mirror of
https://github.com/ZDoom/raze-gles.git
synced 2024-11-18 10:11:50 +00:00
1015 lines
31 KiB
C
1015 lines
31 KiB
C
|
/*
|
||
|
** $Id: lpcode.c,v 1.24 2016/09/15 17:46:13 roberto Exp $
|
||
|
** Copyright 2007, Lua.org & PUC-Rio (see 'lpeg.html' for license)
|
||
|
*/
|
||
|
|
||
|
#include <limits.h>
|
||
|
|
||
|
|
||
|
#include "lua.h"
|
||
|
#include "lauxlib.h"
|
||
|
|
||
|
#include "lptypes.h"
|
||
|
#include "lpcode.h"
|
||
|
|
||
|
|
||
|
/* signals a "no-instruction */
|
||
|
#define NOINST -1
|
||
|
|
||
|
|
||
|
|
||
|
static const Charset fullset_ =
|
||
|
{{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}};
|
||
|
|
||
|
static const Charset *fullset = &fullset_;
|
||
|
|
||
|
/*
|
||
|
** {======================================================
|
||
|
** Analysis and some optimizations
|
||
|
** =======================================================
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
** Check whether a charset is empty (returns IFail), singleton (IChar),
|
||
|
** full (IAny), or none of those (ISet). When singleton, '*c' returns
|
||
|
** which character it is. (When generic set, the set was the input,
|
||
|
** so there is no need to return it.)
|
||
|
*/
|
||
|
static Opcode charsettype (const byte *cs, int *c) {
|
||
|
int count = 0; /* number of characters in the set */
|
||
|
int i;
|
||
|
int candidate = -1; /* candidate position for the singleton char */
|
||
|
for (i = 0; i < CHARSETSIZE; i++) { /* for each byte */
|
||
|
int b = cs[i];
|
||
|
if (b == 0) { /* is byte empty? */
|
||
|
if (count > 1) /* was set neither empty nor singleton? */
|
||
|
return ISet; /* neither full nor empty nor singleton */
|
||
|
/* else set is still empty or singleton */
|
||
|
}
|
||
|
else if (b == 0xFF) { /* is byte full? */
|
||
|
if (count < (i * BITSPERCHAR)) /* was set not full? */
|
||
|
return ISet; /* neither full nor empty nor singleton */
|
||
|
else count += BITSPERCHAR; /* set is still full */
|
||
|
}
|
||
|
else if ((b & (b - 1)) == 0) { /* has byte only one bit? */
|
||
|
if (count > 0) /* was set not empty? */
|
||
|
return ISet; /* neither full nor empty nor singleton */
|
||
|
else { /* set has only one char till now; track it */
|
||
|
count++;
|
||
|
candidate = i;
|
||
|
}
|
||
|
}
|
||
|
else return ISet; /* byte is neither empty, full, nor singleton */
|
||
|
}
|
||
|
switch (count) {
|
||
|
case 0: return IFail; /* empty set */
|
||
|
case 1: { /* singleton; find character bit inside byte */
|
||
|
int b = cs[candidate];
|
||
|
*c = candidate * BITSPERCHAR;
|
||
|
if ((b & 0xF0) != 0) { *c += 4; b >>= 4; }
|
||
|
if ((b & 0x0C) != 0) { *c += 2; b >>= 2; }
|
||
|
if ((b & 0x02) != 0) { *c += 1; }
|
||
|
return IChar;
|
||
|
}
|
||
|
default: {
|
||
|
assert(count == CHARSETSIZE * BITSPERCHAR); /* full set */
|
||
|
return IAny;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** A few basic operations on Charsets
|
||
|
*/
|
||
|
static void cs_complement (Charset *cs) {
|
||
|
loopset(i, cs->cs[i] = ~cs->cs[i]);
|
||
|
}
|
||
|
|
||
|
static int cs_equal (const byte *cs1, const byte *cs2) {
|
||
|
loopset(i, if (cs1[i] != cs2[i]) return 0);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int cs_disjoint (const Charset *cs1, const Charset *cs2) {
|
||
|
loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;)
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** If 'tree' is a 'char' pattern (TSet, TChar, TAny), convert it into a
|
||
|
** charset and return 1; else return 0.
|
||
|
*/
|
||
|
int tocharset (TTree *tree, Charset *cs) {
|
||
|
switch (tree->tag) {
|
||
|
case TSet: { /* copy set */
|
||
|
loopset(i, cs->cs[i] = treebuffer(tree)[i]);
|
||
|
return 1;
|
||
|
}
|
||
|
case TChar: { /* only one char */
|
||
|
assert(0 <= tree->u.n && tree->u.n <= UCHAR_MAX);
|
||
|
loopset(i, cs->cs[i] = 0); /* erase all chars */
|
||
|
setchar(cs->cs, tree->u.n); /* add that one */
|
||
|
return 1;
|
||
|
}
|
||
|
case TAny: {
|
||
|
loopset(i, cs->cs[i] = 0xFF); /* add all characters to the set */
|
||
|
return 1;
|
||
|
}
|
||
|
default: return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Visit a TCall node taking care to stop recursion. If node not yet
|
||
|
** visited, return 'f(sib2(tree))', otherwise return 'def' (default
|
||
|
** value)
|
||
|
*/
|
||
|
static int callrecursive (TTree *tree, int f (TTree *t), int def) {
|
||
|
int key = tree->key;
|
||
|
assert(tree->tag == TCall);
|
||
|
assert(sib2(tree)->tag == TRule);
|
||
|
if (key == 0) /* node already visited? */
|
||
|
return def; /* return default value */
|
||
|
else { /* first visit */
|
||
|
int result;
|
||
|
tree->key = 0; /* mark call as already visited */
|
||
|
result = f(sib2(tree)); /* go to called rule */
|
||
|
tree->key = key; /* restore tree */
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Check whether a pattern tree has captures
|
||
|
*/
|
||
|
int hascaptures (TTree *tree) {
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TCapture: case TRunTime:
|
||
|
return 1;
|
||
|
case TCall:
|
||
|
return callrecursive(tree, hascaptures, 0);
|
||
|
case TRule: /* do not follow siblings */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TOpenCall: assert(0);
|
||
|
default: {
|
||
|
switch (numsiblings[tree->tag]) {
|
||
|
case 1: /* return hascaptures(sib1(tree)); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case 2:
|
||
|
if (hascaptures(sib1(tree)))
|
||
|
return 1;
|
||
|
/* else return hascaptures(sib2(tree)); */
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
default: assert(numsiblings[tree->tag] == 0); return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Checks how a pattern behaves regarding the empty string,
|
||
|
** in one of two different ways:
|
||
|
** A pattern is *nullable* if it can match without consuming any character;
|
||
|
** A pattern is *nofail* if it never fails for any string
|
||
|
** (including the empty string).
|
||
|
** The difference is only for predicates and run-time captures;
|
||
|
** for other patterns, the two properties are equivalent.
|
||
|
** (With predicates, &'a' is nullable but not nofail. Of course,
|
||
|
** nofail => nullable.)
|
||
|
** These functions are all convervative in the following way:
|
||
|
** p is nullable => nullable(p)
|
||
|
** nofail(p) => p cannot fail
|
||
|
** The function assumes that TOpenCall is not nullable;
|
||
|
** this will be checked again when the grammar is fixed.
|
||
|
** Run-time captures can do whatever they want, so the result
|
||
|
** is conservative.
|
||
|
*/
|
||
|
int checkaux (TTree *tree, int pred) {
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TChar: case TSet: case TAny:
|
||
|
case TFalse: case TOpenCall:
|
||
|
return 0; /* not nullable */
|
||
|
case TRep: case TTrue:
|
||
|
return 1; /* no fail */
|
||
|
case TNot: case TBehind: /* can match empty, but can fail */
|
||
|
if (pred == PEnofail) return 0;
|
||
|
else return 1; /* PEnullable */
|
||
|
case TAnd: /* can match empty; fail iff body does */
|
||
|
if (pred == PEnullable) return 1;
|
||
|
/* else return checkaux(sib1(tree), pred); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TRunTime: /* can fail; match empty iff body does */
|
||
|
if (pred == PEnofail) return 0;
|
||
|
/* else return checkaux(sib1(tree), pred); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TSeq:
|
||
|
if (!checkaux(sib1(tree), pred)) return 0;
|
||
|
/* else return checkaux(sib2(tree), pred); */
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
case TChoice:
|
||
|
if (checkaux(sib2(tree), pred)) return 1;
|
||
|
/* else return checkaux(sib1(tree), pred); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TCapture: case TGrammar: case TRule:
|
||
|
/* return checkaux(sib1(tree), pred); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TCall: /* return checkaux(sib2(tree), pred); */
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
default: assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** number of characters to match a pattern (or -1 if variable)
|
||
|
*/
|
||
|
int fixedlen (TTree *tree) {
|
||
|
int len = 0; /* to accumulate in tail calls */
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TChar: case TSet: case TAny:
|
||
|
return len + 1;
|
||
|
case TFalse: case TTrue: case TNot: case TAnd: case TBehind:
|
||
|
return len;
|
||
|
case TRep: case TRunTime: case TOpenCall:
|
||
|
return -1;
|
||
|
case TCapture: case TRule: case TGrammar:
|
||
|
/* return fixedlen(sib1(tree)); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TCall: {
|
||
|
int n1 = callrecursive(tree, fixedlen, -1);
|
||
|
if (n1 < 0)
|
||
|
return -1;
|
||
|
else
|
||
|
return len + n1;
|
||
|
}
|
||
|
case TSeq: {
|
||
|
int n1 = fixedlen(sib1(tree));
|
||
|
if (n1 < 0)
|
||
|
return -1;
|
||
|
/* else return fixedlen(sib2(tree)) + len; */
|
||
|
len += n1; tree = sib2(tree); goto tailcall;
|
||
|
}
|
||
|
case TChoice: {
|
||
|
int n1 = fixedlen(sib1(tree));
|
||
|
int n2 = fixedlen(sib2(tree));
|
||
|
if (n1 != n2 || n1 < 0)
|
||
|
return -1;
|
||
|
else
|
||
|
return len + n1;
|
||
|
}
|
||
|
default: assert(0); return 0;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Computes the 'first set' of a pattern.
|
||
|
** The result is a conservative aproximation:
|
||
|
** match p ax -> x (for some x) ==> a belongs to first(p)
|
||
|
** or
|
||
|
** a not in first(p) ==> match p ax -> fail (for all x)
|
||
|
**
|
||
|
** The set 'follow' is the first set of what follows the
|
||
|
** pattern (full set if nothing follows it).
|
||
|
**
|
||
|
** The function returns 0 when this resulting set can be used for
|
||
|
** test instructions that avoid the pattern altogether.
|
||
|
** A non-zero return can happen for two reasons:
|
||
|
** 1) match p '' -> '' ==> return has bit 1 set
|
||
|
** (tests cannot be used because they would always fail for an empty input);
|
||
|
** 2) there is a match-time capture ==> return has bit 2 set
|
||
|
** (optimizations should not bypass match-time captures).
|
||
|
*/
|
||
|
static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) {
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TChar: case TSet: case TAny: {
|
||
|
tocharset(tree, firstset);
|
||
|
return 0;
|
||
|
}
|
||
|
case TTrue: {
|
||
|
loopset(i, firstset->cs[i] = follow->cs[i]);
|
||
|
return 1; /* accepts the empty string */
|
||
|
}
|
||
|
case TFalse: {
|
||
|
loopset(i, firstset->cs[i] = 0);
|
||
|
return 0;
|
||
|
}
|
||
|
case TChoice: {
|
||
|
Charset csaux;
|
||
|
int e1 = getfirst(sib1(tree), follow, firstset);
|
||
|
int e2 = getfirst(sib2(tree), follow, &csaux);
|
||
|
loopset(i, firstset->cs[i] |= csaux.cs[i]);
|
||
|
return e1 | e2;
|
||
|
}
|
||
|
case TSeq: {
|
||
|
if (!nullable(sib1(tree))) {
|
||
|
/* when p1 is not nullable, p2 has nothing to contribute;
|
||
|
return getfirst(sib1(tree), fullset, firstset); */
|
||
|
tree = sib1(tree); follow = fullset; goto tailcall;
|
||
|
}
|
||
|
else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */
|
||
|
Charset csaux;
|
||
|
int e2 = getfirst(sib2(tree), follow, &csaux);
|
||
|
int e1 = getfirst(sib1(tree), &csaux, firstset);
|
||
|
if (e1 == 0) return 0; /* 'e1' ensures that first can be used */
|
||
|
else if ((e1 | e2) & 2) /* one of the children has a matchtime? */
|
||
|
return 2; /* pattern has a matchtime capture */
|
||
|
else return e2; /* else depends on 'e2' */
|
||
|
}
|
||
|
}
|
||
|
case TRep: {
|
||
|
getfirst(sib1(tree), follow, firstset);
|
||
|
loopset(i, firstset->cs[i] |= follow->cs[i]);
|
||
|
return 1; /* accept the empty string */
|
||
|
}
|
||
|
case TCapture: case TGrammar: case TRule: {
|
||
|
/* return getfirst(sib1(tree), follow, firstset); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
}
|
||
|
case TRunTime: { /* function invalidates any follow info. */
|
||
|
int e = getfirst(sib1(tree), fullset, firstset);
|
||
|
if (e) return 2; /* function is not "protected"? */
|
||
|
else return 0; /* pattern inside capture ensures first can be used */
|
||
|
}
|
||
|
case TCall: {
|
||
|
/* return getfirst(sib2(tree), follow, firstset); */
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
}
|
||
|
case TAnd: {
|
||
|
int e = getfirst(sib1(tree), follow, firstset);
|
||
|
loopset(i, firstset->cs[i] &= follow->cs[i]);
|
||
|
return e;
|
||
|
}
|
||
|
case TNot: {
|
||
|
if (tocharset(sib1(tree), firstset)) {
|
||
|
cs_complement(firstset);
|
||
|
return 1;
|
||
|
}
|
||
|
/* else go through */
|
||
|
}
|
||
|
case TBehind: { /* instruction gives no new information */
|
||
|
/* call 'getfirst' only to check for math-time captures */
|
||
|
int e = getfirst(sib1(tree), follow, firstset);
|
||
|
loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */
|
||
|
return e | 1; /* always can accept the empty string */
|
||
|
}
|
||
|
default: assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** If 'headfail(tree)' true, then 'tree' can fail only depending on the
|
||
|
** next character of the subject.
|
||
|
*/
|
||
|
static int headfail (TTree *tree) {
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TChar: case TSet: case TAny: case TFalse:
|
||
|
return 1;
|
||
|
case TTrue: case TRep: case TRunTime: case TNot:
|
||
|
case TBehind:
|
||
|
return 0;
|
||
|
case TCapture: case TGrammar: case TRule: case TAnd:
|
||
|
tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */
|
||
|
case TCall:
|
||
|
tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */
|
||
|
case TSeq:
|
||
|
if (!nofail(sib2(tree))) return 0;
|
||
|
/* else return headfail(sib1(tree)); */
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TChoice:
|
||
|
if (!headfail(sib1(tree))) return 0;
|
||
|
/* else return headfail(sib2(tree)); */
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
default: assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Check whether the code generation for the given tree can benefit
|
||
|
** from a follow set (to avoid computing the follow set when it is
|
||
|
** not needed)
|
||
|
*/
|
||
|
static int needfollow (TTree *tree) {
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TChar: case TSet: case TAny:
|
||
|
case TFalse: case TTrue: case TAnd: case TNot:
|
||
|
case TRunTime: case TGrammar: case TCall: case TBehind:
|
||
|
return 0;
|
||
|
case TChoice: case TRep:
|
||
|
return 1;
|
||
|
case TCapture:
|
||
|
tree = sib1(tree); goto tailcall;
|
||
|
case TSeq:
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
default: assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* }====================================================== */
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
** {======================================================
|
||
|
** Code generation
|
||
|
** =======================================================
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
** size of an instruction
|
||
|
*/
|
||
|
int sizei (const Instruction *i) {
|
||
|
switch((Opcode)i->i.code) {
|
||
|
case ISet: case ISpan: return CHARSETINSTSIZE;
|
||
|
case ITestSet: return CHARSETINSTSIZE + 1;
|
||
|
case ITestChar: case ITestAny: case IChoice: case IJmp: case ICall:
|
||
|
case IOpenCall: case ICommit: case IPartialCommit: case IBackCommit:
|
||
|
return 2;
|
||
|
default: return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** state for the compiler
|
||
|
*/
|
||
|
typedef struct CompileState {
|
||
|
Pattern *p; /* pattern being compiled */
|
||
|
int ncode; /* next position in p->code to be filled */
|
||
|
lua_State *L;
|
||
|
} CompileState;
|
||
|
|
||
|
|
||
|
/*
|
||
|
** code generation is recursive; 'opt' indicates that the code is being
|
||
|
** generated as the last thing inside an optional pattern (so, if that
|
||
|
** code is optional too, it can reuse the 'IChoice' already in place for
|
||
|
** the outer pattern). 'tt' points to a previous test protecting this
|
||
|
** code (or NOINST). 'fl' is the follow set of the pattern.
|
||
|
*/
|
||
|
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
|
||
|
const Charset *fl);
|
||
|
|
||
|
|
||
|
void realloccode (lua_State *L, Pattern *p, int nsize) {
|
||
|
void *ud;
|
||
|
lua_Alloc f = lua_getallocf(L, &ud);
|
||
|
void *newblock = f(ud, p->code, p->codesize * sizeof(Instruction),
|
||
|
nsize * sizeof(Instruction));
|
||
|
if (newblock == NULL && nsize > 0)
|
||
|
luaL_error(L, "not enough memory");
|
||
|
p->code = (Instruction *)newblock;
|
||
|
p->codesize = nsize;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int nextinstruction (CompileState *compst) {
|
||
|
int size = compst->p->codesize;
|
||
|
if (compst->ncode >= size)
|
||
|
realloccode(compst->L, compst->p, size * 2);
|
||
|
return compst->ncode++;
|
||
|
}
|
||
|
|
||
|
|
||
|
#define getinstr(cs,i) ((cs)->p->code[i])
|
||
|
|
||
|
|
||
|
static int addinstruction (CompileState *compst, Opcode op, int aux) {
|
||
|
int i = nextinstruction(compst);
|
||
|
getinstr(compst, i).i.code = op;
|
||
|
getinstr(compst, i).i.aux = aux;
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Add an instruction followed by space for an offset (to be set later)
|
||
|
*/
|
||
|
static int addoffsetinst (CompileState *compst, Opcode op) {
|
||
|
int i = addinstruction(compst, op, 0); /* instruction */
|
||
|
addinstruction(compst, (Opcode)0, 0); /* open space for offset */
|
||
|
assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2);
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Set the offset of an instruction
|
||
|
*/
|
||
|
static void setoffset (CompileState *compst, int instruction, int offset) {
|
||
|
getinstr(compst, instruction + 1).offset = offset;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Add a capture instruction:
|
||
|
** 'op' is the capture instruction; 'cap' the capture kind;
|
||
|
** 'key' the key into ktable; 'aux' is the optional capture offset
|
||
|
**
|
||
|
*/
|
||
|
static int addinstcap (CompileState *compst, Opcode op, int cap, int key,
|
||
|
int aux) {
|
||
|
int i = addinstruction(compst, op, joinkindoff(cap, aux));
|
||
|
getinstr(compst, i).i.key = key;
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
#define gethere(compst) ((compst)->ncode)
|
||
|
|
||
|
#define target(code,i) ((i) + code[i + 1].offset)
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Patch 'instruction' to jump to 'target'
|
||
|
*/
|
||
|
static void jumptothere (CompileState *compst, int instruction, int target) {
|
||
|
if (instruction >= 0)
|
||
|
setoffset(compst, instruction, target - instruction);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Patch 'instruction' to jump to current position
|
||
|
*/
|
||
|
static void jumptohere (CompileState *compst, int instruction) {
|
||
|
jumptothere(compst, instruction, gethere(compst));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Code an IChar instruction, or IAny if there is an equivalent
|
||
|
** test dominating it
|
||
|
*/
|
||
|
static void codechar (CompileState *compst, int c, int tt) {
|
||
|
if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar &&
|
||
|
getinstr(compst, tt).i.aux == c)
|
||
|
addinstruction(compst, IAny, 0);
|
||
|
else
|
||
|
addinstruction(compst, IChar, c);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Add a charset posfix to an instruction
|
||
|
*/
|
||
|
static void addcharset (CompileState *compst, const byte *cs) {
|
||
|
int p = gethere(compst);
|
||
|
int i;
|
||
|
for (i = 0; i < (int)CHARSETINSTSIZE - 1; i++)
|
||
|
nextinstruction(compst); /* space for buffer */
|
||
|
/* fill buffer with charset */
|
||
|
loopset(j, getinstr(compst, p).buff[j] = cs[j]);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** code a char set, optimizing unit sets for IChar, "complete"
|
||
|
** sets for IAny, and empty sets for IFail; also use an IAny
|
||
|
** when instruction is dominated by an equivalent test.
|
||
|
*/
|
||
|
static void codecharset (CompileState *compst, const byte *cs, int tt) {
|
||
|
int c = 0; /* (=) to avoid warnings */
|
||
|
Opcode op = charsettype(cs, &c);
|
||
|
switch (op) {
|
||
|
case IChar: codechar(compst, c, tt); break;
|
||
|
case ISet: { /* non-trivial set? */
|
||
|
if (tt >= 0 && getinstr(compst, tt).i.code == ITestSet &&
|
||
|
cs_equal(cs, getinstr(compst, tt + 2).buff))
|
||
|
addinstruction(compst, IAny, 0);
|
||
|
else {
|
||
|
addinstruction(compst, ISet, 0);
|
||
|
addcharset(compst, cs);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
default: addinstruction(compst, op, c); break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** code a test set, optimizing unit sets for ITestChar, "complete"
|
||
|
** sets for ITestAny, and empty sets for IJmp (always fails).
|
||
|
** 'e' is true iff test should accept the empty string. (Test
|
||
|
** instructions in the current VM never accept the empty string.)
|
||
|
*/
|
||
|
static int codetestset (CompileState *compst, Charset *cs, int e) {
|
||
|
if (e) return NOINST; /* no test */
|
||
|
else {
|
||
|
int c = 0;
|
||
|
Opcode op = charsettype(cs->cs, &c);
|
||
|
switch (op) {
|
||
|
case IFail: return addoffsetinst(compst, IJmp); /* always jump */
|
||
|
case IAny: return addoffsetinst(compst, ITestAny);
|
||
|
case IChar: {
|
||
|
int i = addoffsetinst(compst, ITestChar);
|
||
|
getinstr(compst, i).i.aux = c;
|
||
|
return i;
|
||
|
}
|
||
|
case ISet: {
|
||
|
int i = addoffsetinst(compst, ITestSet);
|
||
|
addcharset(compst, cs->cs);
|
||
|
return i;
|
||
|
}
|
||
|
default: assert(0); return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Find the final destination of a sequence of jumps
|
||
|
*/
|
||
|
static int finaltarget (Instruction *code, int i) {
|
||
|
while (code[i].i.code == IJmp)
|
||
|
i = target(code, i);
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** final label (after traversing any jumps)
|
||
|
*/
|
||
|
static int finallabel (Instruction *code, int i) {
|
||
|
return finaltarget(code, target(code, i));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** <behind(p)> == behind n; <p> (where n = fixedlen(p))
|
||
|
*/
|
||
|
static void codebehind (CompileState *compst, TTree *tree) {
|
||
|
if (tree->u.n > 0)
|
||
|
addinstruction(compst, IBehind, tree->u.n);
|
||
|
codegen(compst, sib1(tree), 0, NOINST, fullset);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Choice; optimizations:
|
||
|
** - when p1 is headfail or
|
||
|
** when first(p1) and first(p2) are disjoint, than
|
||
|
** a character not in first(p1) cannot go to p1, and a character
|
||
|
** in first(p1) cannot go to p2 (at it is not in first(p2)).
|
||
|
** (The optimization is not valid if p1 accepts the empty string,
|
||
|
** as then there is no character at all...)
|
||
|
** - when p2 is empty and opt is true; a IPartialCommit can reuse
|
||
|
** the Choice already active in the stack.
|
||
|
*/
|
||
|
static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt,
|
||
|
const Charset *fl) {
|
||
|
int emptyp2 = (p2->tag == TTrue);
|
||
|
Charset cs1, cs2;
|
||
|
int e1 = getfirst(p1, fullset, &cs1);
|
||
|
if (headfail(p1) ||
|
||
|
(!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) {
|
||
|
/* <p1 / p2> == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */
|
||
|
int test = codetestset(compst, &cs1, 0);
|
||
|
int jmp = NOINST;
|
||
|
codegen(compst, p1, 0, test, fl);
|
||
|
if (!emptyp2)
|
||
|
jmp = addoffsetinst(compst, IJmp);
|
||
|
jumptohere(compst, test);
|
||
|
codegen(compst, p2, opt, NOINST, fl);
|
||
|
jumptohere(compst, jmp);
|
||
|
}
|
||
|
else if (opt && emptyp2) {
|
||
|
/* p1? == IPartialCommit; p1 */
|
||
|
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
|
||
|
codegen(compst, p1, 1, NOINST, fullset);
|
||
|
}
|
||
|
else {
|
||
|
/* <p1 / p2> ==
|
||
|
test(first(p1)) -> L1; choice L1; <p1>; commit L2; L1: <p2>; L2: */
|
||
|
int pcommit;
|
||
|
int test = codetestset(compst, &cs1, e1);
|
||
|
int pchoice = addoffsetinst(compst, IChoice);
|
||
|
codegen(compst, p1, emptyp2, test, fullset);
|
||
|
pcommit = addoffsetinst(compst, ICommit);
|
||
|
jumptohere(compst, pchoice);
|
||
|
jumptohere(compst, test);
|
||
|
codegen(compst, p2, opt, NOINST, fl);
|
||
|
jumptohere(compst, pcommit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** And predicate
|
||
|
** optimization: fixedlen(p) = n ==> <&p> == <p>; behind n
|
||
|
** (valid only when 'p' has no captures)
|
||
|
*/
|
||
|
static void codeand (CompileState *compst, TTree *tree, int tt) {
|
||
|
int n = fixedlen(tree);
|
||
|
if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) {
|
||
|
codegen(compst, tree, 0, tt, fullset);
|
||
|
if (n > 0)
|
||
|
addinstruction(compst, IBehind, n);
|
||
|
}
|
||
|
else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */
|
||
|
int pcommit;
|
||
|
int pchoice = addoffsetinst(compst, IChoice);
|
||
|
codegen(compst, tree, 0, tt, fullset);
|
||
|
pcommit = addoffsetinst(compst, IBackCommit);
|
||
|
jumptohere(compst, pchoice);
|
||
|
addinstruction(compst, IFail, 0);
|
||
|
jumptohere(compst, pcommit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Captures: if pattern has fixed (and not too big) length, and it
|
||
|
** has no nested captures, use a single IFullCapture instruction
|
||
|
** after the match; otherwise, enclose the pattern with OpenCapture -
|
||
|
** CloseCapture.
|
||
|
*/
|
||
|
static void codecapture (CompileState *compst, TTree *tree, int tt,
|
||
|
const Charset *fl) {
|
||
|
int len = fixedlen(sib1(tree));
|
||
|
if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) {
|
||
|
codegen(compst, sib1(tree), 0, tt, fl);
|
||
|
addinstcap(compst, IFullCapture, tree->cap, tree->key, len);
|
||
|
}
|
||
|
else {
|
||
|
addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0);
|
||
|
codegen(compst, sib1(tree), 0, tt, fl);
|
||
|
addinstcap(compst, ICloseCapture, Cclose, 0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void coderuntime (CompileState *compst, TTree *tree, int tt) {
|
||
|
addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0);
|
||
|
codegen(compst, sib1(tree), 0, tt, fullset);
|
||
|
addinstcap(compst, ICloseRunTime, Cclose, 0, 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Repetion; optimizations:
|
||
|
** When pattern is a charset, can use special instruction ISpan.
|
||
|
** When pattern is head fail, or if it starts with characters that
|
||
|
** are disjoint from what follows the repetions, a simple test
|
||
|
** is enough (a fail inside the repetition would backtrack to fail
|
||
|
** again in the following pattern, so there is no need for a choice).
|
||
|
** When 'opt' is true, the repetion can reuse the Choice already
|
||
|
** active in the stack.
|
||
|
*/
|
||
|
static void coderep (CompileState *compst, TTree *tree, int opt,
|
||
|
const Charset *fl) {
|
||
|
Charset st;
|
||
|
if (tocharset(tree, &st)) {
|
||
|
addinstruction(compst, ISpan, 0);
|
||
|
addcharset(compst, st.cs);
|
||
|
}
|
||
|
else {
|
||
|
int e1 = getfirst(tree, fullset, &st);
|
||
|
if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) {
|
||
|
/* L1: test (fail(p1)) -> L2; <p>; jmp L1; L2: */
|
||
|
int jmp;
|
||
|
int test = codetestset(compst, &st, 0);
|
||
|
codegen(compst, tree, 0, test, fullset);
|
||
|
jmp = addoffsetinst(compst, IJmp);
|
||
|
jumptohere(compst, test);
|
||
|
jumptothere(compst, jmp, test);
|
||
|
}
|
||
|
else {
|
||
|
/* test(fail(p1)) -> L2; choice L2; L1: <p>; partialcommit L1; L2: */
|
||
|
/* or (if 'opt'): partialcommit L1; L1: <p>; partialcommit L1; */
|
||
|
int commit, l2;
|
||
|
int test = codetestset(compst, &st, e1);
|
||
|
int pchoice = NOINST;
|
||
|
if (opt)
|
||
|
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
|
||
|
else
|
||
|
pchoice = addoffsetinst(compst, IChoice);
|
||
|
l2 = gethere(compst);
|
||
|
codegen(compst, tree, 0, NOINST, fullset);
|
||
|
commit = addoffsetinst(compst, IPartialCommit);
|
||
|
jumptothere(compst, commit, l2);
|
||
|
jumptohere(compst, pchoice);
|
||
|
jumptohere(compst, test);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Not predicate; optimizations:
|
||
|
** In any case, if first test fails, 'not' succeeds, so it can jump to
|
||
|
** the end. If pattern is headfail, that is all (it cannot fail
|
||
|
** in other parts); this case includes 'not' of simple sets. Otherwise,
|
||
|
** use the default code (a choice plus a failtwice).
|
||
|
*/
|
||
|
static void codenot (CompileState *compst, TTree *tree) {
|
||
|
Charset st;
|
||
|
int e = getfirst(tree, fullset, &st);
|
||
|
int test = codetestset(compst, &st, e);
|
||
|
if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */
|
||
|
addinstruction(compst, IFail, 0);
|
||
|
else {
|
||
|
/* test(fail(p))-> L1; choice L1; <p>; failtwice; L1: */
|
||
|
int pchoice = addoffsetinst(compst, IChoice);
|
||
|
codegen(compst, tree, 0, NOINST, fullset);
|
||
|
addinstruction(compst, IFailTwice, 0);
|
||
|
jumptohere(compst, pchoice);
|
||
|
}
|
||
|
jumptohere(compst, test);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** change open calls to calls, using list 'positions' to find
|
||
|
** correct offsets; also optimize tail calls
|
||
|
*/
|
||
|
static void correctcalls (CompileState *compst, int *positions,
|
||
|
int from, int to) {
|
||
|
int i;
|
||
|
Instruction *code = compst->p->code;
|
||
|
for (i = from; i < to; i += sizei(&code[i])) {
|
||
|
if (code[i].i.code == IOpenCall) {
|
||
|
int n = code[i].i.key; /* rule number */
|
||
|
int rule = positions[n]; /* rule position */
|
||
|
assert(rule == from || code[rule - 1].i.code == IRet);
|
||
|
if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */
|
||
|
code[i].i.code = IJmp; /* tail call */
|
||
|
else
|
||
|
code[i].i.code = ICall;
|
||
|
jumptothere(compst, i, rule); /* call jumps to respective rule */
|
||
|
}
|
||
|
}
|
||
|
assert(i == to);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Code for a grammar:
|
||
|
** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2:
|
||
|
*/
|
||
|
static void codegrammar (CompileState *compst, TTree *grammar) {
|
||
|
int positions[MAXRULES];
|
||
|
int rulenumber = 0;
|
||
|
TTree *rule;
|
||
|
int firstcall = addoffsetinst(compst, ICall); /* call initial rule */
|
||
|
int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */
|
||
|
int start = gethere(compst); /* here starts the initial rule */
|
||
|
jumptohere(compst, firstcall);
|
||
|
for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
|
||
|
positions[rulenumber++] = gethere(compst); /* save rule position */
|
||
|
codegen(compst, sib1(rule), 0, NOINST, fullset); /* code rule */
|
||
|
addinstruction(compst, IRet, 0);
|
||
|
}
|
||
|
assert(rule->tag == TTrue);
|
||
|
jumptohere(compst, jumptoend);
|
||
|
correctcalls(compst, positions, start, gethere(compst));
|
||
|
}
|
||
|
|
||
|
|
||
|
static void codecall (CompileState *compst, TTree *call) {
|
||
|
int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */
|
||
|
getinstr(compst, c).i.key = sib2(call)->cap; /* rule number */
|
||
|
assert(sib2(call)->tag == TRule);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Code first child of a sequence
|
||
|
** (second child is called in-place to allow tail call)
|
||
|
** Return 'tt' for second child
|
||
|
*/
|
||
|
static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2,
|
||
|
int tt, const Charset *fl) {
|
||
|
if (needfollow(p1)) {
|
||
|
Charset fl1;
|
||
|
getfirst(p2, fl, &fl1); /* p1 follow is p2 first */
|
||
|
codegen(compst, p1, 0, tt, &fl1);
|
||
|
}
|
||
|
else /* use 'fullset' as follow */
|
||
|
codegen(compst, p1, 0, tt, fullset);
|
||
|
if (fixedlen(p1) != 0) /* can 'p1' consume anything? */
|
||
|
return NOINST; /* invalidate test */
|
||
|
else return tt; /* else 'tt' still protects sib2 */
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Main code-generation function: dispatch to auxiliar functions
|
||
|
** according to kind of tree. ('needfollow' should return true
|
||
|
** only for consructions that use 'fl'.)
|
||
|
*/
|
||
|
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
|
||
|
const Charset *fl) {
|
||
|
tailcall:
|
||
|
switch (tree->tag) {
|
||
|
case TChar: codechar(compst, tree->u.n, tt); break;
|
||
|
case TAny: addinstruction(compst, IAny, 0); break;
|
||
|
case TSet: codecharset(compst, treebuffer(tree), tt); break;
|
||
|
case TTrue: break;
|
||
|
case TFalse: addinstruction(compst, IFail, 0); break;
|
||
|
case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break;
|
||
|
case TRep: coderep(compst, sib1(tree), opt, fl); break;
|
||
|
case TBehind: codebehind(compst, tree); break;
|
||
|
case TNot: codenot(compst, sib1(tree)); break;
|
||
|
case TAnd: codeand(compst, sib1(tree), tt); break;
|
||
|
case TCapture: codecapture(compst, tree, tt, fl); break;
|
||
|
case TRunTime: coderuntime(compst, tree, tt); break;
|
||
|
case TGrammar: codegrammar(compst, tree); break;
|
||
|
case TCall: codecall(compst, tree); break;
|
||
|
case TSeq: {
|
||
|
tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */
|
||
|
/* codegen(compst, p2, opt, tt, fl); */
|
||
|
tree = sib2(tree); goto tailcall;
|
||
|
}
|
||
|
default: assert(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Optimize jumps and other jump-like instructions.
|
||
|
** * Update labels of instructions with labels to their final
|
||
|
** destinations (e.g., choice L1; ... L1: jmp L2: becomes
|
||
|
** choice L2)
|
||
|
** * Jumps to other instructions that do jumps become those
|
||
|
** instructions (e.g., jump to return becomes a return; jump
|
||
|
** to commit becomes a commit)
|
||
|
*/
|
||
|
static void peephole (CompileState *compst) {
|
||
|
Instruction *code = compst->p->code;
|
||
|
int i;
|
||
|
for (i = 0; i < compst->ncode; i += sizei(&code[i])) {
|
||
|
redo:
|
||
|
switch (code[i].i.code) {
|
||
|
case IChoice: case ICall: case ICommit: case IPartialCommit:
|
||
|
case IBackCommit: case ITestChar: case ITestSet:
|
||
|
case ITestAny: { /* instructions with labels */
|
||
|
jumptothere(compst, i, finallabel(code, i)); /* optimize label */
|
||
|
break;
|
||
|
}
|
||
|
case IJmp: {
|
||
|
int ft = finaltarget(code, i);
|
||
|
switch (code[ft].i.code) { /* jumping to what? */
|
||
|
case IRet: case IFail: case IFailTwice:
|
||
|
case IEnd: { /* instructions with unconditional implicit jumps */
|
||
|
code[i] = code[ft]; /* jump becomes that instruction */
|
||
|
code[i + 1].i.code = IAny; /* 'no-op' for target position */
|
||
|
break;
|
||
|
}
|
||
|
case ICommit: case IPartialCommit:
|
||
|
case IBackCommit: { /* inst. with unconditional explicit jumps */
|
||
|
int fft = finallabel(code, ft);
|
||
|
code[i] = code[ft]; /* jump becomes that instruction... */
|
||
|
jumptothere(compst, i, fft); /* but must correct its offset */
|
||
|
goto redo; /* reoptimize its label */
|
||
|
}
|
||
|
default: {
|
||
|
jumptothere(compst, i, ft); /* optimize label */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
default: break;
|
||
|
}
|
||
|
}
|
||
|
assert(code[i - 1].i.code == IEnd);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Compile a pattern
|
||
|
*/
|
||
|
Instruction *compile (lua_State *L, Pattern *p) {
|
||
|
CompileState compst;
|
||
|
compst.p = p; compst.ncode = 0; compst.L = L;
|
||
|
realloccode(L, p, 2); /* minimum initial size */
|
||
|
codegen(&compst, p->tree, 0, NOINST, fullset);
|
||
|
addinstruction(&compst, IEnd, 0);
|
||
|
realloccode(L, p, compst.ncode); /* set final size */
|
||
|
peephole(&compst);
|
||
|
return p->code;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* }====================================================== */
|
||
|
|