qzdoom-gpl/src/p_slopes.cpp

645 lines
18 KiB
C++

/*
** p_slopes.cpp
** Slope creation
**
**---------------------------------------------------------------------------
** Copyright 1998-2008 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "doomtype.h"
#include "p_local.h"
#include "cmdlib.h"
#include "p_lnspec.h"
//===========================================================================
//
// P_SpawnSlopeMakers
//
//===========================================================================
static void P_SlopeLineToPoint (int lineid, fixed_t x, fixed_t y, fixed_t z, bool slopeCeil)
{
int linenum;
FLineIdIterator itr(lineid);
while ((linenum = itr.Next()) >= 0)
{
const line_t *line = &lines[linenum];
sector_t *sec;
secplane_t *plane;
if (P_PointOnLineSide (x, y, line) == 0)
{
sec = line->frontsector;
}
else
{
sec = line->backsector;
}
if (sec == NULL)
{
continue;
}
if (slopeCeil)
{
plane = &sec->ceilingplane;
}
else
{
plane = &sec->floorplane;
}
FVector3 p, v1, v2, cross;
p[0] = FIXED2FLOAT (line->v1->x);
p[1] = FIXED2FLOAT (line->v1->y);
p[2] = FIXED2FLOAT (plane->ZatPoint (line->v1->x, line->v1->y));
v1[0] = FIXED2FLOAT (line->dx);
v1[1] = FIXED2FLOAT (line->dy);
v1[2] = FIXED2FLOAT (plane->ZatPoint (line->v2->x, line->v2->y)) - p[2];
v2[0] = FIXED2FLOAT (x - line->v1->x);
v2[1] = FIXED2FLOAT (y - line->v1->y);
v2[2] = FIXED2FLOAT (z) - p[2];
cross = v1 ^ v2;
double len = cross.Length();
if (len == 0)
{
Printf ("Slope thing at (%d,%d) lies directly on its target line.\n", int(x>>16), int(y>>16));
return;
}
cross /= len;
// Fix backward normals
if ((cross.Z < 0 && !slopeCeil) || (cross.Z > 0 && slopeCeil))
{
cross = -cross;
}
plane->a = FLOAT2FIXED (cross[0]);
plane->b = FLOAT2FIXED (cross[1]);
plane->c = FLOAT2FIXED (cross[2]);
//plane->ic = FLOAT2FIXED (1.f/cross[2]);
plane->ic = DivScale32 (1, plane->c);
plane->d = -TMulScale16 (plane->a, x,
plane->b, y,
plane->c, z);
}
}
//===========================================================================
//
// P_CopyPlane
//
//===========================================================================
static void P_CopyPlane (int tag, sector_t *dest, bool copyCeil)
{
sector_t *source;
int secnum;
size_t planeofs;
secnum = P_FindFirstSectorFromTag (tag);
if (secnum == -1)
{
return;
}
source = &sectors[secnum];
if (copyCeil)
{
planeofs = myoffsetof(sector_t, ceilingplane);
}
else
{
planeofs = myoffsetof(sector_t, floorplane);
}
*(secplane_t *)((BYTE *)dest + planeofs) = *(secplane_t *)((BYTE *)source + planeofs);
}
static void P_CopyPlane (int tag, fixed_t x, fixed_t y, bool copyCeil)
{
sector_t *dest = P_PointInSector (x, y);
P_CopyPlane(tag, dest, copyCeil);
}
//===========================================================================
//
// P_SetSlope
//
//===========================================================================
void P_SetSlope (secplane_t *plane, bool setCeil, int xyangi, int zangi,
fixed_t x, fixed_t y, fixed_t z)
{
angle_t xyang;
angle_t zang;
if (zangi >= 180)
{
zang = ANGLE_180-ANGLE_1;
}
else if (zangi <= 0)
{
zang = ANGLE_1;
}
else
{
zang = Scale (zangi, ANGLE_90, 90);
}
if (setCeil)
{
zang += ANGLE_180;
}
zang >>= ANGLETOFINESHIFT;
// Sanitize xyangi to [0,360) range
xyangi = xyangi % 360;
if (xyangi < 0)
{
xyangi = 360 + xyangi;
}
xyang = (angle_t)Scale (xyangi, ANGLE_90, 90 << ANGLETOFINESHIFT);
FVector3 norm;
if (ib_compatflags & BCOMPATF_SETSLOPEOVERFLOW)
{
norm[0] = float(finecosine[zang] * finecosine[xyang]);
norm[1] = float(finecosine[zang] * finesine[xyang]);
}
else
{
norm[0] = float(finecosine[zang]) * float(finecosine[xyang]);
norm[1] = float(finecosine[zang]) * float(finesine[xyang]);
}
norm[2] = float(finesine[zang]) * 65536.f;
norm.MakeUnit();
plane->a = (int)(norm[0] * 65536.f);
plane->b = (int)(norm[1] * 65536.f);
plane->c = (int)(norm[2] * 65536.f);
//plane->ic = (int)(65536.f / norm[2]);
plane->ic = DivScale32 (1, plane->c);
plane->d = -TMulScale16 (plane->a, x,
plane->b, y,
plane->c, z);
}
//===========================================================================
//
// P_VavoomSlope
//
//===========================================================================
void P_VavoomSlope(sector_t * sec, int id, fixed_t x, fixed_t y, fixed_t z, int which)
{
for (int i=0;i<sec->linecount;i++)
{
line_t * l=sec->lines[i];
if (l->args[0]==id)
{
FVector3 v1, v2, cross;
secplane_t *srcplane = (which == 0) ? &sec->floorplane : &sec->ceilingplane;
fixed_t srcheight = (which == 0) ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
v1[0] = FIXED2FLOAT (x - l->v2->x);
v1[1] = FIXED2FLOAT (y - l->v2->y);
v1[2] = FIXED2FLOAT (z - srcheight);
v2[0] = FIXED2FLOAT (x - l->v1->x);
v2[1] = FIXED2FLOAT (y - l->v1->y);
v2[2] = FIXED2FLOAT (z - srcheight);
cross = v1 ^ v2;
double len = cross.Length();
if (len == 0)
{
Printf ("Slope thing at (%d,%d) lies directly on its target line.\n", int(x>>16), int(y>>16));
return;
}
cross /= len;
// Fix backward normals
if ((cross.Z < 0 && which == 0) || (cross.Z > 0 && which == 1))
{
cross = -cross;
}
srcplane->a = FLOAT2FIXED (cross[0]);
srcplane->b = FLOAT2FIXED (cross[1]);
srcplane->c = FLOAT2FIXED (cross[2]);
//plane->ic = FLOAT2FIXED (1.f/cross[2]);
srcplane->ic = DivScale32 (1, srcplane->c);
srcplane->d = -TMulScale16 (srcplane->a, x,
srcplane->b, y,
srcplane->c, z);
return;
}
}
}
//==========================================================================
//
// P_SetSlopesFromVertexHeights
//
//==========================================================================
static void P_SetSlopesFromVertexHeights(FMapThing *firstmt, FMapThing *lastmt, const int *oldvertextable)
{
TMap<int, fixed_t> vt_heights[2];
FMapThing *mt;
bool vt_found = false;
for (mt = firstmt; mt < lastmt; ++mt)
{
if (mt->info != NULL && mt->info->Type == NULL)
{
if (mt->info->Special == SMT_VertexFloorZ || mt->info->Special == SMT_VertexCeilingZ)
{
for (int i = 0; i < numvertexes; i++)
{
if (vertexes[i].x == mt->x && vertexes[i].y == mt->y)
{
if (mt->info->Special == SMT_VertexFloorZ)
{
vt_heights[0][i] = mt->z;
}
else
{
vt_heights[1][i] = mt->z;
}
vt_found = true;
}
}
mt->EdNum = 0;
}
}
}
for(int i = 0; i < numvertexdatas; i++)
{
int ii = oldvertextable == NULL ? i : oldvertextable[i];
if (vertexdatas[i].flags & VERTEXFLAG_ZCeilingEnabled)
{
vt_heights[1][ii] = vertexdatas[i].zCeiling;
vt_found = true;
}
if (vertexdatas[i].flags & VERTEXFLAG_ZFloorEnabled)
{
vt_heights[0][ii] = vertexdatas[i].zFloor;
vt_found = true;
}
}
// If vertexdata_t is ever extended for non-slope usage, this will obviously have to be deferred or removed.
delete[] vertexdatas;
vertexdatas = NULL;
numvertexdatas = 0;
if (vt_found)
{
for (int i = 0; i < numsectors; i++)
{
sector_t *sec = &sectors[i];
if (sec->linecount != 3) continue; // only works with triangular sectors
FVector3 vt1, vt2, vt3, cross;
FVector3 vec1, vec2;
int vi1, vi2, vi3;
vi1 = int(sec->lines[0]->v1 - vertexes);
vi2 = int(sec->lines[0]->v2 - vertexes);
vi3 = (sec->lines[1]->v1 == sec->lines[0]->v1 || sec->lines[1]->v1 == sec->lines[0]->v2)?
int(sec->lines[1]->v2 - vertexes) : int(sec->lines[1]->v1 - vertexes);
vt1.X = FIXED2FLOAT(vertexes[vi1].x);
vt1.Y = FIXED2FLOAT(vertexes[vi1].y);
vt2.X = FIXED2FLOAT(vertexes[vi2].x);
vt2.Y = FIXED2FLOAT(vertexes[vi2].y);
vt3.X = FIXED2FLOAT(vertexes[vi3].x);
vt3.Y = FIXED2FLOAT(vertexes[vi3].y);
for(int j=0; j<2; j++)
{
fixed_t *h1 = vt_heights[j].CheckKey(vi1);
fixed_t *h2 = vt_heights[j].CheckKey(vi2);
fixed_t *h3 = vt_heights[j].CheckKey(vi3);
fixed_t z3;
if (h1==NULL && h2==NULL && h3==NULL) continue;
vt1.Z = FIXED2FLOAT(h1? *h1 : j==0? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling));
vt2.Z = FIXED2FLOAT(h2? *h2 : j==0? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling));
z3 = h3? *h3 : j==0? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
vt3.Z = FIXED2FLOAT(z3);
if (P_PointOnLineSide(vertexes[vi3].x, vertexes[vi3].y, sec->lines[0]) == 0)
{
vec1 = vt2 - vt3;
vec2 = vt1 - vt3;
}
else
{
vec1 = vt1 - vt3;
vec2 = vt2 - vt3;
}
FVector3 cross = vec1 ^ vec2;
double len = cross.Length();
if (len == 0)
{
// Only happens when all vertices in this sector are on the same line.
// Let's just ignore this case.
continue;
}
cross /= len;
// Fix backward normals
if ((cross.Z < 0 && j == 0) || (cross.Z > 0 && j == 1))
{
cross = -cross;
}
secplane_t *srcplane = j==0? &sec->floorplane : &sec->ceilingplane;
srcplane->a = FLOAT2FIXED (cross[0]);
srcplane->b = FLOAT2FIXED (cross[1]);
srcplane->c = FLOAT2FIXED (cross[2]);
srcplane->ic = DivScale32 (1, srcplane->c);
srcplane->d = -TMulScale16 (srcplane->a, vertexes[vi3].x,
srcplane->b, vertexes[vi3].y,
srcplane->c, z3);
}
}
}
}
//===========================================================================
//
// P_SpawnSlopeMakers
//
//===========================================================================
void P_SpawnSlopeMakers (FMapThing *firstmt, FMapThing *lastmt, const int *oldvertextable)
{
FMapThing *mt;
for (mt = firstmt; mt < lastmt; ++mt)
{
if (mt->info != NULL && mt->info->Type == NULL &&
(mt->info->Special >= SMT_SlopeFloorPointLine && mt->info->Special <= SMT_VavoomCeiling))
{
fixed_t x, y, z;
secplane_t *refplane;
sector_t *sec;
bool ceiling;
x = mt->x;
y = mt->y;
sec = P_PointInSector (x, y);
if (mt->info->Special == SMT_SlopeCeilingPointLine || mt->info->Special == SMT_VavoomCeiling || mt->info->Special == SMT_SetCeilingSlope)
{
refplane = &sec->ceilingplane;
ceiling = true;
}
else
{
refplane = &sec->floorplane;
ceiling = false;
}
z = refplane->ZatPoint (x, y) + (mt->z);
if (mt->info->Special <= SMT_SlopeCeilingPointLine)
{ // SlopeFloorPointLine and SlopCeilingPointLine
P_SlopeLineToPoint (mt->args[0], x, y, z, ceiling);
}
else if (mt->info->Special <= SMT_SetCeilingSlope)
{ // SetFloorSlope and SetCeilingSlope
P_SetSlope (refplane, ceiling, mt->angle, mt->args[0], x, y, z);
}
else
{ // VavoomFloor and VavoomCeiling
P_VavoomSlope(sec, mt->thingid, x, y, mt->z, ceiling);
}
mt->EdNum = 0;
}
}
for (mt = firstmt; mt < lastmt; ++mt)
{
if (mt->info != NULL && mt->info->Type == NULL &&
(mt->info->Special == SMT_CopyFloorPlane || mt->info->Special == SMT_CopyCeilingPlane))
{
P_CopyPlane (mt->args[0], mt->x, mt->y, mt->info->Special == SMT_CopyCeilingPlane);
mt->EdNum = 0;
}
}
P_SetSlopesFromVertexHeights(firstmt, lastmt, oldvertextable);
}
//===========================================================================
//
// [RH] Set slopes for sectors, based on line specials
//
// P_AlignPlane
//
// Aligns the floor or ceiling of a sector to the corresponding plane
// on the other side of the reference line. (By definition, line must be
// two-sided.)
//
// If (which & 1), sets floor.
// If (which & 2), sets ceiling.
//
//===========================================================================
static void P_AlignPlane (sector_t *sec, line_t *line, int which)
{
sector_t *refsec;
double bestdist;
vertex_t *refvert = (*sec->lines)->v1; // Shut up, GCC
int i;
line_t **probe;
if (line->backsector == NULL)
return;
// Find furthest vertex from the reference line. It, along with the two ends
// of the line, will define the plane.
bestdist = 0;
for (i = sec->linecount*2, probe = sec->lines; i > 0; i--)
{
double dist;
vertex_t *vert;
if (i & 1)
vert = (*probe++)->v2;
else
vert = (*probe)->v1;
dist = fabs((double(line->v1->y) - vert->y) * line->dx -
(double(line->v1->x) - vert->x) * line->dy);
if (dist > bestdist)
{
bestdist = dist;
refvert = vert;
}
}
refsec = line->frontsector == sec ? line->backsector : line->frontsector;
FVector3 p, v1, v2, cross;
secplane_t *srcplane;
fixed_t srcheight, destheight;
srcplane = (which == 0) ? &sec->floorplane : &sec->ceilingplane;
srcheight = (which == 0) ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
destheight = (which == 0) ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
p[0] = FIXED2FLOAT (line->v1->x);
p[1] = FIXED2FLOAT (line->v1->y);
p[2] = FIXED2FLOAT (destheight);
v1[0] = FIXED2FLOAT (line->dx);
v1[1] = FIXED2FLOAT (line->dy);
v1[2] = 0;
v2[0] = FIXED2FLOAT (refvert->x - line->v1->x);
v2[1] = FIXED2FLOAT (refvert->y - line->v1->y);
v2[2] = FIXED2FLOAT (srcheight - destheight);
cross = (v1 ^ v2).Unit();
// Fix backward normals
if ((cross.Z < 0 && which == 0) || (cross.Z > 0 && which == 1))
{
cross = -cross;
}
srcplane->a = FLOAT2FIXED (cross[0]);
srcplane->b = FLOAT2FIXED (cross[1]);
srcplane->c = FLOAT2FIXED (cross[2]);
//srcplane->ic = FLOAT2FIXED (1.f/cross[2]);
srcplane->ic = DivScale32 (1, srcplane->c);
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
srcplane->b, line->v1->y,
srcplane->c, destheight);
}
//===========================================================================
//
// P_SetSlopes
//
//===========================================================================
void P_SetSlopes ()
{
int i, s;
for (i = 0; i < numlines; i++)
{
if (lines[i].special == Plane_Align)
{
lines[i].special = 0;
if (lines[i].backsector != NULL)
{
// args[0] is for floor, args[1] is for ceiling
//
// As a special case, if args[1] is 0,
// then args[0], bits 2-3 are for ceiling.
for (s = 0; s < 2; s++)
{
int bits = lines[i].args[s] & 3;
if (s == 1 && bits == 0)
bits = (lines[i].args[0] >> 2) & 3;
if (bits == 1) // align front side to back
P_AlignPlane (lines[i].frontsector, lines + i, s);
else if (bits == 2) // align back side to front
P_AlignPlane (lines[i].backsector, lines + i, s);
}
}
}
}
}
//===========================================================================
//
// P_CopySlopes
//
//===========================================================================
void P_CopySlopes()
{
for (int i = 0; i < numlines; i++)
{
if (lines[i].special == Plane_Copy)
{
// The args are used for the tags of sectors to copy:
// args[0]: front floor
// args[1]: front ceiling
// args[2]: back floor
// args[3]: back ceiling
// args[4]: copy slopes from one side of the line to the other.
lines[i].special = 0;
for (int s = 0; s < (lines[i].backsector ? 4 : 2); s++)
{
if (lines[i].args[s])
P_CopyPlane(lines[i].args[s],
(s & 2 ? lines[i].backsector : lines[i].frontsector), s & 1);
}
if (lines[i].backsector != NULL)
{
if ((lines[i].args[4] & 3) == 1)
{
lines[i].backsector->floorplane = lines[i].frontsector->floorplane;
}
else if ((lines[i].args[4] & 3) == 2)
{
lines[i].frontsector->floorplane = lines[i].backsector->floorplane;
}
if ((lines[i].args[4] & 12) == 4)
{
lines[i].backsector->ceilingplane = lines[i].frontsector->ceilingplane;
}
else if ((lines[i].args[4] & 12) == 8)
{
lines[i].frontsector->ceilingplane = lines[i].backsector->ceilingplane;
}
}
}
}
}