qzdoom-gpl/src/zscript/zcc_compile.cpp

542 lines
14 KiB
C++
Raw Normal View History

#include "dobject.h"
#include "sc_man.h"
#include "c_console.h"
#include "c_dispatch.h"
#include "w_wad.h"
#include "cmdlib.h"
#include "m_alloc.h"
#include "zcc_parser.h"
#include "zcc_compile.h"
#include "v_text.h"
#include "gdtoa.h"
#define DEFINING_CONST ((PSymbolConst *)(void *)1)
//==========================================================================
//
// ZCCCompiler Constructor
//
//==========================================================================
ZCCCompiler::ZCCCompiler(ZCC_AST &ast, DObject *_outer, PSymbolTable &_symbols)
: Outer(_outer), Symbols(_symbols), AST(ast), ErrorCount(0), WarnCount(0)
{
// Group top-level nodes by type
if (ast.TopNode != NULL)
{
ZCC_TreeNode *node = ast.TopNode;
do
{
switch (node->NodeType)
{
case AST_Class:
if (AddNamedNode(static_cast<ZCC_Class *>(node)->ClassName, node))
{
Classes.Push(static_cast<ZCC_Class *>(node));
}
break;
case AST_Struct:
if (AddNamedNode(static_cast<ZCC_Struct *>(node)->StructName, node))
{
Structs.Push(static_cast<ZCC_Struct *>(node));
}
break;
case AST_Enum: break;
case AST_EnumTerminator:break;
case AST_ConstantDef:
if (AddNamedNode(static_cast<ZCC_ConstantDef *>(node)->Name, node))
{
Constants.Push(static_cast<ZCC_ConstantDef *>(node));
}
break;
default:
assert(0 && "Unhandled AST node type");
break;
}
node = node->SiblingNext;
}
while (node != ast.TopNode);
}
}
//==========================================================================
//
// ZCCCompiler :: AddNamedNode
//
// Keeps track of definition nodes by their names. Ensures that all names
// in this scope are unique.
//
//==========================================================================
bool ZCCCompiler::AddNamedNode(FName name, ZCC_TreeNode *node)
{
ZCC_TreeNode **check = NamedNodes.CheckKey(name);
if (check != NULL && *check != NULL)
{
Message(node, ERR_symbol_redefinition, "Attempt to redefine '%s'", name.GetChars());
Message(*check, ERR_original_definition, " Original definition is here");
return false;
}
else
{
NamedNodes.Insert(name, node);
return true;
}
}
//==========================================================================
//
// ZCCCompiler :: Message
//
// Prints a warning or error message, and increments the appropriate
// counter.
//
//==========================================================================
void ZCCCompiler::Message(ZCC_TreeNode *node, EZCCError errnum, const char *msg, ...)
{
FString composed;
composed.Format("%s%s, line %d: ",
errnum & ZCCERR_ERROR ? TEXTCOLOR_RED : TEXTCOLOR_ORANGE,
node->SourceName->GetChars(), node->SourceLoc);
va_list argptr;
va_start(argptr, msg);
composed.VAppendFormat(msg, argptr);
va_end(argptr);
composed += '\n';
PrintString(PRINT_HIGH, composed);
if (errnum & ZCCERR_ERROR)
{
ErrorCount++;
}
else
{
WarnCount++;
}
}
//==========================================================================
//
// ZCCCompiler :: Compile
//
// Compile everything defined at this level.
//
//==========================================================================
int ZCCCompiler::Compile()
{
CompileConstants();
return ErrorCount;
}
//==========================================================================
//
// ZCCCompiler :: CompileConstants
//
// Make symbols from every constant defined at this level.
//
//==========================================================================
void ZCCCompiler::CompileConstants()
{
for (unsigned i = 0; i < Constants.Size(); ++i)
{
ZCC_ConstantDef *def = Constants[i];
if (def->Symbol == NULL)
{
CompileConstant(def);
}
}
}
//==========================================================================
//
// ZCCCompiler :: CompileConstant
//
// For every constant definition, evaluate its value (which should result
// in a constant), and create a symbol for it. Simplify() uses recursion
// to resolve constants used before their declarations.
//
//==========================================================================
PSymbolConst *ZCCCompiler::CompileConstant(ZCC_ConstantDef *def)
{
assert(def->Symbol == NULL);
def->Symbol = DEFINING_CONST; // avoid recursion
ZCC_Expression *val = Simplify(def->Value);
def->Value = val;
PSymbolConst *sym = NULL;
if (val->NodeType == AST_ExprConstant)
{
ZCC_ExprConstant *cval = static_cast<ZCC_ExprConstant *>(val);
if (cval->Type == TypeString)
{
sym = new PSymbolConstString(def->Name, *(cval->StringVal));
}
else if (cval->Type->IsA(RUNTIME_CLASS(PInt)))
{
sym = new PSymbolConstNumeric(def->Name, cval->Type, cval->IntVal);
}
else if (cval->Type->IsA(RUNTIME_CLASS(PFloat)))
{
sym = new PSymbolConstNumeric(def->Name, cval->Type, cval->DoubleVal);
}
else
{
Message(def->Value, ERR_bad_const_def_type, "Bad type for constant definiton");
}
}
else
{
Message(def->Value, ERR_const_def_not_constant, "Constant definition requires a constant value");
}
if (sym == NULL)
{
// Create a dummy constant so we don't make any undefined value warnings.
sym = new PSymbolConstNumeric(def->Name, TypeError, 0);
}
def->Symbol = sym;
PSymbol *addsym = Symbols.AddSymbol(sym);
assert(NULL != addsym && "Symbol was redefined (but we shouldn't have even had the chance to do so)");
return sym;
}
//==========================================================================
//
// ZCCCompiler :: Simplify
//
// For an expression,
// Evaluate operators whose arguments are both constants, replacing it
// with a new constant.
// For a binary operator with one constant argument, put it on the right-
// hand operand, where permitted.
// Perform automatic type promotion.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::Simplify(ZCC_Expression *root)
{
if (root->Operation == PEX_ID)
{
return IdentifyIdentifier(static_cast<ZCC_ExprID *>(root));
}
else if (root->Operation == PEX_MemberAccess)
{
return SimplifyMemberAccess(static_cast<ZCC_ExprMemberAccess *>(root));
}
else if (IsUnaryOp(root->Operation))
{
return SimplifyUnary(static_cast<ZCC_ExprUnary *>(root));
}
else if (IsBinaryOp(root->Operation))
{
return SimplifyBinary(static_cast<ZCC_ExprBinary *>(root));
}
return root;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyUnary
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyUnary(ZCC_ExprUnary *unary)
{
unary->Operand = Simplify(unary->Operand);
ZCC_OpProto *op = PromoteUnary(unary->Operation, unary->Operand);
if (op == NULL)
{ // Oh, poo!
unary->Type = TypeError;
}
else if (unary->Operand->Operation == PEX_ConstValue)
{
return op->EvalConst1(static_cast<ZCC_ExprConstant *>(unary->Operand));
}
return unary;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyBinary
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyBinary(ZCC_ExprBinary *binary)
{
binary->Left = Simplify(binary->Left);
binary->Right = Simplify(binary->Right);
ZCC_OpProto *op = PromoteBinary(binary->Operation, binary->Left, binary->Right);
if (op == NULL)
{
binary->Type = TypeError;
}
else if (binary->Left->Operation == PEX_ConstValue &&
binary->Right->Operation == PEX_ConstValue)
{
return op->EvalConst2(static_cast<ZCC_ExprConstant *>(binary->Left),
static_cast<ZCC_ExprConstant *>(binary->Right), AST.Strings);
}
return binary;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyMemberAccess
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyMemberAccess(ZCC_ExprMemberAccess *dotop)
{
dotop->Left = Simplify(dotop->Left);
if (dotop->Left->Operation == PEX_TypeRef)
{ // Type refs can be evaluated now.
PType *ref = static_cast<ZCC_ExprTypeRef *>(dotop->Left)->RefType;
PSymbol *sym = ref->Symbols.FindSymbol(dotop->Right, true);
if (sym == NULL)
{
Message(dotop, ERR_not_a_member, "'%s' is not a valid member", FName(dotop->Right).GetChars());
}
else
{
ZCC_Expression *expr = NodeFromSymbol(sym, dotop);
if (expr == NULL)
{
Message(dotop, ERR_bad_symbol, "Unhandled symbol type encountered");
}
else
{
return expr;
}
}
}
return dotop;
}
//==========================================================================
//
// ZCCCompiler :: PromoteUnary
//
// Converts the operand into a format preferred by the operator.
//
//==========================================================================
ZCC_OpProto *ZCCCompiler::PromoteUnary(EZCCExprType op, ZCC_Expression *&expr)
{
if (expr->Type == TypeError)
{
return NULL;
}
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = countof(route);
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(expr->Type, route, routelen);
if (proto != NULL)
{
expr = ApplyConversion(expr, route, routelen);
}
return proto;
}
//==========================================================================
//
// ZCCCompiler :: PromoteBinary
//
// Converts the operands into a format (hopefully) compatible with the
// operator.
//
//==========================================================================
ZCC_OpProto *ZCCCompiler::PromoteBinary(EZCCExprType op, ZCC_Expression *&left, ZCC_Expression *&right)
{
// If either operand is of type 'error', the result is also 'error'
if (left->Type == TypeError || right->Type == TypeError)
{
return NULL;
}
const PType::Conversion *route1[CONVERSION_ROUTE_SIZE], *route2[CONVERSION_ROUTE_SIZE];
int route1len = countof(route1), route2len = countof(route2);
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(left->Type, route1, route1len, right->Type, route2, route2len);
if (proto != NULL)
{
left = ApplyConversion(left, route1, route1len);
right = ApplyConversion(right, route2, route2len);
}
return proto;
}
//==========================================================================
//
// ZCCCompiler :: ApplyConversion
//
//==========================================================================
ZCC_Expression *ZCCCompiler::ApplyConversion(ZCC_Expression *expr, const PType::Conversion **route, int routelen)
{
for (int i = 0; i < routelen; ++i)
{
if (expr->Operation != PEX_ConstValue)
{
expr = AddCastNode(route[i]->TargetType, expr);
}
else
{
route[i]->ConvertConstant(static_cast<ZCC_ExprConstant *>(expr), AST.Strings);
}
}
return expr;
}
//==========================================================================
//
// ZCCCompiler :: AddCastNode
//
//==========================================================================
ZCC_Expression *ZCCCompiler::AddCastNode(PType *type, ZCC_Expression *expr)
{
assert(expr->Operation != PEX_ConstValue && "Expression must not be constant");
// TODO: add a node here
return expr;
}
//==========================================================================
//
// ZCCCompiler :: IdentifyIdentifier
//
// Returns a node that represents what the identifer stands for.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::IdentifyIdentifier(ZCC_ExprID *idnode)
{
// First things first: Check the symbol table.
PSymbol *sym;
if (NULL != (sym = Symbols.FindSymbol(idnode->Identifier, true)))
{
ZCC_Expression *node = NodeFromSymbol(sym, idnode);
if (node != NULL)
{
return node;
}
}
else
{ // Check nodes that haven't had symbols created for them yet.
ZCC_TreeNode **node = NamedNodes.CheckKey(idnode->Identifier);
if (node != NULL && *node != NULL)
{
if ((*node)->NodeType == AST_ConstantDef)
{
ZCC_ConstantDef *def = static_cast<ZCC_ConstantDef *>(*node);
PSymbolConst *sym = def->Symbol;
if (sym == DEFINING_CONST)
{
Message(idnode, ERR_recursive_definition, "Definition of '%s' is infinitely recursive", FName(idnode->Identifier).GetChars());
sym = NULL;
}
else
{
assert(sym == NULL);
sym = CompileConstant(def);
}
return NodeFromSymbolConst(sym, idnode);
}
}
}
// Identifier didn't refer to anything good, so type error it.
idnode->Type = TypeError;
idnode->Operation = PEX_Nil;
idnode->NodeType = AST_Expression;
return idnode;
}
//==========================================================================
//
// ZCCCompiler :: NodeFromSymbol
//
//==========================================================================
ZCC_Expression *ZCCCompiler::NodeFromSymbol(PSymbol *sym, ZCC_Expression *source)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
return NodeFromSymbolConst(static_cast<PSymbolConst *>(sym), source);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolType)))
{
return NodeFromSymbolType(static_cast<PSymbolType *>(sym), source);
}
return NULL;
}
//==========================================================================
//
// ZCCCompiler :: NodeFromSymbolConst
//
// Returns a new AST constant node with the symbol's content.
//
//==========================================================================
ZCC_ExprConstant *ZCCCompiler::NodeFromSymbolConst(PSymbolConst *sym, ZCC_Expression *idnode)
{
ZCC_ExprConstant *val = static_cast<ZCC_ExprConstant *>(AST.InitNode(sizeof(*val), AST_ExprConstant, idnode));
val->Operation = PEX_ConstValue;
if (sym == NULL)
{
val->Type = TypeError;
val->IntVal = 0;
}
else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConstString)))
{
val->StringVal = AST.Strings.Alloc(static_cast<PSymbolConstString *>(sym)->Str);
val->Type = TypeString;
}
else
{
val->Type = sym->ValueType;
if (val->Type != TypeError)
{
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolConstNumeric)));
if (sym->ValueType->IsKindOf(RUNTIME_CLASS(PInt)))
{
val->IntVal = static_cast<PSymbolConstNumeric *>(sym)->Value;
}
else
{
assert(sym->ValueType->IsKindOf(RUNTIME_CLASS(PFloat)));
val->DoubleVal = static_cast<PSymbolConstNumeric *>(sym)->Float;
}
}
}
return val;
}
//==========================================================================
//
// ZCCCompiler :: NodeFromSymbolType
//
// Returns a new AST type ref node with the symbol's content.
//
//==========================================================================
ZCC_ExprTypeRef *ZCCCompiler::NodeFromSymbolType(PSymbolType *sym, ZCC_Expression *idnode)
{
ZCC_ExprTypeRef *ref = static_cast<ZCC_ExprTypeRef *>(AST.InitNode(sizeof(*ref), AST_ExprTypeRef, idnode));
ref->Operation = PEX_TypeRef;
ref->RefType = sym->Type;
ref->Type = NewClassPointer(RUNTIME_CLASS(PType));
return ref;
}