qzdoom-gpl/src/zscript/zcc_compile.cpp

794 lines
22 KiB
C++
Raw Normal View History

/*
** zcc_compile.cpp
**
**---------------------------------------------------------------------------
** Copyright -2016 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "dobject.h"
#include "sc_man.h"
#include "c_console.h"
#include "c_dispatch.h"
#include "w_wad.h"
#include "cmdlib.h"
#include "m_alloc.h"
#include "zcc_parser.h"
#include "zcc_compile.h"
#include "v_text.h"
#include "gdtoa.h"
#define DEFINING_CONST ((PSymbolConst *)(void *)1)
//==========================================================================
//
// ZCCCompiler Constructor
//
//==========================================================================
ZCCCompiler::ZCCCompiler(ZCC_AST &ast, DObject *_outer, PSymbolTable &_symbols)
: Outer(_outer), Symbols(&_symbols), AST(ast), ErrorCount(0), WarnCount(0)
{
// Group top-level nodes by type
if (ast.TopNode != NULL)
{
ZCC_TreeNode *node = ast.TopNode;
do
{
switch (node->NodeType)
{
case AST_Class:
case AST_Struct:
case AST_ConstantDef:
if (AddNamedNode(static_cast<ZCC_NamedNode *>(node)))
{
switch (node->NodeType)
{
case AST_Class: Classes.Push(static_cast<ZCC_Class *>(node)); break;
case AST_Struct: Structs.Push(static_cast<ZCC_Struct *>(node)); break;
case AST_ConstantDef: Constants.Push(static_cast<ZCC_ConstantDef *>(node)); break;
2016-03-20 16:34:41 +00:00
default: assert(0 && "Default case is just here to make GCC happy. It should never be reached");
}
}
break;
case AST_Enum: break;
case AST_EnumTerminator:break;
default:
assert(0 && "Unhandled AST node type");
break;
}
node = node->SiblingNext;
}
while (node != ast.TopNode);
}
}
//==========================================================================
//
// ZCCCompiler :: AddNamedNode
//
// Keeps track of definition nodes by their names. Ensures that all names
// in this scope are unique.
//
//==========================================================================
bool ZCCCompiler::AddNamedNode(ZCC_NamedNode *node)
{
FName name = node->NodeName;
PSymbol *check = Symbols->FindSymbol(name, false);
if (check != NULL)
{
assert(check->IsA(RUNTIME_CLASS(PSymbolTreeNode)));
Error(node, "Attempt to redefine '%s'", name.GetChars());
Error(static_cast<PSymbolTreeNode *>(check)->Node, " Original definition is here");
return false;
}
else
{
Symbols->AddSymbol(new PSymbolTreeNode(name, node));
return true;
}
}
//==========================================================================
//
// ZCCCompiler :: Warn
//
// Prints a warning message, and increments WarnCount.
//
//==========================================================================
void ZCCCompiler::Warn(ZCC_TreeNode *node, const char *msg, ...)
{
va_list argptr;
va_start(argptr, msg);
MessageV(node, TEXTCOLOR_ORANGE, msg, argptr);
va_end(argptr);
WarnCount++;
}
//==========================================================================
//
// ZCCCompiler :: Error
//
// Prints an error message, and increments ErrorCount.
//
//==========================================================================
void ZCCCompiler::Error(ZCC_TreeNode *node, const char *msg, ...)
{
va_list argptr;
va_start(argptr, msg);
MessageV(node, TEXTCOLOR_RED, msg, argptr);
va_end(argptr);
ErrorCount++;
}
//==========================================================================
//
// ZCCCompiler :: MessageV
//
// Prints a message, annotated with the source location for the tree node.
//
//==========================================================================
void ZCCCompiler::MessageV(ZCC_TreeNode *node, const char *txtcolor, const char *msg, va_list argptr)
{
FString composed;
composed.Format("%s%s, line %d: ", txtcolor, node->SourceName->GetChars(), node->SourceLoc);
composed.VAppendFormat(msg, argptr);
composed += '\n';
PrintString(PRINT_HIGH, composed);
}
//==========================================================================
//
// ZCCCompiler :: Compile
//
// Compile everything defined at this level.
//
//==========================================================================
int ZCCCompiler::Compile()
{
CreateClasses();
CompileConstants(Constants);
return ErrorCount;
}
//==========================================================================
//
// ZCCCompiler :: CreateClassTypes
//
// Creates a PClass for every class so that we get access to the symbol table
// These will be created with unknown size because for that we need to
// process all fields first, but to do that we need the PClass and some
// other info depending on the PClass.
//
//==========================================================================
void ZCCCompiler::CreateClasses()
{
auto OrigClasses = std::move(Classes);
Classes.Clear();
bool donesomething = true;
while (donesomething)
{
for (unsigned i=0;i<OrigClasses.Size();i++)
{
donesomething = false;
auto c = OrigClasses[i];
// Check if we got the parent already defined.
PClass *parent;
if (c->ParentName != nullptr && c->ParentName->SiblingNext == c->ParentName) parent = PClass::FindClass(c->ParentName->Id);
else if (c->ParentName == nullptr) parent = RUNTIME_CLASS(DObject);
else
{
// The parent is a dotted name which the type system currently does not handle.
// Once it does this needs to be implemented here.
auto p = c->ParentName;
FString build;
do
{
if (build.IsNotEmpty()) build += '.';
build += FName(p->Id);
p = static_cast<decltype(p)>(p->SiblingNext);
} while (p != c->ParentName);
Error(c, "Qualified name '%s' for base class not supported in '%s'", build.GetChars(), FName(c->NodeName).GetChars());
parent = RUNTIME_CLASS(DObject);
}
if (parent != nullptr)
{
// The parent exists, we may create a type for this class
if (c->Flags & ZCC_Native)
{
// If this is a native class, its own type must also already exist.
auto me = PClass::FindClass(c->NodeName);
if (me == nullptr)
{
Error(c, "Unknown native class %s", FName(c->NodeName).GetChars());
me = parent->FindClassTentative(c->NodeName);
}
else
{
DPrintf(DMSG_SPAMMY, "Registered %s as native with parent %s\n", me->TypeName.GetChars(), parent->TypeName.GetChars());
}
c->Type = me;
}
else
{
auto me = PClass::FindClass(c->NodeName);
if (me != nullptr)
{
Error(c, "Redefining class %s", FName(c->NodeName).GetChars());
}
else
{
me = parent->FindClassTentative(c->NodeName);
DPrintf(DMSG_SPAMMY, "Created %s with parent %s\n", me->TypeName.GetChars(), parent->TypeName.GetChars());
}
c->Type = me;
}
Classes.Push(c);
OrigClasses.Delete(i);
i--;
donesomething = true;
}
else
{
// No base class found. Now check if something in the unprocessed classes matches.
// If not, print an error. If something is found let's retry again in the next iteration.
bool found = false;
for (auto d : OrigClasses)
{
if (d->NodeName == c->ParentName->Id)
{
found = true;
break;
}
}
if (!found)
{
Error(c, "Class %s has unknown base class %s", FName(c->NodeName).GetChars(), FName(c->ParentName->Id).GetChars());
// create a placeholder so that the compiler can continue looking for errors.
c->Type = RUNTIME_CLASS(DObject)->FindClassTentative(c->NodeName);
Classes.Push(c);
OrigClasses.Delete(i);
donesomething = true;
}
}
}
}
// What's left refers to some other class in the list but could not be resolved.
// This normally means a circular reference.
for (auto c : OrigClasses)
{
Error(c, "Class %s has circular inheritance", FName(c->NodeName).GetChars());
c->Type = RUNTIME_CLASS(DObject)->FindClassTentative(c->NodeName);
Classes.Push(c);
}
}
//==========================================================================
//
// ZCCCompiler :: CompileConstants
//
// Make symbols from every constant defined at this level.
//
//==========================================================================
void ZCCCompiler::CompileConstants(const TArray<ZCC_ConstantDef *> &defs)
{
for (unsigned i = 0; i < defs.Size(); ++i)
{
ZCC_ConstantDef *def = defs[i];
if (def->Symbol == NULL)
{
PSymbolConst *sym = CompileConstant(def);
}
}
}
//==========================================================================
//
// ZCCCompiler :: CompileConstant
//
// For every constant definition, evaluate its value (which should result
// in a constant), and create a symbol for it. Simplify() uses recursion
// to resolve constants used before their declarations.
//
//==========================================================================
PSymbolConst *ZCCCompiler::CompileConstant(ZCC_ConstantDef *def)
{
assert(def->Symbol == NULL);
def->Symbol = DEFINING_CONST; // avoid recursion
ZCC_Expression *val = Simplify(def->Value);
def->Value = val;
PSymbolConst *sym = NULL;
if (val->NodeType == AST_ExprConstant)
{
ZCC_ExprConstant *cval = static_cast<ZCC_ExprConstant *>(val);
if (cval->Type == TypeString)
{
sym = new PSymbolConstString(def->NodeName, *(cval->StringVal));
}
else if (cval->Type->IsA(RUNTIME_CLASS(PInt)))
{
sym = new PSymbolConstNumeric(def->NodeName, cval->Type, cval->IntVal);
}
else if (cval->Type->IsA(RUNTIME_CLASS(PFloat)))
{
sym = new PSymbolConstNumeric(def->NodeName, cval->Type, cval->DoubleVal);
}
else
{
Error(def->Value, "Bad type for constant definiton");
}
}
else
{
Error(def->Value, "Constant definition requires a constant value");
}
if (sym == NULL)
{
// Create a dummy constant so we don't make any undefined value warnings.
sym = new PSymbolConstNumeric(def->NodeName, TypeError, 0);
}
def->Symbol = sym;
Symbols->ReplaceSymbol(sym);
return sym;
}
//==========================================================================
//
// ZCCCompiler :: Simplify
//
// For an expression,
// Evaluate operators whose arguments are both constants, replacing it
// with a new constant.
// For a binary operator with one constant argument, put it on the right-
// hand operand, where permitted.
// Perform automatic type promotion.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::Simplify(ZCC_Expression *root)
{
if (root->NodeType == AST_ExprUnary)
{
return SimplifyUnary(static_cast<ZCC_ExprUnary *>(root));
}
else if (root->NodeType == AST_ExprBinary)
{
return SimplifyBinary(static_cast<ZCC_ExprBinary *>(root));
}
else if (root->Operation == PEX_ID)
{
return IdentifyIdentifier(static_cast<ZCC_ExprID *>(root));
}
else if (root->Operation == PEX_MemberAccess)
{
return SimplifyMemberAccess(static_cast<ZCC_ExprMemberAccess *>(root));
}
else if (root->Operation == PEX_FuncCall)
{
return SimplifyFunctionCall(static_cast<ZCC_ExprFuncCall *>(root));
}
return root;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyUnary
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyUnary(ZCC_ExprUnary *unary)
{
unary->Operand = Simplify(unary->Operand);
ZCC_OpProto *op = PromoteUnary(unary->Operation, unary->Operand);
if (op == NULL)
{ // Oh, poo!
unary->Type = TypeError;
}
else if (unary->Operand->Operation == PEX_ConstValue)
{
return op->EvalConst1(static_cast<ZCC_ExprConstant *>(unary->Operand));
}
return unary;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyBinary
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyBinary(ZCC_ExprBinary *binary)
{
binary->Left = Simplify(binary->Left);
binary->Right = Simplify(binary->Right);
ZCC_OpProto *op = PromoteBinary(binary->Operation, binary->Left, binary->Right);
if (op == NULL)
{
binary->Type = TypeError;
}
else if (binary->Left->Operation == PEX_ConstValue &&
binary->Right->Operation == PEX_ConstValue)
{
return op->EvalConst2(static_cast<ZCC_ExprConstant *>(binary->Left),
static_cast<ZCC_ExprConstant *>(binary->Right), AST.Strings);
}
return binary;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyMemberAccess
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyMemberAccess(ZCC_ExprMemberAccess *dotop)
{
dotop->Left = Simplify(dotop->Left);
if (dotop->Left->Operation == PEX_TypeRef)
{ // Type refs can be evaluated now.
PType *ref = static_cast<ZCC_ExprTypeRef *>(dotop->Left)->RefType;
PSymbolTable *symtable;
PSymbol *sym = ref->Symbols.FindSymbolInTable(dotop->Right, symtable);
if (sym == NULL)
{
Error(dotop, "'%s' is not a valid member", FName(dotop->Right).GetChars());
}
else
{
ZCC_Expression *expr = NodeFromSymbol(sym, dotop, symtable);
if (expr == NULL)
{
Error(dotop, "Unhandled symbol type encountered");
}
else
{
return expr;
}
}
}
return dotop;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyFunctionCall
//
// This may replace a function call with cast(s), since they look like the
// same thing to the parser.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyFunctionCall(ZCC_ExprFuncCall *callop)
{
ZCC_FuncParm *parm;
int parmcount = 0;
callop->Function = Simplify(callop->Function);
parm = callop->Parameters;
if (parm != NULL)
{
do
{
parmcount++;
assert(parm->NodeType == AST_FuncParm);
parm->Value = Simplify(parm->Value);
parm = static_cast<ZCC_FuncParm *>(parm->SiblingNext);
}
while (parm != callop->Parameters);
}
// If the left side is a type ref, then this is actually a cast
// and not a function call.
if (callop->Function->Operation == PEX_TypeRef)
{
if (parmcount != 1)
{
Error(callop, "Type cast requires one parameter");
callop->ToErrorNode();
}
else
{
PType *dest = static_cast<ZCC_ExprTypeRef *>(callop->Function)->RefType;
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = parm->Value->Type->FindConversion(dest, route, countof(route));
if (routelen < 0)
{
///FIXME: Need real type names
Error(callop, "Cannot convert type 1 to type 2");
callop->ToErrorNode();
}
else
{
ZCC_Expression *val = ApplyConversion(parm->Value, route, routelen);
assert(val->Type == dest);
return val;
}
}
}
return callop;
}
//==========================================================================
//
// ZCCCompiler :: PromoteUnary
//
// Converts the operand into a format preferred by the operator.
//
//==========================================================================
ZCC_OpProto *ZCCCompiler::PromoteUnary(EZCCExprType op, ZCC_Expression *&expr)
{
if (expr->Type == TypeError)
{
return NULL;
}
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = countof(route);
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(expr->Type, route, routelen);
if (proto != NULL)
{
expr = ApplyConversion(expr, route, routelen);
}
return proto;
}
//==========================================================================
//
// ZCCCompiler :: PromoteBinary
//
// Converts the operands into a format (hopefully) compatible with the
// operator.
//
//==========================================================================
ZCC_OpProto *ZCCCompiler::PromoteBinary(EZCCExprType op, ZCC_Expression *&left, ZCC_Expression *&right)
{
// If either operand is of type 'error', the result is also 'error'
if (left->Type == TypeError || right->Type == TypeError)
{
return NULL;
}
const PType::Conversion *route1[CONVERSION_ROUTE_SIZE], *route2[CONVERSION_ROUTE_SIZE];
int route1len = countof(route1), route2len = countof(route2);
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(left->Type, route1, route1len, right->Type, route2, route2len);
if (proto != NULL)
{
left = ApplyConversion(left, route1, route1len);
right = ApplyConversion(right, route2, route2len);
}
return proto;
}
//==========================================================================
//
// ZCCCompiler :: ApplyConversion
//
//==========================================================================
ZCC_Expression *ZCCCompiler::ApplyConversion(ZCC_Expression *expr, const PType::Conversion **route, int routelen)
{
for (int i = 0; i < routelen; ++i)
{
if (expr->Operation != PEX_ConstValue)
{
expr = AddCastNode(route[i]->TargetType, expr);
}
else
{
route[i]->ConvertConstant(static_cast<ZCC_ExprConstant *>(expr), AST.Strings);
}
}
return expr;
}
//==========================================================================
//
// ZCCCompiler :: AddCastNode
//
//==========================================================================
ZCC_Expression *ZCCCompiler::AddCastNode(PType *type, ZCC_Expression *expr)
{
assert(expr->Operation != PEX_ConstValue && "Expression must not be constant");
// TODO: add a node here
return expr;
}
//==========================================================================
//
// ZCCCompiler :: IdentifyIdentifier
//
// Returns a node that represents what the identifer stands for.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::IdentifyIdentifier(ZCC_ExprID *idnode)
{
// Check the symbol table for the identifier.
PSymbolTable *table;
PSymbol *sym = Symbols->FindSymbolInTable(idnode->Identifier, table);
if (sym != NULL)
{
ZCC_Expression *node = NodeFromSymbol(sym, idnode, table);
if (node != NULL)
{
return node;
}
}
else
{
Error(idnode, "Unknown identifier '%s'", FName(idnode->Identifier).GetChars());
}
// Identifier didn't refer to anything good, so type error it.
idnode->ToErrorNode();
return idnode;
}
//==========================================================================
//
// ZCCCompiler :: CompileNode
//
//==========================================================================
PSymbol *ZCCCompiler::CompileNode(ZCC_NamedNode *node)
{
assert(node != NULL);
if (node->NodeType == AST_ConstantDef)
{
ZCC_ConstantDef *def = static_cast<ZCC_ConstantDef *>(node);
PSymbolConst *sym = def->Symbol;
if (sym == DEFINING_CONST)
{
Error(node, "Definition of '%s' is infinitely recursive", FName(node->NodeName).GetChars());
sym = NULL;
}
else
{
assert(sym == NULL);
sym = CompileConstant(def);
}
return sym;
}
else if (node->NodeType == AST_Struct)
{
}
return NULL;
}
//==========================================================================
//
// ZCCCompiler :: NodeFromSymbol
//
//==========================================================================
ZCC_Expression *ZCCCompiler::NodeFromSymbol(PSymbol *sym, ZCC_Expression *source, PSymbolTable *table)
{
assert(sym != NULL);
if (sym->IsA(RUNTIME_CLASS(PSymbolTreeNode)))
{
PSymbolTable *prevtable = Symbols;
Symbols = table;
sym = CompileNode(static_cast<PSymbolTreeNode *>(sym)->Node);
Symbols = prevtable;
if (sym == NULL)
{
return NULL;
}
}
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
return NodeFromSymbolConst(static_cast<PSymbolConst *>(sym), source);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolType)))
{
return NodeFromSymbolType(static_cast<PSymbolType *>(sym), source);
}
return NULL;
}
//==========================================================================
//
// ZCCCompiler :: NodeFromSymbolConst
//
// Returns a new AST constant node with the symbol's content.
//
//==========================================================================
ZCC_ExprConstant *ZCCCompiler::NodeFromSymbolConst(PSymbolConst *sym, ZCC_Expression *idnode)
{
ZCC_ExprConstant *val = static_cast<ZCC_ExprConstant *>(AST.InitNode(sizeof(*val), AST_ExprConstant, idnode));
val->Operation = PEX_ConstValue;
if (sym == NULL)
{
val->Type = TypeError;
val->IntVal = 0;
}
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConstString)))
{
val->StringVal = AST.Strings.Alloc(static_cast<PSymbolConstString *>(sym)->Str);
val->Type = TypeString;
}
else
{
val->Type = sym->ValueType;
if (val->Type != TypeError)
{
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolConstNumeric)));
if (sym->ValueType->IsKindOf(RUNTIME_CLASS(PInt)))
{
val->IntVal = static_cast<PSymbolConstNumeric *>(sym)->Value;
}
else
{
assert(sym->ValueType->IsKindOf(RUNTIME_CLASS(PFloat)));
val->DoubleVal = static_cast<PSymbolConstNumeric *>(sym)->Float;
}
}
}
return val;
}
//==========================================================================
//
// ZCCCompiler :: NodeFromSymbolType
//
// Returns a new AST type ref node with the symbol's content.
//
//==========================================================================
ZCC_ExprTypeRef *ZCCCompiler::NodeFromSymbolType(PSymbolType *sym, ZCC_Expression *idnode)
{
ZCC_ExprTypeRef *ref = static_cast<ZCC_ExprTypeRef *>(AST.InitNode(sizeof(*ref), AST_ExprTypeRef, idnode));
ref->Operation = PEX_TypeRef;
ref->RefType = sym->Type;
ref->Type = NewClassPointer(RUNTIME_CLASS(PType));
return ref;
}