qzdoom/src/polyrenderer/scene/poly_sky.cpp
2017-05-12 17:59:22 +02:00

377 lines
11 KiB
C++

/*
** Sky dome rendering
** Copyright(C) 2003-2016 Christoph Oelckers
** All rights reserved.
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU Lesser General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public License
** along with this program. If not, see http:**www.gnu.org/licenses/
**
** Loosely based on the JDoom sky and the ZDoomGL 0.66.2 sky.
*/
#include <stdlib.h>
#include "templates.h"
#include "doomdef.h"
#include "sbar.h"
#include "r_data/r_translate.h"
#include "poly_sky.h"
#include "poly_portal.h"
#include "r_sky.h" // for skyflatnum
#include "g_levellocals.h"
#include "polyrenderer/scene/poly_light.h"
PolySkyDome::PolySkyDome()
{
CreateDome();
}
void PolySkyDome::Render(const TriMatrix &worldToClip)
{
#ifdef USE_GL_DOME_MATH
TriMatrix modelMatrix = GLSkyMath();
#else
TriMatrix modelMatrix = TriMatrix::identity();
PolySkySetup frameSetup;
frameSetup.Update();
if (frameSetup != mCurrentSetup)
{
// frontcyl = pixels for full 360 degrees, front texture
// backcyl = pixels for full 360 degrees, back texture
// skymid = Y scaled pixel offset
// sky1pos = unscaled X offset, front
// sky2pos = unscaled X offset, back
// frontpos = scaled X pixel offset (fixed point)
// backpos = scaled X pixel offset (fixed point)
// skyflip = flip X direction
float scaleBaseV = 1.42f;
float offsetBaseV = 0.25f;
float scaleFrontU = frameSetup.frontcyl / (float)frameSetup.frontskytex->GetWidth();
float scaleFrontV = (float)frameSetup.frontskytex->Scale.Y * scaleBaseV;
float offsetFrontU = (float)((frameSetup.frontpos / 65536.0 + frameSetup.frontcyl / 2) / frameSetup.frontskytex->GetWidth());
float offsetFrontV = (float)((frameSetup.skymid / frameSetup.frontskytex->GetHeight() + offsetBaseV) * scaleBaseV);
unsigned int count = mVertices.Size();
for (unsigned int i = 0; i < count; i++)
{
mVertices[i].u = offsetFrontU + mInitialUV[i].X * scaleFrontU;
mVertices[i].v = offsetFrontV + mInitialUV[i].Y * scaleFrontV;
}
mCurrentSetup = frameSetup;
}
#endif
const auto &viewpoint = PolyRenderer::Instance()->Viewpoint;
TriMatrix objectToWorld = TriMatrix::translate((float)viewpoint.Pos.X, (float)viewpoint.Pos.Y, (float)viewpoint.Pos.Z) * modelMatrix;
objectToClip = worldToClip * objectToWorld;
int rc = mRows + 1;
PolyDrawArgs args;
args.SetLight(&NormalLight, 255, PolyRenderer::Instance()->Light.WallGlobVis(false), true);
args.SetSubsectorDepth(RenderPolyScene::SkySubsectorDepth);
args.SetTransform(&objectToClip);
args.SetStencilTestValue(255);
args.SetWriteStencil(true, 1);
args.SetClipPlane(PolyClipPlane(0.0f, 0.0f, 0.0f, 1.0f));
RenderCapColorRow(args, mCurrentSetup.frontskytex, 0, false);
RenderCapColorRow(args, mCurrentSetup.frontskytex, rc, true);
args.SetTexture(mCurrentSetup.frontskytex);
uint32_t topcapcolor = mCurrentSetup.frontskytex->GetSkyCapColor(false);
uint32_t bottomcapcolor = mCurrentSetup.frontskytex->GetSkyCapColor(true);
uint8_t topcapindex = RGB256k.All[((RPART(topcapcolor) >> 2) << 12) | ((GPART(topcapcolor) >> 2) << 6) | (BPART(topcapcolor) >> 2)];
uint8_t bottomcapindex = RGB256k.All[((RPART(bottomcapcolor) >> 2) << 12) | ((GPART(bottomcapcolor) >> 2) << 6) | (BPART(bottomcapcolor) >> 2)];
for (int i = 1; i <= mRows; i++)
{
RenderRow(args, i, topcapcolor, topcapindex);
RenderRow(args, rc + i, bottomcapcolor, bottomcapindex);
}
}
void PolySkyDome::RenderRow(PolyDrawArgs &args, int row, uint32_t capcolor, uint8_t capcolorindex)
{
args.SetFaceCullCCW(false);
args.SetColor(capcolor, capcolorindex);
args.SetStyle(TriBlendMode::Skycap);
args.DrawArray(&mVertices[mPrimStart[row]], mPrimStart[row + 1] - mPrimStart[row], PolyDrawMode::TriangleStrip);
}
void PolySkyDome::RenderCapColorRow(PolyDrawArgs &args, FTexture *skytex, int row, bool bottomCap)
{
uint32_t solid = skytex->GetSkyCapColor(bottomCap);
uint8_t palsolid = RGB32k.RGB[(RPART(solid) >> 3)][(GPART(solid) >> 3)][(BPART(solid) >> 3)];
args.SetFaceCullCCW(bottomCap);
args.SetColor(solid, palsolid);
args.SetStyle(TriBlendMode::FillOpaque);
args.DrawArray(&mVertices[mPrimStart[row]], mPrimStart[row + 1] - mPrimStart[row], PolyDrawMode::TriangleFan);
}
void PolySkyDome::CreateDome()
{
mColumns = 16;// 128;
mRows = 4;
CreateSkyHemisphere(false);
CreateSkyHemisphere(true);
mPrimStart.Push(mVertices.Size());
}
void PolySkyDome::CreateSkyHemisphere(bool zflip)
{
int r, c;
mPrimStart.Push(mVertices.Size());
for (c = 0; c < mColumns; c++)
{
SkyVertex(1, c, zflip);
}
// The total number of triangles per hemisphere can be calculated
// as follows: rows * columns * 2 + 2 (for the top cap).
for (r = 0; r < mRows; r++)
{
mPrimStart.Push(mVertices.Size());
for (c = 0; c <= mColumns; c++)
{
SkyVertex(r + zflip, c, zflip);
SkyVertex(r + 1 - zflip, c, zflip);
}
}
}
TriVertex PolySkyDome::SetVertexXYZ(float xx, float yy, float zz, float uu, float vv)
{
TriVertex v;
v.x = xx;
v.y = zz;
v.z = yy;
v.w = 1.0f;
v.u = uu;
v.v = vv;
return v;
}
void PolySkyDome::SkyVertex(int r, int c, bool zflip)
{
static const FAngle maxSideAngle = 60.f;
static const float scale = 10000.;
FAngle topAngle = (c / (float)mColumns * 360.f);
FAngle sideAngle = maxSideAngle * (float)(mRows - r) / (float)mRows;
float height = sideAngle.Sin();
float realRadius = scale * sideAngle.Cos();
FVector2 pos = topAngle.ToVector(realRadius);
float z = (!zflip) ? scale * height : -scale * height;
float u, v;
// And the texture coordinates.
if (!zflip) // Flipped Y is for the lower hemisphere.
{
u = (-c / (float)mColumns);
v = (r / (float)mRows);
}
else
{
u = (-c / (float)mColumns);
v = 1.0f + ((mRows - r) / (float)mRows);
}
if (r != 4) z += 300;
// And finally the vertex.
TriVertex vert;
vert = SetVertexXYZ(-pos.X, z - 1.f, pos.Y, u, v - 0.5f);
mVertices.Push(vert);
mInitialUV.Push({ vert.u, vert.v });
}
TriMatrix PolySkyDome::GLSkyMath()
{
PolySkySetup frameSetup;
frameSetup.Update();
mCurrentSetup = frameSetup;
float x_offset = 0.0f;
float y_offset = 0.0f;
bool mirror = false;
FTexture *tex = mCurrentSetup.frontskytex;
float skyoffset = 0.0f; // skyoffset debugging CVAR in GL renderer
int texh = 0;
int texw = 0;
// 57 world units roughly represent one sky texel for the glTranslate call.
const float skyoffsetfactor = 57;
TriMatrix modelMatrix = TriMatrix::identity();
if (tex)
{
texw = tex->GetWidth();
texh = tex->GetHeight();
modelMatrix = TriMatrix::rotate(-180.0f + x_offset, 0.f, 0.f, 1.f);
float xscale = texw < 1024.f ? floor(1024.f / float(texw)) : 1.f;
float yscale = 1.f;
if (texh <= 128 && (level.flags & LEVEL_FORCETILEDSKY))
{
modelMatrix = modelMatrix * TriMatrix::translate(0.f, 0.f, (-40 + tex->SkyOffset + skyoffset)*skyoffsetfactor);
modelMatrix = modelMatrix * TriMatrix::scale(1.f, 1.f, 1.2f * 1.17f);
yscale = 240.f / texh;
}
else if (texh < 128)
{
// smaller sky textures must be tiled. We restrict it to 128 sky pixels, though
modelMatrix = modelMatrix * TriMatrix::translate(0.f, 0.f, -1250.f);
modelMatrix = modelMatrix * TriMatrix::scale(1.f, 1.f, 128 / 230.f);
yscale = (float)(128 / texh); // intentionally left as integer.
}
else if (texh < 200)
{
modelMatrix = modelMatrix * TriMatrix::translate(0.f, 0.f, -1250.f);
modelMatrix = modelMatrix * TriMatrix::scale(1.f, 1.f, texh / 230.f);
}
else if (texh <= 240)
{
modelMatrix = modelMatrix * TriMatrix::translate(0.f, 0.f, (200 - texh + tex->SkyOffset + skyoffset)*skyoffsetfactor);
modelMatrix = modelMatrix * TriMatrix::scale(1.f, 1.f, 1.f + ((texh - 200.f) / 200.f) * 1.17f);
}
else
{
modelMatrix = modelMatrix * TriMatrix::translate(0.f, 0.f, (-40 + tex->SkyOffset + skyoffset)*skyoffsetfactor);
modelMatrix = modelMatrix * TriMatrix::scale(1.f, 1.f, 1.2f * 1.17f);
yscale = 240.f / texh;
}
float offsetU = 1.0f;
float offsetV = y_offset / texh;
float scaleU = mirror ? -xscale : xscale;
float scaleV = yscale;
unsigned int count = mVertices.Size();
for (unsigned int i = 0; i < count; i++)
{
mVertices[i].u = offsetU + mInitialUV[i].X * scaleU;
mVertices[i].v = offsetV + mInitialUV[i].Y * scaleV;
}
}
return modelMatrix;
}
/////////////////////////////////////////////////////////////////////////////
void PolySkySetup::Update()
{
FTextureID sky1tex, sky2tex;
double frontdpos = 0, backdpos = 0;
if ((level.flags & LEVEL_SWAPSKIES) && !(level.flags & LEVEL_DOUBLESKY))
{
sky1tex = sky2texture;
}
else
{
sky1tex = sky1texture;
}
sky2tex = sky2texture;
skymid = skytexturemid;
skyangle = 0;
int sectorSky = 0;// sector->sky;
if (!(sectorSky & PL_SKYFLAT))
{ // use sky1
sky1:
frontskytex = TexMan(sky1tex, true);
if (level.flags & LEVEL_DOUBLESKY)
backskytex = TexMan(sky2tex, true);
else
backskytex = nullptr;
skyflip = false;
frontdpos = sky1pos;
backdpos = sky2pos;
frontcyl = sky1cyl;
backcyl = sky2cyl;
}
else if (sectorSky == PL_SKYFLAT)
{ // use sky2
frontskytex = TexMan(sky2tex, true);
backskytex = nullptr;
frontcyl = sky2cyl;
skyflip = false;
frontdpos = sky2pos;
}
else
{ // MBF's linedef-controlled skies
// Sky Linedef
const line_t *l = &level.lines[(sectorSky & ~PL_SKYFLAT) - 1];
// Sky transferred from first sidedef
const side_t *s = l->sidedef[0];
int pos;
// Texture comes from upper texture of reference sidedef
// [RH] If swapping skies, then use the lower sidedef
if (level.flags & LEVEL_SWAPSKIES && s->GetTexture(side_t::bottom).isValid())
{
pos = side_t::bottom;
}
else
{
pos = side_t::top;
}
frontskytex = TexMan(s->GetTexture(pos), true);
if (frontskytex == nullptr || frontskytex->UseType == FTexture::TEX_Null)
{ // [RH] The blank texture: Use normal sky instead.
goto sky1;
}
backskytex = nullptr;
// Horizontal offset is turned into an angle offset,
// to allow sky rotation as well as careful positioning.
// However, the offset is scaled very small, so that it
// allows a long-period of sky rotation.
skyangle += FLOAT2FIXED(s->GetTextureXOffset(pos));
// Vertical offset allows careful sky positioning.
skymid = s->GetTextureYOffset(pos);
// We sometimes flip the picture horizontally.
//
// Doom always flipped the picture, so we make it optional,
// to make it easier to use the new feature, while to still
// allow old sky textures to be used.
skyflip = l->args[2] ? false : true;
int frontxscale = int(frontskytex->Scale.X * 1024);
frontcyl = MAX(frontskytex->GetWidth(), frontxscale);
}
frontpos = int(fmod(frontdpos, sky1cyl * 65536.0));
if (backskytex != nullptr)
{
backpos = int(fmod(backdpos, sky2cyl * 65536.0));
}
}