XXH_FORCE_INLINE XXH64_hash_t
|
||
|
XXH3_len_1to3_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(data != NULL);
|
||
|
XXH_ASSERT(1 <= len && len <= 3);
|
||
|
XXH_ASSERT(keyPtr != NULL);
|
||
|
{ BYTE const c1 = ((const BYTE*)data)[0];
|
||
|
BYTE const c2 = ((const BYTE*)data)[len >> 1];
|
||
|
BYTE const c3 = ((const BYTE*)data)[len - 1];
|
||
|
U32 const combined = ((U32)c1) + (((U32)c2) << 8) + (((U32)c3) << 16) + (((U32)len) << 24);
|
||
|
U64 const keyed = (U64)combined ^ (XXH_readLE32(keyPtr) + seed);
|
||
|
U64 const mixed = keyed * PRIME64_1;
|
||
|
return XXH3_avalanche(mixed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH64_hash_t
|
||
|
XXH3_len_4to8_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(data != NULL);
|
||
|
XXH_ASSERT(keyPtr != NULL);
|
||
|
XXH_ASSERT(4 <= len && len <= 8);
|
||
|
{ U32 const in1 = XXH_readLE32(data);
|
||
|
U32 const in2 = XXH_readLE32((const BYTE*)data + len - 4);
|
||
|
U64 const in64 = in1 + ((U64)in2 << 32);
|
||
|
U64 const keyed = in64 ^ (XXH_readLE64(keyPtr) + seed);
|
||
|
U64 const mix64 = len + ((keyed ^ (keyed >> 51)) * PRIME32_1);
|
||
|
return XXH3_avalanche((mix64 ^ (mix64 >> 47)) * PRIME64_2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH64_hash_t
|
||
|
XXH3_len_9to16_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(data != NULL);
|
||
|
XXH_ASSERT(keyPtr != NULL);
|
||
|
XXH_ASSERT(9 <= len && len <= 16);
|
||
|
{ const U64* const key64 = (const U64*) keyPtr;
|
||
|
U64 const ll1 = XXH_readLE64(data) ^ (XXH_readLE64(key64) + seed);
|
||
|
U64 const ll2 = XXH_readLE64((const BYTE*)data + len - 8) ^ (XXH_readLE64(key64+1) - seed);
|
||
|
U64 const acc = len + (ll1 + ll2) + XXH3_mul128_fold64(ll1, ll2);
|
||
|
return XXH3_avalanche(acc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH64_hash_t
|
||
|
XXH3_len_0to16_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(len <= 16);
|
||
|
{ if (len > 8) return XXH3_len_9to16_64b(data, len, keyPtr, seed);
|
||
|
if (len >= 4) return XXH3_len_4to8_64b(data, len, keyPtr, seed);
|
||
|
if (len) return XXH3_len_1to3_64b(data, len, keyPtr, seed);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* === Long Keys === */
|
||
|
|
||
|
#define STRIPE_LEN 64
|
||
|
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
|
||
|
#define ACC_NB (STRIPE_LEN / sizeof(U64))
|
||
|
|
||
|
typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;
|
||
|
|
||
|
XXH_FORCE_INLINE void
|
||
|
XXH3_accumulate_512( void* XXH_RESTRICT acc,
|
||
|
const void* XXH_RESTRICT data,
|
||
|
const void* XXH_RESTRICT key,
|
||
|
XXH3_accWidth_e accWidth)
|
||
|
{
|
||
|
#if (XXH_VECTOR == XXH_AVX2)
|
||
|
|
||
|
XXH_ASSERT((((size_t)acc) & 31) == 0);
|
||
|
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
|
||
|
const __m256i* const xdata = (const __m256i *) data; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
|
||
|
const __m256i* const xkey = (const __m256i *) key; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
|
||
|
|
||
|
size_t i;
|
||
|
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
|
||
|
__m256i const d = _mm256_loadu_si256 (xdata+i);
|
||
|
__m256i const k = _mm256_loadu_si256 (xkey+i);
|
||
|
__m256i const dk = _mm256_xor_si256 (d,k); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
|
||
|
__m256i const mul = _mm256_mul_epu32 (dk, _mm256_shuffle_epi32 (dk, 0x31)); /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
|
||
|
if (accWidth == XXH3_acc_128bits) {
|
||
|
__m256i const dswap = _mm256_shuffle_epi32(d, _MM_SHUFFLE(1,0,3,2));
|
||
|
__m256i const add = _mm256_add_epi64(xacc[i], dswap);
|
||
|
xacc[i] = _mm256_add_epi64(mul, add);
|
||
|
} else { /* XXH3_acc_64bits */
|
||
|
__m256i const add = _mm256_add_epi64(xacc[i], d);
|
||
|
xacc[i] = _mm256_add_epi64(mul, add);
|
||
|
}
|
||
|
} }
|
||
|
|
||
|
#elif (XXH_VECTOR == XXH_SSE2)
|
||
|
|
||
|
XXH_ASSERT((((size_t)acc) & 15) == 0);
|
||
|
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc; /* presumed */
|
||
|
const __m128i* const xdata = (const __m128i *) data; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
|
||
|
const __m128i* const xkey = (const __m128i *) key; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
|
||
|
|
||
|
size_t i;
|
||
|
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
|
||
|
__m128i const d = _mm_loadu_si128 (xdata+i);
|
||
|
__m128i const k = _mm_loadu_si128 (xkey+i);
|
||
|
__m128i const dk = _mm_xor_si128 (d,k); /* uint32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
|
||
|
__m128i const mul = _mm_mul_epu32 (dk, _mm_shuffle_epi32 (dk, 0x31)); /* uint64 mul[2] = {dk0*dk1,dk2*dk3} */
|
||
|
if (accWidth == XXH3_acc_128bits) {
|
||
|
__m128i const dswap = _mm_shuffle_epi32(d, _MM_SHUFFLE(1,0,3,2));
|
||
|
__m128i const add = _mm_add_epi64(xacc[i], dswap);
|
||
|
xacc[i] = _mm_add_epi64(mul, add);
|
||
|
} else { /* XXH3_acc_64bits */
|
||
|
__m128i const add = _mm_add_epi64(xacc[i], d);
|
||
|
xacc[i] = _mm_add_epi64(mul, add);
|
||
|
}
|
||
|
} }
|
||
|
|
||
|
#elif (XXH_VECTOR == XXH_NEON)
|
||
|
|
||
|
XXH_ASSERT((((size_t)acc) & 15) == 0);
|
||
|
{
|
||
|
XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
|
||
|
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
|
||
|
uint32_t const* const xdata = (const uint32_t *) data;
|
||
|
uint32_t const* const xkey = (const uint32_t *) key;
|
||
|
|
||
|
size_t i;
|
||
|
for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
|
||
|
#if !defined(__aarch64__) && !defined(__arm64__) && defined(__GNUC__) /* ARM32-specific hack */
|
||
|
/* vzip on ARMv7 Clang generates a lot of vmovs (technically vorrs) without this.
|
||
|
* vzip on 32-bit ARM NEON will overwrite the original register, and I think that Clang
|
||
|
* assumes I don't want to destroy it and tries to make a copy. This slows down the code
|
||
|
* a lot.
|
||
|
* aarch64 not only uses an entirely different syntax, but it requires three
|
||
|
* instructions...
|
||
|
* ext v1.16B, v0.16B, #8 // select high bits because aarch64 can't address them directly
|
||
|
* zip1 v3.2s, v0.2s, v1.2s // first zip
|
||
|
* zip2 v2.2s, v0.2s, v1.2s // second zip
|
||
|
* ...to do what ARM does in one:
|
||
|
* vzip.32 d0, d1 // Interleave high and low bits and overwrite. */
|
||
|
|
||
|
/* data_vec = xdata[i]; */
|
||
|
uint32x4_t const data_vec = vld1q_u32(xdata + (i * 4));
|
||
|
/* key_vec = xkey[i]; */
|
||
|
uint32x4_t const key_vec = vld1q_u32(xkey + (i * 4));
|
||
|
/* data_key = data_vec ^ key_vec; */
|
||
|
uint32x4_t data_key;
|
||
|
|
||
|
if (accWidth == XXH3_acc_64bits) {
|
||
|
/* Add first to prevent register swaps */
|
||
|
/* xacc[i] += data_vec; */
|
||
|
xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u32(data_vec));
|
||
|
} else { /* XXH3_acc_128bits */
|
||
|
/* xacc[i] += swap(data_vec); */
|
||
|
/* can probably be optimized better */
|
||
|
uint64x2_t const data64 = vreinterpretq_u64_u32(data_vec);
|
||
|
uint64x2_t const swapped= vextq_u64(data64, data64, 1);
|
||
|
xacc[i] = vaddq_u64 (xacc[i], swapped);
|
||
|
}
|
||
|
|
||
|
data_key = veorq_u32(data_vec, key_vec);
|
||
|
|
||
|
/* Here's the magic. We use the quirkiness of vzip to shuffle data_key in place.
|
||
|
* shuffle: data_key[0, 1, 2, 3] = data_key[0, 2, 1, 3] */
|
||
|
__asm__("vzip.32 %e0, %f0" : "+w" (data_key));
|
||
|
/* xacc[i] += (uint64x2_t) data_key[0, 1] * (uint64x2_t) data_key[2, 3]; */
|
||
|
xacc[i] = vmlal_u32(xacc[i], vget_low_u32(data_key), vget_high_u32(data_key));
|
||
|
|
||
|
#else
|
||
|
/* On aarch64, vshrn/vmovn seems to be equivalent to, if not faster than, the vzip method. */
|
||
|
|
||
|
/* data_vec = xdata[i]; */
|
||
|
uint32x4_t const data_vec = vld1q_u32(xdata + (i * 4));
|
||
|
/* key_vec = xkey[i]; */
|
||
|
uint32x4_t const key_vec = vld1q_u32(xkey + (i * 4));
|
||
|
/* data_key = data_vec ^ key_vec; */
|
||
|
uint32x4_t const data_key = veorq_u32(data_vec, key_vec);
|
||
|
/* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); */
|
||
|
uint32x2_t const data_key_lo = vmovn_u64 (vreinterpretq_u64_u32(data_key));
|
||
|
/* data_key_hi = (uint32x2_t) (data_key >> 32); */
|
||
|
uint32x2_t const data_key_hi = vshrn_n_u64 (vreinterpretq_u64_u32(data_key), 32);
|
||
|
if (accWidth == XXH3_acc_64bits) {
|
||
|
/* xacc[i] += data_vec; */
|
||
|
xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u32(data_vec));
|
||
|
} else { /* XXH3_acc_128bits */
|
||
|
/* xacc[i] += swap(data_vec); */
|
||
|
uint64x2_t const data64 = vreinterpretq_u64_u32(data_vec);
|
||
|
uint64x2_t const swapped= vextq_u64(data64, data64, 1);
|
||
|
xacc[i] = vaddq_u64 (xacc[i], swapped);
|
||
|
}
|
||
|
/* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
|
||
|
xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#elif (XXH_VECTOR == XXH_VSX)
|
||
|
U64x2* const xacc = (U64x2*) acc; /* presumed aligned */
|
||
|
U64x2 const* const xdata = (U64x2 const*) data; /* no alignment restriction */
|
||
|
U64x2 const* const xkey = (U64x2 const*) key; /* no alignment restriction */
|
||
|
U64x2 const v32 = { 32, 32 };
|
||
|
#if XXH_VSX_BE
|
||
|
U8x16 const vXorSwap = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
|
||
|
0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
|
||
|
#endif
|
||
|
size_t i;
|
||
|
for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
|
||
|
/* data_vec = xdata[i]; */
|
||
|
/* key_vec = xkey[i]; */
|
||
|
#if XXH_VSX_BE
|
||
|
/* byteswap */
|
||
|
U64x2 const data_vec = XXH_vec_revb(vec_vsx_ld(0, xdata + i));
|
||
|
U64x2 const key_raw = vec_vsx_ld(0, xkey + i);
|
||
|
/* See comment above. data_key = data_vec ^ swap(xkey[i]); */
|
||
|
U64x2 const data_key = (U64x2)XXH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
|
||
|
#else
|
||
|
U64x2 const data_vec = vec_vsx_ld(0, xdata + i);
|
||
|
U64x2 const key_vec = vec_vsx_ld(0, xkey + i);
|
||
|
U64x2 const data_key = data_vec ^ key_vec;
|
||
|
#endif
|
||
|
/* shuffled = (data_key << 32) | (data_key >> 32); */
|
||
|
U32x4 const shuffled = (U32x4)vec_rl(data_key, v32);
|
||
|
/* product = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)shuffled & 0xFFFFFFFF); */
|
||
|
U64x2 const product = XXH_vec_mulo((U32x4)data_key, shuffled);
|
||
|
xacc[i] += product;
|
||
|
|
||
|
if (accWidth == XXH3_acc_64bits) {
|
||
|
xacc[i] += data_vec;
|
||
|
} else { /* XXH3_acc_128bits */
|
||
|
/* swap high and low halves */
|
||
|
U64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
|
||
|
xacc[i] += data_swapped;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else /* scalar variant of Accumulator - universal */
|
||
|
|
||
|
XXH_ALIGN(XXH_ACC_ALIGN) U64* const xacc = (U64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
|
||
|
const char* const xdata = (const char*) data; /* no alignment restriction */
|
||
|
const char* const xkey = (const char*) key; /* no alignment restriction */
|
||
|
size_t i;
|
||
|
XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
|
||
|
for (i=0; i < ACC_NB; i+=2) {
|
||
|
U64 const in1 = XXH_readLE64(xdata + 8*i);
|
||
|
U64 const in2 = XXH_readLE64(xdata + 8*(i+1));
|
||
|
U64 const key1 = XXH_readLE64(xkey + 8*i);
|
||
|
U64 const key2 = XXH_readLE64(xkey + 8*(i+1));
|
||
|
U64 const data_key1 = key1 ^ in1;
|
||
|
U64 const data_key2 = key2 ^ in2;
|
||
|
xacc[i] += XXH_mult32to64(data_key1 & 0xFFFFFFFF, data_key1 >> 32);
|
||
|
xacc[i+1] += XXH_mult32to64(data_key2 & 0xFFFFFFFF, data_key2 >> 32);
|
||
|
if (accWidth == XXH3_acc_128bits) {
|
||
|
xacc[i] += in2;
|
||
|
xacc[i+1] += in1;
|
||
|
} else { /* XXH3_acc_64bits */
|
||
|
xacc[i] += in1;
|
||
|
xacc[i+1] += in2;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE void
|
||
|
XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT key)
|
||
|
{
|
||
|
#if (XXH_VECTOR == XXH_AVX2)
|
||
|
|
||
|
XXH_ASSERT((((size_t)acc) & 31) == 0);
|
||
|
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
|
||
|
const __m256i* const xkey = (const __m256i *) key; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this argument type */
|
||
|
const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
|
||
|
|
||
|
size_t i;
|
||
|
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
|
||
|
__m256i data = xacc[i];
|
||
|
__m256i const shifted = _mm256_srli_epi64(data, 47);
|
||
|
data = _mm256_xor_si256(data, shifted);
|
||
|
|
||
|
{ __m256i const k = _mm256_loadu_si256 (xkey+i);
|
||
|
__m256i const dk = _mm256_xor_si256 (data, k);
|
||
|
|
||
|
__m256i const dk1 = _mm256_mul_epu32 (dk, prime32);
|
||
|
|
||
|
__m256i const d2 = _mm256_shuffle_epi32 (dk, 0x31);
|
||
|
__m256i const dk2 = _mm256_mul_epu32 (d2, prime32);
|
||
|
__m256i const dk2h= _mm256_slli_epi64 (dk2, 32);
|
||
|
|
||
|
xacc[i] = _mm256_add_epi64(dk1, dk2h);
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
#elif (XXH_VECTOR == XXH_SSE2)
|
||
|
|
||
|
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
|
||
|
const __m128i* const xkey = (const __m128i *) key; /* not really aligned, just for ptr arithmetic */
|
||
|
const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
|
||
|
|
||
|
size_t i;
|
||
|
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
|
||
|
__m128i data = xacc[i];
|
||
|
__m128i const shifted = _mm_srli_epi64(data, 47);
|
||
|
data = _mm_xor_si128(data, shifted);
|
||
|
|
||
|
{ __m128i const k = _mm_loadu_si128 (xkey+i);
|
||
|
__m128i const dk = _mm_xor_si128 (data,k);
|
||
|
|
||
|
__m128i const dk1 = _mm_mul_epu32 (dk, prime32);
|
||
|
|
||
|
__m128i const d2 = _mm_shuffle_epi32 (dk, 0x31);
|
||
|
__m128i const dk2 = _mm_mul_epu32 (d2, prime32);
|
||
|
__m128i const dk2h= _mm_slli_epi64(dk2, 32);
|
||
|
|
||
|
xacc[i] = _mm_add_epi64(dk1, dk2h);
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
#elif (XXH_VECTOR == XXH_NEON)
|
||
|
|
||
|
XXH_ASSERT((((size_t)acc) & 15) == 0);
|
||
|
|
||
|
{ uint64x2_t* const xacc = (uint64x2_t*) acc;
|
||
|
uint32_t const* const xkey = (uint32_t const*) key;
|
||
|
uint32x2_t const prime = vdup_n_u32 (PRIME32_1);
|
||
|
|
||
|
size_t i;
|
||
|
for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
|
||
|
/* data_vec = xacc[i] ^ (xacc[i] >> 47); */
|
||
|
uint64x2_t const acc_vec = xacc[i];
|
||
|
uint64x2_t const shifted = vshrq_n_u64 (acc_vec, 47);
|
||
|
uint64x2_t const data_vec = veorq_u64 (acc_vec, shifted);
|
||
|
|
||
|
/* key_vec = xkey[i]; */
|
||
|
uint32x4_t const key_vec = vld1q_u32 (xkey + (i * 4));
|
||
|
/* data_key = data_vec ^ key_vec; */
|
||
|
uint32x4_t const data_key = veorq_u32 (vreinterpretq_u32_u64(data_vec), key_vec);
|
||
|
/* shuffled = { data_key[0, 2], data_key[1, 3] }; */
|
||
|
uint32x2x2_t const shuffled = vzip_u32 (vget_low_u32(data_key), vget_high_u32(data_key));
|
||
|
|
||
|
/* data_key *= PRIME32_1 */
|
||
|
|
||
|
/* prod_hi = (data_key >> 32) * PRIME32_1; */
|
||
|
uint64x2_t const prod_hi = vmull_u32 (shuffled.val[1], prime);
|
||
|
/* xacc[i] = prod_hi << 32; */
|
||
|
xacc[i] = vshlq_n_u64(prod_hi, 32);
|
||
|
/* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
|
||
|
xacc[i] = vmlal_u32(xacc[i], shuffled.val[0], prime);
|
||
|
} }
|
||
|
|
||
|
#elif (XXH_VECTOR == XXH_VSX)
|
||
|
|
||
|
U64x2* const xacc = (U64x2*) acc;
|
||
|
const U64x2* const xkey = (const U64x2*) key;
|
||
|
/* constants */
|
||
|
U64x2 const v32 = { 32, 32 };
|
||
|
U64x2 const v47 = { 47, 47 };
|
||
|
U32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
|
||
|
size_t i;
|
||
|
#if XXH_VSX_BE
|
||
|
/* endian swap */
|
||
|
U8x16 const vXorSwap = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
|
||
|
0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
|
||
|
#endif
|
||
|
for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
|
||
|
U64x2 const acc_vec = xacc[i];
|
||
|
U64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
|
||
|
/* key_vec = xkey[i]; */
|
||
|
#if XXH_VSX_BE
|
||
|
/* swap bytes words */
|
||
|
U64x2 const key_raw = vec_vsx_ld(0, xkey + i);
|
||
|
U64x2 const data_key = (U64x2)XXH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
|
||
|
#else
|
||
|
U64x2 const key_vec = vec_vsx_ld(0, xkey + i);
|
||
|
U64x2 const data_key = data_vec ^ key_vec;
|
||
|
#endif
|
||
|
|
||
|
/* data_key *= PRIME32_1 */
|
||
|
|
||
|
/* prod_lo = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)prime & 0xFFFFFFFF); */
|
||
|
U64x2 const prod_even = XXH_vec_mule((U32x4)data_key, prime);
|
||
|
/* prod_hi = ((U64x2)data_key >> 32) * ((U64x2)prime >> 32); */
|
||
|
U64x2 const prod_odd = XXH_vec_mulo((U32x4)data_key, prime);
|
||
|
xacc[i] = prod_odd + (prod_even << v32);
|
||
|
}
|
||
|
|
||
|
#else /* scalar variant of Scrambler - universal */
|
||
|
|
||
|
XXH_ALIGN(XXH_ACC_ALIGN) U64* const xacc = (U64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
|
||
|
const char* const xkey = (const char*) key; /* no alignment restriction */
|
||
|
int i;
|
||
|
XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
|
||
|
|
||
|
for (i=0; i < (int)ACC_NB; i++) {
|
||
|
U64 const key64 = XXH_readLE64(xkey + 8*i);
|
||
|
U64 acc64 = xacc[i];
|
||
|
acc64 ^= acc64 >> 47;
|
||
|
acc64 ^= key64;
|
||
|
acc64 *= PRIME32_1;
|
||
|
xacc[i] = acc64;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* assumption : nbStripes will not overflow secret size */
|
||
|
XXH_FORCE_INLINE void
|
||
|
XXH3_accumulate( U64* XXH_RESTRICT acc,
|
||
|
const void* XXH_RESTRICT data,
|
||
|
const void* XXH_RESTRICT secret,
|
||
|
size_t nbStripes,
|
||
|
XXH3_accWidth_e accWidth)
|
||
|
{
|
||
|
size_t n;
|
||
|
for (n = 0; n < nbStripes; n++ ) {
|
||
|
XXH3_accumulate_512(acc,
|
||
|
(const char*)data + n*STRIPE_LEN,
|
||
|
(const char*)secret + n*XXH_SECRET_CONSUME_RATE,
|
||
|
accWidth);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* note : clang auto-vectorizes well in SS2 mode _if_ this function is `static`,
|
||
|
* and doesn't auto-vectorize it at all if it is `FORCE_INLINE`.
|
||
|
* However, it auto-vectorizes better AVX2 if it is `FORCE_INLINE`
|
||
|
* Pretty much every other modes and compilers prefer `FORCE_INLINE`.
|
||
|
*/
|
||
|
#if defined(__clang__) && (XXH_VECTOR==0) && !defined(__AVX2__)
|
||
|
static void
|
||
|
#else
|
||
|
XXH_FORCE_INLINE void
|
||
|
#endif
|
||
|
XXH3_hashLong_internal_loop( U64* XXH_RESTRICT acc,
|
||
|
const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize,
|
||
|
XXH3_accWidth_e accWidth)
|
||
|
{
|
||
|
size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
|
||
|
size_t const block_len = STRIPE_LEN * nb_rounds;
|
||
|
size_t const nb_blocks = len / block_len;
|
||
|
|
||
|
size_t n;
|
||
|
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
||
|
|
||
|
for (n = 0; n < nb_blocks; n++) {
|
||
|
XXH3_accumulate(acc, (const char*)data + n*block_len, secret, nb_rounds, accWidth);
|
||
|
XXH3_scrambleAcc(acc, (const char*)secret + secretSize - STRIPE_LEN);
|
||
|
}
|
||
|
|
||
|
/* last partial block */
|
||
|
XXH_ASSERT(len > STRIPE_LEN);
|
||
|
{ size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
|
||
|
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
|
||
|
XXH3_accumulate(acc, (const char*)data + nb_blocks*block_len, secret, nbStripes, accWidth);
|
||
|
|
||
|
/* last stripe */
|
||
|
if (len & (STRIPE_LEN - 1)) {
|
||
|
const void* const p = (const char*)data + len - STRIPE_LEN;
|
||
|
#define XXH_SECRET_LASTACC_START 7 /* do not align on 8, so that secret is different from scrambler */
|
||
|
XXH3_accumulate_512(acc, p, (const char*)secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth);
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE U64
|
||
|
XXH3_mix2Accs(const U64* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
|
||
|
{
|
||
|
const U64* const key64 = (const U64*)secret;
|
||
|
return XXH3_mul128_fold64(
|
||
|
acc[0] ^ XXH_readLE64(key64),
|
||
|
acc[1] ^ XXH_readLE64(key64+1) );
|
||
|
}
|
||
|
|
||
|
static XXH64_hash_t
|
||
|
XXH3_mergeAccs(const U64* XXH_RESTRICT acc, const void* XXH_RESTRICT secret, U64 start)
|
||
|
{
|
||
|
U64 result64 = start;
|
||
|
|
||
|
result64 += XXH3_mix2Accs(acc+0, (const char*)secret + 0);
|
||
|
result64 += XXH3_mix2Accs(acc+2, (const char*)secret + 16);
|
||
|
result64 += XXH3_mix2Accs(acc+4, (const char*)secret + 32);
|
||
|
result64 += XXH3_mix2Accs(acc+6, (const char*)secret + 48);
|
||
|
|
||
|
return XXH3_avalanche(result64);
|
||
|
}
|
||
|
|
||
|
#define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
|
||
|
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };
|
||
|
|
||
|
XXH_FORCE_INLINE XXH64_hash_t
|
||
|
XXH3_hashLong_internal(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize)
|
||
|
{
|
||
|
XXH_ALIGN(XXH_ACC_ALIGN) U64 acc[ACC_NB] = XXH3_INIT_ACC;
|
||
|
|
||
|
XXH3_hashLong_internal_loop(acc, data, len, secret, secretSize, XXH3_acc_64bits);
|
||
|
|
||
|
/* converge into final hash */
|
||
|
XXH_STATIC_ASSERT(sizeof(acc) == 64);
|
||
|
#define XXH_SECRET_MERGEACCS_START 11 /* do not align on 8, so that secret is different from accumulator */
|
||
|
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
|
||
|
return XXH3_mergeAccs(acc, (const char*)secret + XXH_SECRET_MERGEACCS_START, (U64)len * PRIME64_1);
|
||
|
}
|
||
|
|
||
|
|
||
|
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
||
|
XXH3_hashLong_64b_defaultSecret(const void* XXH_RESTRICT data, size_t len)
|
||
|
{
|
||
|
return XXH3_hashLong_internal(data, len, kSecret, sizeof(kSecret));
|
||
|
}
|
||
|
|
||
|
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
||
|
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize)
|
||
|
{
|
||
|
return XXH3_hashLong_internal(data, len, secret, secretSize);
|
||
|
}
|
||
|
|
||
|
|
||
|
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, U64 v64)
|
||
|
{
|
||
|
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
|
||
|
memcpy(dst, &v64, sizeof(v64));
|
||
|
}
|
||
|
|
||
|
/* XXH3_initKeySeed() :
|
||
|
* destination `customSecret` is presumed allocated and same size as `kSecret`.
|
||
|
*/
|
||
|
XXH_FORCE_INLINE void XXH3_initKeySeed(void* customSecret, U64 seed64)
|
||
|
{
|
||
|
char* const dst = (char*)customSecret;
|
||
|
const char* const src = (const char*)kSecret;
|
||
|
int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
|
||
|
int i;
|
||
|
|
||
|
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
|
||
|
|
||
|
for (i=0; i < nbRounds; i++) {
|
||
|
XXH_writeLE64(dst + 16*i, XXH_readLE64(src + 16*i) + seed64);
|
||
|
XXH_writeLE64(dst + 16*i + 8, XXH_readLE64(src + 16*i + 8) - seed64);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* XXH3_hashLong_64b_withSeed() :
|
||
|
* Generate a custom key,
|
||
|
* based on alteration of default kSecret with the seed,
|
||
|
* and then use this key for long mode hashing.
|
||
|
* This operation is decently fast but nonetheless costs a little bit of time.
|
||
|
* Try to avoid it whenever possible (typically when seed==0).
|
||
|
*/
|
||
|
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
||
|
XXH3_hashLong_64b_withSeed(const void* data, size_t len, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ALIGN(8) char secret[XXH_SECRET_DEFAULT_SIZE];
|
||
|
if (seed==0) return XXH3_hashLong_64b_defaultSecret(data, len);
|
||
|
XXH3_initKeySeed(secret, seed);
|
||
|
return XXH3_hashLong_internal(data, len, secret, sizeof(secret));
|
||
|
}
|
||
|
|
||
|
|
||
|
XXH_FORCE_INLINE U64 XXH3_mix16B(const void* XXH_RESTRICT data,
|
||
|
const void* XXH_RESTRICT key, U64 seed64)
|
||
|
{
|
||
|
const U64* const key64 = (const U64*)key;
|
||
|
U64 const ll1 = XXH_readLE64(data);
|
||
|
U64 const ll2 = XXH_readLE64((const BYTE*)data+8);
|
||
|
return XXH3_mul128_fold64(
|
||
|
ll1 ^ (XXH_readLE64(key64) + seed64),
|
||
|
ll2 ^ (XXH_readLE64(key64+1) - seed64) );
|
||
|
}
|
||
|
|
||
|
|
||
|
XXH_FORCE_INLINE XXH64_hash_t
|
||
|
XXH3_len_17to128_64b(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize,
|
||
|
XXH64_hash_t seed)
|
||
|
{
|
||
|
const BYTE* const p = (const BYTE*)data;
|
||
|
const char* const key = (const char*)secret;
|
||
|
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
||
|
XXH_ASSERT(16 < len && len <= 128);
|
||
|
|
||
|
{ U64 acc = len * PRIME64_1;
|
||
|
if (len > 32) {
|
||
|
if (len > 64) {
|
||
|
if (len > 96) {
|
||
|
acc += XXH3_mix16B(p+48, key+96, seed);
|
||
|
acc += XXH3_mix16B(p+len-64, key+112, seed);
|
||
|
}
|
||
|
acc += XXH3_mix16B(p+32, key+64, seed);
|
||
|
acc += XXH3_mix16B(p+len-48, key+80, seed);
|
||
|
}
|
||
|
acc += XXH3_mix16B(p+16, key+32, seed);
|
||
|
acc += XXH3_mix16B(p+len-32, key+48, seed);
|
||
|
}
|
||
|
acc += XXH3_mix16B(p+0, key+0, seed);
|
||
|
acc += XXH3_mix16B(p+len-16, key+16, seed);
|
||
|
|
||
|
return XXH3_avalanche(acc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define XXH3_MIDSIZE_MAX 240
|
||
|
|
||
|
XXH_NO_INLINE XXH64_hash_t
|
||
|
XXH3_len_129to240_64b(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize,
|
||
|
XXH64_hash_t seed)
|
||
|
{
|
||
|
const BYTE* const p = (const BYTE*)data;
|
||
|
const char* const key = (const char*)secret;
|
||
|
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
||
|
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
|
||
|
|
||
|
#define XXH3_MIDSIZE_STARTOFFSET 3
|
||
|
#define XXH3_MIDSIZE_LASTOFFSET 17
|
||
|
|
||
|
{ U64 acc = len * PRIME64_1;
|
||
|
int const nbRounds = (int)len / 16;
|
||
|
int i;
|
||
|
for (i=0; i<8; i++) {
|
||
|
acc += XXH3_mix16B(p+(16*i), key+(16*i), seed);
|
||
|
}
|
||
|
acc = XXH3_avalanche(acc);
|
||
|
XXH_ASSERT(nbRounds >= 8);
|
||
|
for (i=8 ; i < nbRounds; i++) {
|
||
|
acc += XXH3_mix16B(p+(16*i), key+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
|
||
|
}
|
||
|
/* last bytes */
|
||
|
acc += XXH3_mix16B(p + len - 16, key + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
|
||
|
return XXH3_avalanche(acc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* === Public entry point === */
|
||
|
|
||
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len)
|
||
|
{
|
||
|
if (len <= 16) return XXH3_len_0to16_64b(data, len, kSecret, 0);
|
||
|
if (len <= 128) return XXH3_len_17to128_64b(data, len, kSecret, sizeof(kSecret), 0);
|
||
|
if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b(data, len, kSecret, sizeof(kSecret), 0);
|
||
|
return XXH3_hashLong_64b_defaultSecret(data, len);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH64_hash_t
|
||
|
XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize)
|
||
|
{
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
||
|
/* if an action must be taken should `secret` conditions not be respected,
|
||
|
* it should be done here.
|
||
|
* For now, it's a contract pre-condition.
|
||
|
* Adding a check and a branch here would cost performance at every hash */
|
||
|
if (len <= 16) return XXH3_len_0to16_64b(data, len, secret, 0);
|
||
|
if (len <= 128) return XXH3_len_17to128_64b(data, len, secret, secretSize, 0);
|
||
|
if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b(data, len, secret, secretSize, 0);
|
||
|
return XXH3_hashLong_64b_withSecret(data, len, secret, secretSize);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH64_hash_t
|
||
|
XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed)
|
||
|
{
|
||
|
if (len <= 16) return XXH3_len_0to16_64b(data, len, kSecret, seed);
|
||
|
if (len <= 128) return XXH3_len_17to128_64b(data, len, kSecret, sizeof(kSecret), seed);
|
||
|
if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b(data, len, kSecret, sizeof(kSecret), seed);
|
||
|
return XXH3_hashLong_64b_withSeed(data, len, seed);
|
||
|
}
|
||
|
|
||
|
/* === XXH3 streaming === */
|
||
|
|
||
|
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
|
||
|
{
|
||
|
return (XXH3_state_t*)XXH_malloc(sizeof(XXH3_state_t));
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
|
||
|
{
|
||
|
XXH_free(statePtr);
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API void
|
||
|
XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
|
||
|
{
|
||
|
memcpy(dst_state, src_state, sizeof(*dst_state));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
|
||
|
XXH64_hash_t seed,
|
||
|
const void* secret, size_t secretSize)
|
||
|
{
|
||
|
XXH_ASSERT(statePtr != NULL);
|
||
|
memset(statePtr, 0, sizeof(*statePtr));
|
||
|
statePtr->acc[0] = PRIME32_3;
|
||
|
statePtr->acc[1] = PRIME64_1;
|
||
|
statePtr->acc[2] = PRIME64_2;
|
||
|
statePtr->acc[3] = PRIME64_3;
|
||
|
statePtr->acc[4] = PRIME64_4;
|
||
|
statePtr->acc[5] = PRIME32_2;
|
||
|
statePtr->acc[6] = PRIME64_5;
|
||
|
statePtr->acc[7] = PRIME32_1;
|
||
|
statePtr->seed = seed;
|
||
|
XXH_ASSERT(secret != NULL);
|
||
|
statePtr->secret = secret;
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
||
|
statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
|
||
|
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_64bits_reset(XXH3_state_t* statePtr)
|
||
|
{
|
||
|
if (statePtr == NULL) return XXH_ERROR;
|
||
|
XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
|
||
|
{
|
||
|
if (statePtr == NULL) return XXH_ERROR;
|
||
|
XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize);
|
||
|
if (secret == NULL) return XXH_ERROR;
|
||
|
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
if (statePtr == NULL) return XXH_ERROR;
|
||
|
XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
|
||
|
XXH3_initKeySeed(statePtr->customSecret, seed);
|
||
|
statePtr->secret = statePtr->customSecret;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE void
|
||
|
XXH3_consumeStripes( U64* acc,
|
||
|
XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock,
|
||
|
const void* data, size_t totalStripes,
|
||
|
const void* secret, size_t secretLimit,
|
||
|
XXH3_accWidth_e accWidth)
|
||
|
{
|
||
|
XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
|
||
|
if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
|
||
|
/* need a scrambling operation */
|
||
|
size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
|
||
|
XXH3_accumulate(acc, data, (const char*)secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth);
|
||
|
XXH3_scrambleAcc(acc, (const char*)secret + secretLimit);
|
||
|
XXH3_accumulate(acc, (const char*)data + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth);
|
||
|
*nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
|
||
|
} else {
|
||
|
XXH3_accumulate(acc, data, (const char*)secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth);
|
||
|
*nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH_errorcode
|
||
|
XXH3_update(XXH3_state_t* state, const void* input, size_t len, XXH3_accWidth_e accWidth)
|
||
|
{
|
||
|
if (input==NULL)
|
||
|
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
|
||
|
return XXH_OK;
|
||
|
#else
|
||
|
return XXH_ERROR;
|
||
|
#endif
|
||
|
|
||
|
{ const BYTE* p = (const BYTE*)input;
|
||
|
const BYTE* const bEnd = p + len;
|
||
|
|
||
|
state->totalLen += len;
|
||
|
|
||
|
if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
|
||
|
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
|
||
|
state->bufferedSize += (XXH32_hash_t)len;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
/* input now > XXH3_INTERNALBUFFER_SIZE */
|
||
|
|
||
|
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
|
||
|
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0); /* clean multiple */
|
||
|
|
||
|
if (state->bufferedSize) { /* some data within internal buffer: fill then consume it */
|
||
|
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
|
||
|
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
|
||
|
p += loadSize;
|
||
|
XXH3_consumeStripes(state->acc,
|
||
|
&state->nbStripesSoFar, state->nbStripesPerBlock,
|
||
|
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
|
||
|
state->secret, state->secretLimit,
|
||
|
accWidth);
|
||
|
state->bufferedSize = 0;
|
||
|
}
|
||
|
|
||
|
/* consume input by full buffer quantities */
|
||
|
if (p+XXH3_INTERNALBUFFER_SIZE <= bEnd) {
|
||
|
const BYTE* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
|
||
|
do {
|
||
|
XXH3_consumeStripes(state->acc,
|
||
|
&state->nbStripesSoFar, state->nbStripesPerBlock,
|
||
|
p, XXH3_INTERNALBUFFER_STRIPES,
|
||
|
state->secret, state->secretLimit,
|
||
|
accWidth);
|
||
|
p += XXH3_INTERNALBUFFER_SIZE;
|
||
|
} while (p<=limit);
|
||
|
}
|
||
|
|
||
|
if (p < bEnd) { /* some remaining input data : buffer it */
|
||
|
XXH_memcpy(state->buffer, p, (size_t)(bEnd-p));
|
||
|
state->bufferedSize = (XXH32_hash_t)(bEnd-p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
|
||
|
{
|
||
|
return XXH3_update(state, input, len, XXH3_acc_64bits);
|
||
|
}
|
||
|
|
||
|
|
||
|
XXH_FORCE_INLINE void
|
||
|
XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth)
|
||
|
{
|
||
|
memcpy(acc, state->acc, sizeof(state->acc)); /* digest locally, state remains unaltered, and can continue ingesting more data afterwards */
|
||
|
if (state->bufferedSize >= STRIPE_LEN) {
|
||
|
size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
|
||
|
XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
|
||
|
XXH3_consumeStripes(acc,
|
||
|
&nbStripesSoFar, state->nbStripesPerBlock,
|
||
|
state->buffer, totalNbStripes,
|
||
|
state->secret, state->secretLimit,
|
||
|
accWidth);
|
||
|
if (state->bufferedSize % STRIPE_LEN) { /* one last partial stripe */
|
||
|
XXH3_accumulate_512(acc,
|
||
|
state->buffer + state->bufferedSize - STRIPE_LEN,
|
||
|
(const char*)state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
|
||
|
accWidth);
|
||
|
}
|
||
|
} else { /* bufferedSize < STRIPE_LEN */
|
||
|
if (state->bufferedSize) { /* one last stripe */
|
||
|
char lastStripe[STRIPE_LEN];
|
||
|
size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
|
||
|
memcpy(lastStripe, (const char*)state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
|
||
|
memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
|
||
|
XXH3_accumulate_512(acc,
|
||
|
lastStripe,
|
||
|
(const char*)state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
|
||
|
accWidth);
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
|
||
|
{
|
||
|
if (state->totalLen > XXH3_MIDSIZE_MAX) {
|
||
|
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
|
||
|
XXH3_digest_long(acc, state, XXH3_acc_64bits);
|
||
|
return XXH3_mergeAccs(acc, (const char*)state->secret + XXH_SECRET_MERGEACCS_START, (U64)state->totalLen * PRIME64_1);
|
||
|
}
|
||
|
/* len <= XXH3_MIDSIZE_MAX : short code */
|
||
|
if (state->seed)
|
||
|
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
|
||
|
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
|
||
|
}
|
||
|
|
||
|
/* ==========================================
|
||
|
* XXH3 128 bits (=> XXH128)
|
||
|
* ========================================== */
|
||
|
|
||
|
XXH_FORCE_INLINE XXH128_hash_t
|
||
|
XXH3_len_1to3_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(data != NULL);
|
||
|
XXH_ASSERT(1 <= len && len <= 3);
|
||
|
XXH_ASSERT(keyPtr != NULL);
|
||
|
{ const U32* const key32 = (const U32*) keyPtr;
|
||
|
BYTE const c1 = ((const BYTE*)data)[0];
|
||
|
BYTE const c2 = ((const BYTE*)data)[len >> 1];
|
||
|
BYTE const c3 = ((const BYTE*)data)[len - 1];
|
||
|
U32 const combinedl = ((U32)c1) + (((U32)c2) << 8) + (((U32)c3) << 16) + (((U32)len) << 24);
|
||
|
U32 const combinedh = XXH_swap32(combinedl);
|
||
|
U64 const keyedl = (U64)combinedl ^ (XXH_readLE32(key32) + seed);
|
||
|
U64 const keyedh = (U64)combinedh ^ (XXH_readLE32(key32+1) - seed);
|
||
|
U64 const mixedl = keyedl * PRIME64_1;
|
||
|
U64 const mixedh = keyedh * PRIME64_5;
|
||
|
XXH128_hash_t const h128 = { XXH3_avalanche(mixedl) /*low64*/, XXH3_avalanche(mixedh) /*high64*/ };
|
||
|
return h128;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
XXH_FORCE_INLINE XXH128_hash_t
|
||
|
XXH3_len_4to8_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(data != NULL);
|
||
|
XXH_ASSERT(keyPtr != NULL);
|
||
|
XXH_ASSERT(4 <= len && len <= 8);
|
||
|
{ U32 const in1 = XXH_readLE32(data);
|
||
|
U32 const in2 = XXH_readLE32((const BYTE*)data + len - 4);
|
||
|
U64 const in64l = in1 + ((U64)in2 << 32);
|
||
|
U64 const in64h = XXH_swap64(in64l);
|
||
|
U64 const keyedl = in64l ^ (XXH_readLE64(keyPtr) + seed);
|
||
|
U64 const keyedh = in64h ^ (XXH_readLE64((const char*)keyPtr + 8) - seed);
|
||
|
U64 const mix64l1 = len + ((keyedl ^ (keyedl >> 51)) * PRIME32_1);
|
||
|
U64 const mix64l2 = (mix64l1 ^ (mix64l1 >> 47)) * PRIME64_2;
|
||
|
U64 const mix64h1 = ((keyedh ^ (keyedh >> 47)) * PRIME64_1) - len;
|
||
|
U64 const mix64h2 = (mix64h1 ^ (mix64h1 >> 43)) * PRIME64_4;
|
||
|
{ XXH128_hash_t const h128 = { XXH3_avalanche(mix64l2) /*low64*/, XXH3_avalanche(mix64h2) /*high64*/ };
|
||
|
return h128;
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH128_hash_t
|
||
|
XXH3_len_9to16_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(data != NULL);
|
||
|
XXH_ASSERT(keyPtr != NULL);
|
||
|
XXH_ASSERT(9 <= len && len <= 16);
|
||
|
{ const U64* const key64 = (const U64*) keyPtr;
|
||
|
U64 const ll1 = XXH_readLE64(data) ^ (XXH_readLE64(key64) + seed);
|
||
|
U64 const ll2 = XXH_readLE64((const BYTE*)data + len - 8) ^ (XXH_readLE64(key64+1) - seed);
|
||
|
U64 const inlow = ll1 ^ ll2;
|
||
|
XXH128_hash_t m128 = XXH_mult64to128(inlow, PRIME64_1);
|
||
|
U64 const lenContrib = (U64)(U32)len * (U64)PRIME32_5; m128.low64 += lenContrib;
|
||
|
m128.high64 += ll2 * PRIME64_1;
|
||
|
m128.low64 ^= (m128.high64 >> 32);
|
||
|
{ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
|
||
|
h128.high64 += m128.high64 * PRIME64_2;
|
||
|
h128.low64 = XXH3_avalanche(h128.low64);
|
||
|
h128.high64 = XXH3_avalanche(h128.high64);
|
||
|
return h128;
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
/* Assumption : `secret` size is >= 16
|
||
|
* Note : it should be >= XXH3_SECRET_SIZE_MIN anyway */
|
||
|
XXH_FORCE_INLINE XXH128_hash_t
|
||
|
XXH3_len_0to16_128b(const void* data, size_t len, const void* secret, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ASSERT(len <= 16);
|
||
|
{ if (len > 8) return XXH3_len_9to16_128b(data, len, secret, seed);
|
||
|
if (len >= 4) return XXH3_len_4to8_128b(data, len, secret, seed);
|
||
|
if (len) return XXH3_len_1to3_128b(data, len, secret, seed);
|
||
|
{ XXH128_hash_t const h128 = { 0, 0 };
|
||
|
return h128;
|
||
|
} }
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH128_hash_t
|
||
|
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize)
|
||
|
{
|
||
|
XXH_ALIGN(XXH_ACC_ALIGN) U64 acc[ACC_NB] = XXH3_INIT_ACC;
|
||
|
|
||
|
XXH3_hashLong_internal_loop(acc, data, len, secret, secretSize, XXH3_acc_128bits);
|
||
|
|
||
|
/* converge into final hash */
|
||
|
XXH_STATIC_ASSERT(sizeof(acc) == 64);
|
||
|
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
|
||
|
{ U64 const low64 = XXH3_mergeAccs(acc, (const char*)secret + XXH_SECRET_MERGEACCS_START, (U64)len * PRIME64_1);
|
||
|
U64 const high64 = XXH3_mergeAccs(acc, (const char*)secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((U64)len * PRIME64_2));
|
||
|
XXH128_hash_t const h128 = { low64, high64 };
|
||
|
return h128;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_NO_INLINE XXH128_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
||
|
XXH3_hashLong_128b_defaultSecret(const void* data, size_t len)
|
||
|
{
|
||
|
return XXH3_hashLong_128b_internal(data, len, kSecret, sizeof(kSecret));
|
||
|
}
|
||
|
|
||
|
XXH_NO_INLINE XXH128_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
||
|
XXH3_hashLong_128b_withSecret(const void* data, size_t len,
|
||
|
const void* secret, size_t secretSize)
|
||
|
{
|
||
|
return XXH3_hashLong_128b_internal(data, len, secret, secretSize);
|
||
|
}
|
||
|
|
||
|
XXH_NO_INLINE XXH128_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
||
|
XXH3_hashLong_128b_withSeed(const void* data, size_t len, XXH64_hash_t seed)
|
||
|
{
|
||
|
XXH_ALIGN(8) char secret[XXH_SECRET_DEFAULT_SIZE];
|
||
|
if (seed == 0) return XXH3_hashLong_128b_defaultSecret(data, len);
|
||
|
XXH3_initKeySeed(secret, seed);
|
||
|
return XXH3_hashLong_128b_internal(data, len, secret, sizeof(secret));
|
||
|
}
|
||
|
|
||
|
XXH_NO_INLINE XXH128_hash_t
|
||
|
XXH3_len_129to240_128b(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize,
|
||
|
XXH64_hash_t seed)
|
||
|
{
|
||
|
const BYTE* const p = (const BYTE*)data;
|
||
|
const char* const key = (const char*)secret;
|
||
|
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
||
|
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
|
||
|
|
||
|
{ U64 acc1 = len * PRIME64_1;
|
||
|
U64 acc2 = 0;
|
||
|
int const nbRounds = (int)len / 32;
|
||
|
int i;
|
||
|
for (i=0; i<4; i++) {
|
||
|
acc1 += XXH3_mix16B(p+(32*i), key+(32*i), seed);
|
||
|
acc2 += XXH3_mix16B(p+(32*i)+16, key+(32*i)+16, 0ULL-seed);
|
||
|
}
|
||
|
acc1 = XXH3_avalanche(acc1);
|
||
|
acc2 = XXH3_avalanche(acc2);
|
||
|
XXH_ASSERT(nbRounds >= 4);
|
||
|
for (i=4 ; i < nbRounds; i++) {
|
||
|
acc1 += XXH3_mix16B(p+(32*i) , key+(32*(i-4)) + XXH3_MIDSIZE_STARTOFFSET, seed);
|
||
|
acc2 += XXH3_mix16B(p+(32*i)+16, key+(32*(i-4))+16 + XXH3_MIDSIZE_STARTOFFSET, 0ULL-seed);
|
||
|
}
|
||
|
/* last bytes */
|
||
|
acc1 += XXH3_mix16B(p + len - 16, key + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET , seed);
|
||
|
acc2 += XXH3_mix16B(p + len - 32, key + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 0ULL-seed);
|
||
|
|
||
|
{ U64 const low64 = acc1 + acc2;
|
||
|
U64 const high64 = (acc1 * PRIME64_1) + (acc2 * PRIME64_4) + ((len - seed) * PRIME64_2);
|
||
|
XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
|
||
|
return h128;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_FORCE_INLINE XXH128_hash_t
|
||
|
XXH3_len_17to128_128b(const void* XXH_RESTRICT data, size_t len,
|
||
|
const void* XXH_RESTRICT secret, size_t secretSize,
|
||
|
XXH64_hash_t seed)
|
||
|
{
|
||
|
const BYTE* const p = (const BYTE*)data;
|
||
|
const char* const key = (const char*)secret;
|
||
|
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
|
||
|
XXH_ASSERT(16 < len && len <= 128);
|
||
|
|
||
|
{ U64 acc1 = len * PRIME64_1;
|
||
|
U64 acc2 = 0;
|
||
|
if (len > 32) {
|
||
|
if (len > 64) {
|
||
|
if (len > 96) {
|
||
|
acc1 += XXH3_mix16B(p+48, key+96, seed);
|
||
|
acc2 += XXH3_mix16B(p+len-64, key+112, seed);
|
||
|
}
|
||
|
acc1 += XXH3_mix16B(p+32, key+64, seed);
|
||
|
acc2 += XXH3_mix16B(p+len-48, key+80, seed);
|
||
|
}
|
||
|
acc1 += XXH3_mix16B(p+16, key+32, seed);
|
||
|
acc2 += XXH3_mix16B(p+len-32, key+48, seed);
|
||
|
}
|
||
|
acc1 += XXH3_mix16B(p+0, key+0, seed);
|
||
|
acc2 += XXH3_mix16B(p+len-16, key+16, seed);
|
||
|
|
||
|
{ U64 const low64 = acc1 + acc2;
|
||
|
U64 const high64 = (acc1 * PRIME64_1) + (acc2 * PRIME64_4) + ((len - seed) * PRIME64_2);
|
||
|
XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
|
||
|
return h128;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len)
|
||
|
{
|
||
|
if (len <= 16) return XXH3_len_0to16_128b(data, len, kSecret, 0);
|
||
|
if (len <= 128) return XXH3_len_17to128_128b(data, len, kSecret, sizeof(kSecret), 0);
|
||
|
if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b(data, len, kSecret, sizeof(kSecret), 0);
|
||
|
return XXH3_hashLong_128b_defaultSecret(data, len);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH128_hash_t
|
||
|
XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize)
|
||
|
{
|
||
|
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
|
||
|
/* if an action must be taken should `secret` conditions not be respected,
|
||
|
* it should be done here.
|
||
|
* For now, it's a contract pre-condition.
|
||
|
* Adding a check and a branch here would cost performance at every hash */
|
||
|
if (len <= 16) return XXH3_len_0to16_128b(data, len, secret, 0);
|
||
|
if (len <= 128) return XXH3_len_17to128_128b(data, len, secret, secretSize, 0);
|
||
|
if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b(data, len, secret, secretSize, 0);
|
||
|
return XXH3_hashLong_128b_withSecret(data, len, secret, secretSize);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH128_hash_t
|
||
|
XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed)
|
||
|
{
|
||
|
if (len <= 16) return XXH3_len_0to16_128b(data, len, kSecret, seed);
|
||
|
if (len <= 128) return XXH3_len_17to128_128b(data, len, kSecret, sizeof(kSecret), seed);
|
||
|
if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b(data, len, kSecret, sizeof(kSecret), seed);
|
||
|
return XXH3_hashLong_128b_withSeed(data, len, seed);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH128_hash_t
|
||
|
XXH128(const void* data, size_t len, XXH64_hash_t seed)
|
||
|
{
|
||
|
return XXH3_128bits_withSeed(data, len, seed);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* === XXH3 128-bit streaming === */
|
||
|
|
||
|
/* all the functions are actually the same as for 64-bit streaming variant,
|
||
|
just the reset one is different (different initial acc values for 0,5,6,7),
|
||
|
and near the end of the digest function */
|
||
|
|
||
|
static void
|
||
|
XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
|
||
|
XXH64_hash_t seed,
|
||
|
const void* secret, size_t secretSize)
|
||
|
{
|
||
|
XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_128bits_reset(XXH3_state_t* statePtr)
|
||
|
{
|
||
|
if (statePtr == NULL) return XXH_ERROR;
|
||
|
XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
|
||
|
{
|
||
|
if (statePtr == NULL) return XXH_ERROR;
|
||
|
XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize);
|
||
|
if (secret == NULL) return XXH_ERROR;
|
||
|
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
|
||
|
{
|
||
|
if (statePtr == NULL) return XXH_ERROR;
|
||
|
XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
|
||
|
XXH3_initKeySeed(statePtr->customSecret, seed);
|
||
|
statePtr->secret = statePtr->customSecret;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH_errorcode
|
||
|
XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
|
||
|
{
|
||
|
return XXH3_update(state, input, len, XXH3_acc_128bits);
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
|
||
|
{
|
||
|
if (state->totalLen > XXH3_MIDSIZE_MAX) {
|
||
|
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
|
||
|
XXH3_digest_long(acc, state, XXH3_acc_128bits);
|
||
|
XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
|
||
|
{ U64 const low64 = XXH3_mergeAccs(acc, (const char*)state->secret + XXH_SECRET_MERGEACCS_START, (U64)state->totalLen * PRIME64_1);
|
||
|
U64 const high64 = XXH3_mergeAccs(acc, (const char*)state->secret + state->secretLimit + STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((U64)state->totalLen * PRIME64_2));
|
||
|
XXH128_hash_t const h128 = { low64, high64 };
|
||
|
return h128;
|
||
|
}
|
||
|
}
|
||
|
/* len <= XXH3_MIDSIZE_MAX : short code */
|
||
|
if (state->seed)
|
||
|
return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
|
||
|
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
|
||
|
}
|
||
|
|
||
|
/* 128-bit utility functions */
|
||
|
|
||
|
#include <string.h> /* memcmp */
|
||
|
|
||
|
/* return : 1 is equal, 0 if different */
|
||
|
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
|
||
|
{
|
||
|
/* note : XXH128_hash_t is compact, it has no padding byte */
|
||
|
return !(memcmp(&h1, &h2, sizeof(h1)));
|
||
|
}
|
||
|
|
||
|
/* This prototype is compatible with stdlib's qsort().
|
||
|
* return : >0 if *h128_1 > *h128_2
|
||
|
* <0 if *h128_1 < *h128_2
|
||
|
* =0 if *h128_1 == *h128_2 */
|
||
|
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
|
||
|
{
|
||
|
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
|
||
|
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
|
||
|
int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
|
||
|
/* note : bets that, in most cases, hash values are different */
|
||
|
if (hcmp) return hcmp;
|
||
|
return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*====== Canonical representation ======*/
|
||
|
XXH_PUBLIC_API void
|
||
|
XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
|
||
|
{
|
||
|
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
|
||
|
if (XXH_CPU_LITTLE_ENDIAN) {
|
||
|
hash.high64 = XXH_swap64(hash.high64);
|
||
|
hash.low64 = XXH_swap64(hash.low64);
|
||
|
}
|
||
|
memcpy(dst, &hash.high64, sizeof(hash.high64));
|
||
|
memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
|
||
|
}
|
||
|
|
||
|
XXH_PUBLIC_API XXH128_hash_t
|
||
|
XXH128_hashFromCanonical(const XXH128_canonical_t* src)
|
||
|
{
|
||
|
XXH128_hash_t h;
|
||
|
h.high64 = XXH_readBE64(src);
|
||
|
h.low64 = XXH_readBE64(src->digest + 8);
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#endif /* XXH3_H */
|