qzdoom/src/gl/scene/gl_flats.cpp
Christoph Oelckers cd7986b1b1 - refactored global sides array to be more VM friendly.
- moved FLevelLocals to its own header to resolve some circular include conflicts.
2017-01-08 18:46:17 +01:00

822 lines
22 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2000-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_flat.cpp
** Flat rendering
**
*/
#include "gl/system/gl_system.h"
#include "a_sharedglobal.h"
#include "r_defs.h"
#include "r_sky.h"
#include "r_utility.h"
#include "g_level.h"
#include "doomstat.h"
#include "d_player.h"
#include "portal.h"
#include "templates.h"
#include "g_levellocals.h"
#include "gl/system/gl_interface.h"
#include "gl/system/gl_cvars.h"
#include "gl/renderer/gl_renderer.h"
#include "gl/renderer/gl_lightdata.h"
#include "gl/renderer/gl_renderstate.h"
#include "gl/data/gl_data.h"
#include "gl/data/gl_vertexbuffer.h"
#include "gl/dynlights/gl_dynlight.h"
#include "gl/dynlights/gl_glow.h"
#include "gl/dynlights/gl_lightbuffer.h"
#include "gl/scene/gl_drawinfo.h"
#include "gl/shaders/gl_shader.h"
#include "gl/textures/gl_material.h"
#include "gl/utility/gl_clock.h"
#include "gl/utility/gl_convert.h"
#include "gl/utility/gl_templates.h"
#include "gl/renderer/gl_quaddrawer.h"
#ifdef _DEBUG
CVAR(Int, gl_breaksec, -1, 0)
#endif
//==========================================================================
//
// Sets the texture matrix according to the plane's texture positioning
// information
//
//==========================================================================
static float tics;
void gl_SetPlaneTextureRotation(const GLSectorPlane * secplane, FMaterial * gltexture)
{
// only manipulate the texture matrix if needed.
if (!secplane->Offs.isZero() ||
secplane->Scale.X != 1. || secplane->Scale.Y != 1 ||
secplane->Angle != 0 ||
gltexture->TextureWidth() != 64 ||
gltexture->TextureHeight() != 64)
{
float uoffs = secplane->Offs.X / gltexture->TextureWidth();
float voffs = secplane->Offs.Y / gltexture->TextureHeight();
float xscale1 = secplane->Scale.X;
float yscale1 = secplane->Scale.Y;
if (gltexture->tex->bHasCanvas)
{
yscale1 = 0 - yscale1;
}
float angle = -secplane->Angle;
float xscale2 = 64.f / gltexture->TextureWidth();
float yscale2 = 64.f / gltexture->TextureHeight();
gl_RenderState.mTextureMatrix.loadIdentity();
gl_RenderState.mTextureMatrix.scale(xscale1, yscale1, 1.0f);
gl_RenderState.mTextureMatrix.translate(uoffs, voffs, 0.0f);
gl_RenderState.mTextureMatrix.scale(xscale2, yscale2, 1.0f);
gl_RenderState.mTextureMatrix.rotate(angle, 0.0f, 0.0f, 1.0f);
gl_RenderState.EnableTextureMatrix(true);
}
}
//==========================================================================
//
// Flats
//
//==========================================================================
extern FDynLightData lightdata;
void GLFlat::SetupSubsectorLights(int pass, subsector_t * sub, int *dli)
{
Plane p;
if (renderstyle == STYLE_Add && !glset.lightadditivesurfaces) return; // no lights on additively blended surfaces.
if (dli != NULL && *dli != -1)
{
gl_RenderState.ApplyLightIndex(GLRenderer->mLights->GetIndex(*dli));
(*dli)++;
return;
}
lightdata.Clear();
FLightNode * node = sub->lighthead;
while (node)
{
ADynamicLight * light = node->lightsource;
if (light->flags2&MF2_DORMANT)
{
node=node->nextLight;
continue;
}
iter_dlightf++;
// we must do the side check here because gl_SetupLight needs the correct plane orientation
// which we don't have for Legacy-style 3D-floors
double planeh = plane.plane.ZatPoint(light);
if (gl_lights_checkside && ((planeh<light->Z() && ceiling) || (planeh>light->Z() && !ceiling)))
{
node = node->nextLight;
continue;
}
p.Set(plane.plane);
gl_GetLight(sub->sector->PortalGroup, p, light, false, lightdata);
node = node->nextLight;
}
int d = GLRenderer->mLights->UploadLights(lightdata);
if (pass == GLPASS_LIGHTSONLY)
{
GLRenderer->mLights->StoreIndex(d);
}
else
{
gl_RenderState.ApplyLightIndex(d);
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::DrawSubsector(subsector_t * sub)
{
if (gl.buffermethod != BM_DEFERRED)
{
FFlatVertex *ptr = GLRenderer->mVBO->GetBuffer();
for (unsigned int k = 0; k < sub->numlines; k++)
{
vertex_t *vt = sub->firstline[k].v1;
ptr->x = vt->fX();
ptr->z = plane.plane.ZatPoint(vt) + dz;
ptr->y = vt->fY();
ptr->u = vt->fX() / 64.f;
ptr->v = -vt->fY() / 64.f;
ptr++;
}
GLRenderer->mVBO->RenderCurrent(ptr, GL_TRIANGLE_FAN);
}
else
{
// if we cannot access the buffer, use the quad drawer as fallback by splitting the subsector into quads.
// Trying to get this into the vertex buffer in the processing pass is too costly and this is only used for render hacks.
FQuadDrawer qd;
unsigned int vi[4];
vi[0] = 0;
for (unsigned int i = 0; i < sub->numlines - 2; i += 2)
{
for (unsigned int j = 1; j < 4; j++)
{
vi[j] = MIN(i + j, sub->numlines - 1);
}
for (unsigned int x = 0; x < 4; x++)
{
vertex_t *vt = sub->firstline[vi[x]].v1;
qd.Set(x, vt->fX(), plane.plane.ZatPoint(vt) + dz, vt->fY(), vt->fX() / 64.f, -vt->fY() / 64.f);
}
qd.Render(GL_TRIANGLE_FAN);
}
}
flatvertices += sub->numlines;
flatprimitives++;
}
//==========================================================================
//
// this is only used by LM_DEFERRED
//
//==========================================================================
void GLFlat::ProcessLights(bool istrans)
{
dynlightindex = GLRenderer->mLights->GetIndexPtr();
// Draw the subsectors belonging to this sector
for (int i=0; i<sector->subsectorcount; i++)
{
subsector_t * sub = sector->subsectors[i];
if (gl_drawinfo->ss_renderflags[sub-subsectors]&renderflags || istrans)
{
SetupSubsectorLights(GLPASS_LIGHTSONLY, sub);
}
}
// Draw the subsectors assigned to it due to missing textures
if (!(renderflags&SSRF_RENDER3DPLANES))
{
gl_subsectorrendernode * node = (renderflags&SSRF_RENDERFLOOR)?
gl_drawinfo->GetOtherFloorPlanes(sector->sectornum) :
gl_drawinfo->GetOtherCeilingPlanes(sector->sectornum);
while (node)
{
SetupSubsectorLights(GLPASS_LIGHTSONLY, node->sub);
node = node->next;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::DrawSubsectors(int pass, bool processlights, bool istrans)
{
int dli = dynlightindex;
gl_RenderState.Apply();
if (vboindex >= 0)
{
int index = vboindex;
for (int i=0; i<sector->subsectorcount; i++)
{
subsector_t * sub = sector->subsectors[i];
if (gl_drawinfo->ss_renderflags[sub-subsectors]&renderflags || istrans)
{
if (processlights) SetupSubsectorLights(GLPASS_ALL, sub, &dli);
drawcalls.Clock();
glDrawArrays(GL_TRIANGLE_FAN, index, sub->numlines);
drawcalls.Unclock();
flatvertices += sub->numlines;
flatprimitives++;
}
index += sub->numlines;
}
}
else
{
// Draw the subsectors belonging to this sector
// (can this case even happen?)
for (int i=0; i<sector->subsectorcount; i++)
{
subsector_t * sub = sector->subsectors[i];
if (gl_drawinfo->ss_renderflags[sub-subsectors]&renderflags || istrans)
{
if (processlights) SetupSubsectorLights(GLPASS_ALL, sub, &dli);
DrawSubsector(sub);
}
}
}
// Draw the subsectors assigned to it due to missing textures
if (!(renderflags&SSRF_RENDER3DPLANES))
{
gl_subsectorrendernode * node = (renderflags&SSRF_RENDERFLOOR)?
gl_drawinfo->GetOtherFloorPlanes(sector->sectornum) :
gl_drawinfo->GetOtherCeilingPlanes(sector->sectornum);
while (node)
{
if (processlights) SetupSubsectorLights(GLPASS_ALL, node->sub, &dli);
DrawSubsector(node->sub);
node = node->next;
}
}
}
//==========================================================================
//
// special handling for skyboxes which need texture clamping.
// This will find the bounding rectangle of the sector and just
// draw one single polygon filling that rectangle with a clamped
// texture.
//
//==========================================================================
void GLFlat::DrawSkyboxSector(int pass, bool processlights)
{
float minx = FLT_MAX, miny = FLT_MAX;
float maxx = -FLT_MAX, maxy = -FLT_MAX;
for (auto ln : sector->Lines)
{
float x = ln->v1->fX();
float y = ln->v1->fY();
if (x < minx) minx = x;
if (y < miny) miny = y;
if (x > maxx) maxx = x;
if (y > maxy) maxy = y;
x = ln->v2->fX();
y = ln->v2->fY();
if (x < minx) minx = x;
if (y < miny) miny = y;
if (x > maxx) maxx = x;
if (y > maxy) maxy = y;
}
float z = plane.plane.ZatPoint(0., 0.) + dz;
static float uvals[] = { 0, 0, 1, 1 };
static float vvals[] = { 1, 0, 0, 1 };
int rot = -xs_FloorToInt(plane.Angle / 90.f);
FQuadDrawer qd;
qd.Set(0, minx, z, miny, uvals[rot & 3], vvals[rot & 3]);
qd.Set(1, minx, z, maxy, uvals[(rot + 1) & 3], vvals[(rot + 1) & 3]);
qd.Set(2, maxx, z, maxy, uvals[(rot + 2) & 3], vvals[(rot + 2) & 3]);
qd.Set(3, maxx, z, miny, uvals[(rot + 3) & 3], vvals[(rot + 3) & 3]);
qd.Render(GL_TRIANGLE_FAN);
flatvertices += 4;
flatprimitives++;
}
//==========================================================================
//
//
//
//==========================================================================
void GLFlat::Draw(int pass, bool trans) // trans only has meaning for GLPASS_LIGHTSONLY
{
int rel = getExtraLight();
#ifdef _DEBUG
if (sector->sectornum == gl_breaksec)
{
int a = 0;
}
#endif
gl_RenderState.SetNormal(plane.plane.Normal().X, plane.plane.Normal().Z, plane.plane.Normal().Y);
switch (pass)
{
case GLPASS_PLAIN: // Single-pass rendering
case GLPASS_ALL: // Same, but also creates the dynlight data.
gl_SetColor(lightlevel, rel, Colormap,1.0f);
gl_SetFog(lightlevel, rel, &Colormap, false);
if (sector->special != GLSector_Skybox)
{
gl_RenderState.SetMaterial(gltexture, CLAMP_NONE, 0, -1, false);
gl_SetPlaneTextureRotation(&plane, gltexture);
DrawSubsectors(pass, (pass == GLPASS_ALL || dynlightindex > -1), false);
gl_RenderState.EnableTextureMatrix(false);
}
else
{
gl_RenderState.SetMaterial(gltexture, CLAMP_XY, 0, -1, false);
DrawSkyboxSector(pass, (pass == GLPASS_ALL || dynlightindex > -1));
}
break;
case GLPASS_LIGHTSONLY:
if (!trans || gltexture)
{
ProcessLights(trans);
}
break;
case GLPASS_TRANSLUCENT:
if (renderstyle==STYLE_Add) gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE);
gl_SetColor(lightlevel, rel, Colormap, alpha);
gl_SetFog(lightlevel, rel, &Colormap, false);
if (!gltexture)
{
gl_RenderState.AlphaFunc(GL_GEQUAL, 0.f);
gl_RenderState.EnableTexture(false);
DrawSubsectors(pass, false, true);
gl_RenderState.EnableTexture(true);
}
else
{
if (!gltexture->GetTransparent()) gl_RenderState.AlphaFunc(GL_GEQUAL, gl_mask_threshold);
else gl_RenderState.AlphaFunc(GL_GEQUAL, 0.f);
gl_RenderState.SetMaterial(gltexture, CLAMP_NONE, 0, -1, false);
gl_SetPlaneTextureRotation(&plane, gltexture);
DrawSubsectors(pass, !gl.legacyMode, true);
gl_RenderState.EnableTextureMatrix(false);
}
if (renderstyle==STYLE_Add) gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
break;
case GLPASS_LIGHTTEX:
case GLPASS_LIGHTTEX_ADDITIVE:
case GLPASS_LIGHTTEX_FOGGY:
DrawLightsCompat(pass);
break;
case GLPASS_TEXONLY:
gl_RenderState.SetMaterial(gltexture, CLAMP_NONE, 0, -1, false);
gl_SetPlaneTextureRotation(&plane, gltexture);
DrawSubsectors(pass, false, false);
gl_RenderState.EnableTextureMatrix(false);
break;
}
}
//==========================================================================
//
// GLFlat::PutFlat
//
// Checks texture, lighting and translucency settings and puts this
// plane in the appropriate render list.
//
//==========================================================================
inline void GLFlat::PutFlat(bool fog)
{
int list;
if (gl_fixedcolormap)
{
Colormap.Clear();
}
if (gl.legacyMode)
{
if (PutFlatCompat(fog)) return;
}
if (renderstyle!=STYLE_Translucent || alpha < 1.f - FLT_EPSILON || fog || gltexture == NULL)
{
// translucent 3D floors go into the regular translucent list, translucent portals go into the translucent border list.
list = (renderflags&SSRF_RENDER3DPLANES) ? GLDL_TRANSLUCENT : GLDL_TRANSLUCENTBORDER;
}
else if (gltexture->GetTransparent())
{
if (stack)
{
list = GLDL_TRANSLUCENTBORDER;
}
else if ((renderflags&SSRF_RENDER3DPLANES) && !plane.plane.isSlope())
{
list = GLDL_TRANSLUCENT;
}
else
{
list = GLDL_PLAINFLATS;
}
}
else
{
bool masked = gltexture->isMasked() && ((renderflags&SSRF_RENDER3DPLANES) || stack);
list = masked ? GLDL_MASKEDFLATS : GLDL_PLAINFLATS;
}
dynlightindex = -1; // make sure this is always initialized to something proper.
gl_drawinfo->drawlists[list].AddFlat (this);
}
//==========================================================================
//
// This draws one flat
// The passed sector does not indicate the area which is rendered.
// It is only used as source for the plane data.
// The whichplane boolean indicates if the flat is a floor(false) or a ceiling(true)
//
//==========================================================================
void GLFlat::Process(sector_t * model, int whichplane, bool fog)
{
plane.GetFromSector(model, whichplane);
if (whichplane != int(ceiling))
{
// Flip the normal if the source plane has a different orientation than what we are about to render.
plane.plane.FlipVert();
}
if (!fog)
{
gltexture=FMaterial::ValidateTexture(plane.texture, false, true);
if (!gltexture) return;
if (gltexture->tex->isFullbright())
{
Colormap.LightColor.r = Colormap.LightColor.g = Colormap.LightColor.b = 0xff;
lightlevel=255;
}
}
else
{
gltexture = NULL;
lightlevel = abs(lightlevel);
}
// get height from vplane
if (whichplane == sector_t::floor && sector->transdoor) dz = -1;
else dz = 0;
z = plane.plane.ZatPoint(0.f, 0.f);
PutFlat(fog);
rendered_flats++;
}
//==========================================================================
//
// Sets 3D floor info. Common code for all 4 cases
//
//==========================================================================
void GLFlat::SetFrom3DFloor(F3DFloor *rover, bool top, bool underside)
{
F3DFloor::planeref & plane = top? rover->top : rover->bottom;
// FF_FOG requires an inverted logic where to get the light from
lightlist_t *light = P_GetPlaneLight(sector, plane.plane, underside);
lightlevel = gl_ClampLight(*light->p_lightlevel);
if (rover->flags & FF_FOG) Colormap.LightColor = (light->extra_colormap)->Fade;
else Colormap.CopyFrom3DLight(light);
alpha = rover->alpha/255.0f;
renderstyle = rover->flags&FF_ADDITIVETRANS? STYLE_Add : STYLE_Translucent;
if (plane.model->VBOHeightcheck(plane.isceiling))
{
vboindex = plane.vindex;
}
else
{
vboindex = -1;
}
}
//==========================================================================
//
// Process a sector's flats for rendering
// This function is only called once per sector.
// Subsequent subsectors are just quickly added to the ss_renderflags array
//
//==========================================================================
void GLFlat::ProcessSector(sector_t * frontsector)
{
lightlist_t * light;
FSectorPortal *port;
#ifdef _DEBUG
if (frontsector->sectornum == gl_breaksec)
{
int a = 0;
}
#endif
// Get the real sector for this one.
sector = &level.sectors[frontsector->sectornum];
extsector_t::xfloor &x = sector->e->XFloor;
dynlightindex = -1;
byte &srf = gl_drawinfo->sectorrenderflags[sector->sectornum];
//
//
//
// do floors
//
//
//
if (frontsector->floorplane.ZatPoint(ViewPos) <= ViewPos.Z)
{
// process the original floor first.
srf |= SSRF_RENDERFLOOR;
lightlevel = gl_ClampLight(frontsector->GetFloorLight());
Colormap = frontsector->ColorMap;
port = frontsector->ValidatePortal(sector_t::floor);
if ((stack = (port != NULL)))
{
if (port->mType == PORTS_STACKEDSECTORTHING)
{
gl_drawinfo->AddFloorStack(sector); // stacked sector things require visplane merging.
}
alpha = frontsector->GetAlpha(sector_t::floor);
}
else
{
alpha = 1.0f - frontsector->GetReflect(sector_t::floor);
}
if (alpha != 0.f && frontsector->GetTexture(sector_t::floor) != skyflatnum)
{
if (frontsector->VBOHeightcheck(sector_t::floor))
{
vboindex = frontsector->vboindex[sector_t::floor];
}
else
{
vboindex = -1;
}
ceiling = false;
renderflags = SSRF_RENDERFLOOR;
if (x.ffloors.Size())
{
light = P_GetPlaneLight(sector, &frontsector->floorplane, false);
if ((!(sector->GetFlags(sector_t::floor)&PLANEF_ABSLIGHTING) || light->lightsource == NULL)
&& (light->p_lightlevel != &frontsector->lightlevel))
{
lightlevel = gl_ClampLight(*light->p_lightlevel);
}
Colormap.CopyFrom3DLight(light);
}
renderstyle = STYLE_Translucent;
Process(frontsector, sector_t::floor, false);
}
}
//
//
//
// do ceilings
//
//
//
if (frontsector->ceilingplane.ZatPoint(ViewPos) >= ViewPos.Z)
{
// process the original ceiling first.
srf |= SSRF_RENDERCEILING;
lightlevel = gl_ClampLight(frontsector->GetCeilingLight());
Colormap = frontsector->ColorMap;
port = frontsector->ValidatePortal(sector_t::ceiling);
if ((stack = (port != NULL)))
{
if (port->mType == PORTS_STACKEDSECTORTHING)
{
gl_drawinfo->AddCeilingStack(sector);
}
alpha = frontsector->GetAlpha(sector_t::ceiling);
}
else
{
alpha = 1.0f - frontsector->GetReflect(sector_t::ceiling);
}
if (alpha != 0.f && frontsector->GetTexture(sector_t::ceiling) != skyflatnum)
{
if (frontsector->VBOHeightcheck(sector_t::ceiling))
{
vboindex = frontsector->vboindex[sector_t::ceiling];
}
else
{
vboindex = -1;
}
ceiling = true;
renderflags = SSRF_RENDERCEILING;
if (x.ffloors.Size())
{
light = P_GetPlaneLight(sector, &sector->ceilingplane, true);
if ((!(sector->GetFlags(sector_t::ceiling)&PLANEF_ABSLIGHTING))
&& (light->p_lightlevel != &frontsector->lightlevel))
{
lightlevel = gl_ClampLight(*light->p_lightlevel);
}
Colormap.CopyFrom3DLight(light);
}
renderstyle = STYLE_Translucent;
Process(frontsector, sector_t::ceiling, false);
}
}
//
//
//
// do 3D floors
//
//
//
stack = false;
if (x.ffloors.Size())
{
player_t * player = players[consoleplayer].camera->player;
renderflags = SSRF_RENDER3DPLANES;
srf |= SSRF_RENDER3DPLANES;
// 3d-floors must not overlap!
double lastceilingheight = sector->CenterCeiling(); // render only in the range of the
double lastfloorheight = sector->CenterFloor(); // current sector part (if applicable)
F3DFloor * rover;
int k;
// floors are ordered now top to bottom so scanning the list for the best match
// is no longer necessary.
ceiling = true;
for (k = 0; k < (int)x.ffloors.Size(); k++)
{
rover = x.ffloors[k];
if ((rover->flags&(FF_EXISTS | FF_RENDERPLANES | FF_THISINSIDE)) == (FF_EXISTS | FF_RENDERPLANES))
{
if (rover->flags&FF_FOG && gl_fixedcolormap) continue;
if (!rover->top.copied && rover->flags&(FF_INVERTPLANES | FF_BOTHPLANES))
{
double ff_top = rover->top.plane->ZatPoint(sector->centerspot);
if (ff_top < lastceilingheight)
{
if (ViewPos.Z <= rover->top.plane->ZatPoint(ViewPos))
{
SetFrom3DFloor(rover, true, !!(rover->flags&FF_FOG));
Colormap.FadeColor = frontsector->ColorMap->Fade;
Process(rover->top.model, rover->top.isceiling, !!(rover->flags&FF_FOG));
}
lastceilingheight = ff_top;
}
}
if (!rover->bottom.copied && !(rover->flags&FF_INVERTPLANES))
{
double ff_bottom = rover->bottom.plane->ZatPoint(sector->centerspot);
if (ff_bottom < lastceilingheight)
{
if (ViewPos.Z <= rover->bottom.plane->ZatPoint(ViewPos))
{
SetFrom3DFloor(rover, false, !(rover->flags&FF_FOG));
Colormap.FadeColor = frontsector->ColorMap->Fade;
Process(rover->bottom.model, rover->bottom.isceiling, !!(rover->flags&FF_FOG));
}
lastceilingheight = ff_bottom;
if (rover->alpha < 255) lastceilingheight += EQUAL_EPSILON;
}
}
}
}
ceiling = false;
for (k = x.ffloors.Size() - 1; k >= 0; k--)
{
rover = x.ffloors[k];
if ((rover->flags&(FF_EXISTS | FF_RENDERPLANES | FF_THISINSIDE)) == (FF_EXISTS | FF_RENDERPLANES))
{
if (rover->flags&FF_FOG && gl_fixedcolormap) continue;
if (!rover->bottom.copied && rover->flags&(FF_INVERTPLANES | FF_BOTHPLANES))
{
double ff_bottom = rover->bottom.plane->ZatPoint(sector->centerspot);
if (ff_bottom > lastfloorheight || (rover->flags&FF_FIX))
{
if (ViewPos.Z >= rover->bottom.plane->ZatPoint(ViewPos))
{
SetFrom3DFloor(rover, false, !(rover->flags&FF_FOG));
Colormap.FadeColor = frontsector->ColorMap->Fade;
if (rover->flags&FF_FIX)
{
lightlevel = gl_ClampLight(rover->model->lightlevel);
Colormap = rover->GetColormap();
}
Process(rover->bottom.model, rover->bottom.isceiling, !!(rover->flags&FF_FOG));
}
lastfloorheight = ff_bottom;
}
}
if (!rover->top.copied && !(rover->flags&FF_INVERTPLANES))
{
double ff_top = rover->top.plane->ZatPoint(sector->centerspot);
if (ff_top > lastfloorheight)
{
if (ViewPos.Z >= rover->top.plane->ZatPoint(ViewPos))
{
SetFrom3DFloor(rover, true, !!(rover->flags&FF_FOG));
Colormap.FadeColor = frontsector->ColorMap->Fade;
Process(rover->top.model, rover->top.isceiling, !!(rover->flags&FF_FOG));
}
lastfloorheight = ff_top;
if (rover->alpha < 255) lastfloorheight -= EQUAL_EPSILON;
}
}
}
}
}
}