qzdoom-gpl/src/sound/i_music.cpp

823 lines
19 KiB
C++
Raw Normal View History

/*
** i_music.cpp
** Plays music
**
**---------------------------------------------------------------------------
** Copyright 1998-2010 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <mmsystem.h>
#else
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
#include <unistd.h>
#include <wordexp.h>
#include <stdio.h>
#include "mus2midi.h"
#define FALSE 0
#define TRUE 1
extern void ChildSigHandler (int signum);
#endif
#include <ctype.h>
#include <assert.h>
#include <stdio.h>
#include "i_musicinterns.h"
#include "doomtype.h"
#include "m_argv.h"
#include "i_music.h"
#include "w_wad.h"
#include "c_console.h"
#include "c_dispatch.h"
#include "i_system.h"
#include "i_sound.h"
#include "s_sound.h"
#include "m_swap.h"
#include "i_cd.h"
#include "tempfiles.h"
#include "templates.h"
- The garbage collector is now run one last time just before exiting the game. - Removed movie volume from the sound menu and renamed some of the other options to give the MIDI device name more room to display itself. - Moved the midi device selection into the main sound menu. - Added FMOD as MIDI device -1, to replace the MIDI mapper. This is still the default device. By default, it uses exactly the same DLS instruments as the Microsoft GS Wavetable Synth. If you have another set DLS level 1 patch set you want to use, set the snd_midipatchfile cvar to specify where it should load the instruments from. - Changed the ProduceMIDI function to store its output into a TArray<BYTE>. An overloaded version wraps around it to continue to supply file-writing support for external Timidity++ usage. - Added an FMOD credits banner to comply with their non-commercial license. - Reimplemented the snd_buffersize cvar for the FMOD Ex sound system. Rather than a time in ms, this is now the length in samples of the DSP buffer. Also added the snd_buffercount cvar to offer complete control over the call to FMOD::System::setDSPBufferSize(). Note that with any snd_samplerate below about 44kHz, you will need to set snd_buffersize to avoid long latencies. - Reimplemented the snd_output cvar for the FMOD Ex sound system. - Changed snd_samplerate default to 0. This now means to use the default sample rate. - Made snd_output, snd_output_format, snd_speakermode, snd_resampler, and snd_hrtf available through the menu. - Split the HRTF effect selection into its own cvar: snd_hrtf. - Removed 96000 Hz option from the menu. It's still available through the cvar, if desired. - Fixed: If Windows sound init failed, retry with DirectSound. (Apparently, WASAPI doesn't work with more than two speakers and PCM-Float output at the same time.) - Fixed: Area sounds only played from the front speakers once you got within the 2D panning area. SVN r854 (trunk)
2008-03-26 04:27:07 +00:00
#include "stats.h"
#include "timidity/timidity.h"
#define GZIP_ID1 31
#define GZIP_ID2 139
#define GZIP_CM 8
#define GZIP_ID MAKE_ID(GZIP_ID1,GZIP_ID2,GZIP_CM,0)
#define GZIP_FTEXT 1
#define GZIP_FHCRC 2
#define GZIP_FEXTRA 4
#define GZIP_FNAME 8
#define GZIP_FCOMMENT 16
enum EMIDIType
{
MIDI_NOTMIDI,
MIDI_MIDI,
MIDI_HMI,
MIDI_XMI,
MIDI_MUS
};
extern int MUSHeaderSearch(const BYTE *head, int len);
EXTERN_CVAR (Int, snd_samplerate)
EXTERN_CVAR (Int, snd_mididevice)
static bool MusicDown = true;
static bool ungzip(BYTE *data, int size, TArray<BYTE> &newdata);
MusInfo *currSong;
int nomusic = 0;
float relative_volume = 1.f;
2006-04-14 12:58:52 +00:00
float saved_relative_volume = 1.0f; // this could be used to implement an ACS FadeMusic function
//==========================================================================
//
// CVAR snd_musicvolume
//
// Maximum volume of MOD/stream music.
//==========================================================================
CUSTOM_CVAR (Float, snd_musicvolume, 0.5f, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 0.f)
self = 0.f;
else if (self > 1.f)
self = 1.f;
else
VERY IMPORTANT NOTE FOR ANYBODY BUILDING FROM THE TRUNK: This commit adds support for FMOD Ex while at the same time removing support for FMOD 3. Be sure to update your SDKs. GCC users, be sure to do a "make cleandep && make clean" before building, or you will likely get inexplicable errors. - Fixed: If you wanted to make cleandep with MinGW, you had to specifically specify Makefile.mingw as the makefile to use. - Added a normalizer to the OPL synth. It helped bring up the volume a little, but not nearly as much as I would have liked. - Removed MIDI Mapper references. It doesn't work with the stream API, and it doesn't really exist on NT kernels, either. - Reworked music volume: Except for MIDI, all music volume is controlled through GSnd and not at the individual song level. - Removed the mididevice global variable. - Removed snd_midivolume. Now that all music uses a linear volume scale, there's no need for two separate music volume controls. - Increased snd_samplerate default up to 48000. - Added snd_format, defaulting to "PCM-16". - Added snd_speakermode, defaulting to "Auto". - Replaced snd_fpu with snd_resampler, defaulting to "Linear". - Bumped the snd_channels default up from a pitiful 12 to 32. - Changed snd_3d default to true. The new cvar snd_hw3d determines if hardware 3D support is used and default to false. - Removed the libFLAC source, since FMOD Ex has native FLAC support. - Removed the altsound code, since it was terribly gimped in comparison to the FMOD code. It's original purpose was to have been as a springboard for writing a non-FMOD sound system for Unix-y systems, but that never happened. - Finished preliminary FMOD Ex support. SVN r789 (trunk)
2008-03-09 03:13:49 +00:00
{
// Set general music volume.
if (GSnd != NULL)
{
GSnd->SetMusicVolume(clamp<float>(self * relative_volume, 0, 1));
}
VERY IMPORTANT NOTE FOR ANYBODY BUILDING FROM THE TRUNK: This commit adds support for FMOD Ex while at the same time removing support for FMOD 3. Be sure to update your SDKs. GCC users, be sure to do a "make cleandep && make clean" before building, or you will likely get inexplicable errors. - Fixed: If you wanted to make cleandep with MinGW, you had to specifically specify Makefile.mingw as the makefile to use. - Added a normalizer to the OPL synth. It helped bring up the volume a little, but not nearly as much as I would have liked. - Removed MIDI Mapper references. It doesn't work with the stream API, and it doesn't really exist on NT kernels, either. - Reworked music volume: Except for MIDI, all music volume is controlled through GSnd and not at the individual song level. - Removed the mididevice global variable. - Removed snd_midivolume. Now that all music uses a linear volume scale, there's no need for two separate music volume controls. - Increased snd_samplerate default up to 48000. - Added snd_format, defaulting to "PCM-16". - Added snd_speakermode, defaulting to "Auto". - Replaced snd_fpu with snd_resampler, defaulting to "Linear". - Bumped the snd_channels default up from a pitiful 12 to 32. - Changed snd_3d default to true. The new cvar snd_hw3d determines if hardware 3D support is used and default to false. - Removed the libFLAC source, since FMOD Ex has native FLAC support. - Removed the altsound code, since it was terribly gimped in comparison to the FMOD code. It's original purpose was to have been as a springboard for writing a non-FMOD sound system for Unix-y systems, but that never happened. - Finished preliminary FMOD Ex support. SVN r789 (trunk)
2008-03-09 03:13:49 +00:00
// For music not implemented through the digital sound system,
// let them know about the change.
VERY IMPORTANT NOTE FOR ANYBODY BUILDING FROM THE TRUNK: This commit adds support for FMOD Ex while at the same time removing support for FMOD 3. Be sure to update your SDKs. GCC users, be sure to do a "make cleandep && make clean" before building, or you will likely get inexplicable errors. - Fixed: If you wanted to make cleandep with MinGW, you had to specifically specify Makefile.mingw as the makefile to use. - Added a normalizer to the OPL synth. It helped bring up the volume a little, but not nearly as much as I would have liked. - Removed MIDI Mapper references. It doesn't work with the stream API, and it doesn't really exist on NT kernels, either. - Reworked music volume: Except for MIDI, all music volume is controlled through GSnd and not at the individual song level. - Removed the mididevice global variable. - Removed snd_midivolume. Now that all music uses a linear volume scale, there's no need for two separate music volume controls. - Increased snd_samplerate default up to 48000. - Added snd_format, defaulting to "PCM-16". - Added snd_speakermode, defaulting to "Auto". - Replaced snd_fpu with snd_resampler, defaulting to "Linear". - Bumped the snd_channels default up from a pitiful 12 to 32. - Changed snd_3d default to true. The new cvar snd_hw3d determines if hardware 3D support is used and default to false. - Removed the libFLAC source, since FMOD Ex has native FLAC support. - Removed the altsound code, since it was terribly gimped in comparison to the FMOD code. It's original purpose was to have been as a springboard for writing a non-FMOD sound system for Unix-y systems, but that never happened. - Finished preliminary FMOD Ex support. SVN r789 (trunk)
2008-03-09 03:13:49 +00:00
if (currSong != NULL)
{
currSong->MusicVolumeChanged();
}
else
{ // If the music was stopped because volume was 0, start it now.
S_RestartMusic();
}
VERY IMPORTANT NOTE FOR ANYBODY BUILDING FROM THE TRUNK: This commit adds support for FMOD Ex while at the same time removing support for FMOD 3. Be sure to update your SDKs. GCC users, be sure to do a "make cleandep && make clean" before building, or you will likely get inexplicable errors. - Fixed: If you wanted to make cleandep with MinGW, you had to specifically specify Makefile.mingw as the makefile to use. - Added a normalizer to the OPL synth. It helped bring up the volume a little, but not nearly as much as I would have liked. - Removed MIDI Mapper references. It doesn't work with the stream API, and it doesn't really exist on NT kernels, either. - Reworked music volume: Except for MIDI, all music volume is controlled through GSnd and not at the individual song level. - Removed the mididevice global variable. - Removed snd_midivolume. Now that all music uses a linear volume scale, there's no need for two separate music volume controls. - Increased snd_samplerate default up to 48000. - Added snd_format, defaulting to "PCM-16". - Added snd_speakermode, defaulting to "Auto". - Replaced snd_fpu with snd_resampler, defaulting to "Linear". - Bumped the snd_channels default up from a pitiful 12 to 32. - Changed snd_3d default to true. The new cvar snd_hw3d determines if hardware 3D support is used and default to false. - Removed the libFLAC source, since FMOD Ex has native FLAC support. - Removed the altsound code, since it was terribly gimped in comparison to the FMOD code. It's original purpose was to have been as a springboard for writing a non-FMOD sound system for Unix-y systems, but that never happened. - Finished preliminary FMOD Ex support. SVN r789 (trunk)
2008-03-09 03:13:49 +00:00
}
}
//==========================================================================
//
//
//
//==========================================================================
void I_InitMusic (void)
{
static bool setatterm = false;
Timidity::LoadConfig();
snd_musicvolume.Callback ();
nomusic = !!Args->CheckParm("-nomusic") || !!Args->CheckParm("-nosound");
#ifdef _WIN32
I_InitMusicWin32 ();
#endif // _WIN32
if (!setatterm)
{
setatterm = true;
atterm (I_ShutdownMusic);
#ifndef _WIN32
signal (SIGCHLD, ChildSigHandler);
#endif
}
MusicDown = false;
}
//==========================================================================
//
//
//
//==========================================================================
void I_ShutdownMusic(void)
{
if (MusicDown)
return;
MusicDown = true;
if (currSong)
{
S_StopMusic (true);
assert (currSong == NULL);
}
Timidity::FreeAll();
#ifdef _WIN32
I_ShutdownMusicWin32();
#endif // _WIN32
}
//==========================================================================
//
//
//
//==========================================================================
MusInfo::MusInfo()
: m_Status(STATE_Stopped), m_Looping(false), m_NotStartedYet(true)
{
}
MusInfo::~MusInfo ()
{
if (currSong == this) currSong = NULL;
}
//==========================================================================
//
// starts playing this song
//
//==========================================================================
void MusInfo::Start(bool loop, float rel_vol, int subsong)
{
if (nomusic) return;
if (rel_vol > 0.f) saved_relative_volume = relative_volume = rel_vol;
Stop ();
Play (loop, subsong);
m_NotStartedYet = false;
if (m_Status == MusInfo::STATE_Playing)
currSong = this;
else
currSong = NULL;
// Notify the sound system of the changed relative volume
snd_musicvolume.Callback();
}
//==========================================================================
//
//
//
//==========================================================================
bool MusInfo::SetPosition (unsigned int ms)
{
return false;
}
bool MusInfo::IsMIDI() const
{
return false;
}
bool MusInfo::SetSubsong (int subsong)
{
return false;
}
void MusInfo::Update ()
{
}
void MusInfo::MusicVolumeChanged()
{
}
void MusInfo::TimidityVolumeChanged()
{
}
void MusInfo::FluidSettingInt(const char *, int)
{
}
void MusInfo::FluidSettingNum(const char *, double)
{
}
void MusInfo::FluidSettingStr(const char *, const char *)
{
}
FString MusInfo::GetStats()
{
return "No stats available for this song";
}
MusInfo *MusInfo::GetOPLDumper(const char *filename)
{
return NULL;
}
MusInfo *MusInfo::GetWaveDumper(const char *filename, int rate)
{
return NULL;
}
//==========================================================================
//
// create a streamer based on MIDI file type
//
//==========================================================================
static MIDIStreamer *CreateMIDIStreamer(FileReader &reader, EMidiDevice devtype, EMIDIType miditype)
{
switch (miditype)
{
case MIDI_MUS:
return new MUSSong2(reader, devtype);
case MIDI_MIDI:
return new MIDISong2(reader, devtype);
case MIDI_HMI:
return new HMISong(reader, devtype);
case MIDI_XMI:
return new XMISong(reader, devtype);
default:
return NULL;
}
}
//==========================================================================
//
// identify MIDI file type
//
//==========================================================================
static EMIDIType IdentifyMIDIType(DWORD *id, int size)
{
// Check for MUS format
// Tolerate sloppy wads by searching up to 32 bytes for the header
if (MUSHeaderSearch((BYTE*)id, size) >= 0)
{
return MIDI_MUS;
}
// Check for HMI format
else
if (id[0] == MAKE_ID('H','M','I','-') &&
id[1] == MAKE_ID('M','I','D','I') &&
id[2] == MAKE_ID('S','O','N','G'))
{
return MIDI_HMI;
}
// Check for HMP format
else
if (id[0] == MAKE_ID('H','M','I','M') &&
id[1] == MAKE_ID('I','D','I','P'))
{
return MIDI_HMI;
}
// Check for XMI format
else
if ((id[0] == MAKE_ID('F','O','R','M') &&
id[2] == MAKE_ID('X','D','I','R')) ||
((id[0] == MAKE_ID('C','A','T',' ') || id[0] == MAKE_ID('F','O','R','M')) &&
id[2] == MAKE_ID('X','M','I','D')))
{
return MIDI_XMI;
}
// Check for MIDI format
else if (id[0] == MAKE_ID('M','T','h','d'))
{
return MIDI_MIDI;
}
else
{
return MIDI_NOTMIDI;
}
}
//==========================================================================
//
// identify a music lump's type and set up a player for it
//
//==========================================================================
MusInfo *I_RegisterSong (FileReader *reader, int device)
{
MusInfo *info = NULL;
const char *fmt;
DWORD id[32/4];
if (nomusic)
{
delete reader;
return 0;
}
if(reader->Read(id, 32) != 32 || reader->Seek(-32, SEEK_CUR) != 0)
{
delete reader;
return 0;
}
#ifndef _WIN32
// non-Windows platforms don't support MDEV_MMAPI so map to MDEV_SNDSYS
if (device == MDEV_MMAPI)
device = MDEV_SNDSYS;
#endif
// Check for gzip compression. Some formats are expected to have players
// that can handle it, so it simplifies things if we make all songs
// gzippable.
if ((id[0] & MAKE_ID(255, 255, 255, 0)) == GZIP_ID)
{
int len = reader->GetLength();
BYTE *gzipped = new BYTE[len];
if (reader->Read(gzipped, len) != len)
{
delete[] gzipped;
delete reader;
return NULL;
}
delete reader;
MemoryArrayReader *memreader = new MemoryArrayReader(NULL, 0);
if (!ungzip(gzipped, len, memreader->GetArray()))
{
delete[] gzipped;
delete memreader;
return 0;
}
delete[] gzipped;
memreader->UpdateLength();
if (memreader->Read(id, 32) != 32 || memreader->Seek(-32, SEEK_CUR) != 0)
{
delete memreader;
return 0;
}
reader = memreader;
}
EMIDIType miditype = IdentifyMIDIType(id, sizeof(id));
if (miditype != MIDI_NOTMIDI)
{
EMidiDevice devtype = (EMidiDevice)device;
retry_as_sndsys:
info = CreateMIDIStreamer(*reader, devtype, miditype);
if (info != NULL && !info->IsValid())
{
delete info;
info = NULL;
}
if (info == NULL && devtype != MDEV_SNDSYS && snd_mididevice < 0)
{
devtype = MDEV_SNDSYS;
goto retry_as_sndsys;
}
#ifdef _WIN32
if (info == NULL && devtype != MDEV_MMAPI && snd_mididevice >= 0)
2006-04-14 12:58:52 +00:00
{
info = CreateMIDIStreamer(*reader, MDEV_MMAPI, miditype);
}
#endif
}
// Check for various raw OPL formats
else if (
(id[0] == MAKE_ID('R','A','W','A') && id[1] == MAKE_ID('D','A','T','A')) || // Rdos Raw OPL
(id[0] == MAKE_ID('D','B','R','A') && id[1] == MAKE_ID('W','O','P','L')) || // DosBox Raw OPL
(id[0] == MAKE_ID('A','D','L','I') && *((BYTE *)id + 4) == 'B')) // Martin Fernandez's modified IMF
{
info = new OPLMUSSong (*reader);
}
// Check for game music
else if ((fmt = GME_CheckFormat(id[0])) != NULL && fmt[0] != '\0')
{
info = GME_OpenSong(*reader, fmt);
}
// Check for module formats
else
{
info = MOD_OpenSong(*reader);
}
if (info == NULL)
{
// Check for CDDA "format"
if (id[0] == (('R')|(('I')<<8)|(('F')<<16)|(('F')<<24)))
{
DWORD subid;
reader->Seek(8, SEEK_CUR);
if (reader->Read (&subid, 4) != 4)
{
delete reader;
return 0;
}
reader->Seek(-12, SEEK_CUR);
if (subid == (('C')|(('D')<<8)|(('D')<<16)|(('A')<<24)))
{
// This is a CDDA file
info = new CDDAFile (*reader);
}
}
// no support in sound system => no modules/streams
// 1024 bytes is an arbitrary restriction. It's assumed that anything
// smaller than this can't possibly be a valid music file if it hasn't
// been identified already, so don't even bother trying to load it.
// Of course MIDIs shorter than 1024 bytes should pass.
if (info == NULL && (reader->GetLength() >= 1024 || id[0] == MAKE_ID('M','T','h','d')))
{
// Let the sound system figure out what it is.
info = new StreamSong (reader);
// Assumed ownership
reader = NULL;
}
}
if (reader != NULL) delete reader;
if (info && !info->IsValid ())
{
delete info;
info = NULL;
}
return info;
}
//==========================================================================
//
// play CD music
//
//==========================================================================
MusInfo *I_RegisterCDSong (int track, int id)
{
MusInfo *info = new CDSong (track, id);
if (info && !info->IsValid ())
{
delete info;
info = NULL;
}
return info;
}
//==========================================================================
//
//
//
//==========================================================================
MusInfo *I_RegisterURLSong (const char *url)
{
StreamSong *song;
song = new StreamSong(url);
if (song->IsValid())
{
return song;
}
delete song;
return NULL;
}
//==========================================================================
//
// ungzip
//
// VGZ files are compressed with gzip, so we need to uncompress them before
// handing them to GME.
//
//==========================================================================
static bool ungzip(BYTE *data, int complen, TArray<BYTE> &newdata)
{
const BYTE *max = data + complen - 8;
const BYTE *compstart = data + 10;
BYTE flags = data[3];
unsigned isize;
z_stream stream;
int err;
// Find start of compressed data stream
if (flags & GZIP_FEXTRA)
{
compstart += 2 + LittleShort(*(WORD *)(data + 10));
}
if (flags & GZIP_FNAME)
{
while (compstart < max && *compstart != 0)
{
compstart++;
}
}
if (flags & GZIP_FCOMMENT)
{
while (compstart < max && *compstart != 0)
{
compstart++;
}
}
if (flags & GZIP_FHCRC)
{
compstart += 2;
}
if (compstart >= max - 1)
{
return false;
}
// Decompress
isize = LittleLong(*(DWORD *)(data + complen - 4));
newdata.Resize(isize);
stream.next_in = (Bytef *)compstart;
stream.avail_in = (uInt)(max - compstart);
stream.next_out = &newdata[0];
stream.avail_out = isize;
stream.zalloc = (alloc_func)0;
stream.zfree = (free_func)0;
err = inflateInit2(&stream, -MAX_WBITS);
if (err != Z_OK)
{
return false;
}
err = inflate(&stream, Z_FINISH);
if (err != Z_STREAM_END)
{
inflateEnd(&stream);
return false;
}
err = inflateEnd(&stream);
if (err != Z_OK)
{
return false;
}
return true;
}
//==========================================================================
//
//
//
//==========================================================================
void I_UpdateMusic()
{
if (currSong != NULL)
{
currSong->Update();
}
}
//==========================================================================
//
2006-04-14 12:58:52 +00:00
// Sets relative music volume. Takes $musicvolume in SNDINFO into consideration
//
//==========================================================================
2006-04-14 12:58:52 +00:00
void I_SetMusicVolume (float factor)
{
factor = clamp<float>(factor, 0, 2.0f);
relative_volume = saved_relative_volume * factor;
snd_musicvolume.Callback();
}
//==========================================================================
//
// test a relative music volume
//
//==========================================================================
CCMD(testmusicvol)
{
if (argv.argc() > 1)
{
relative_volume = (float)strtod(argv[1], NULL);
snd_musicvolume.Callback();
}
else
Printf("Current relative volume is %1.2f\n", relative_volume);
}
- The garbage collector is now run one last time just before exiting the game. - Removed movie volume from the sound menu and renamed some of the other options to give the MIDI device name more room to display itself. - Moved the midi device selection into the main sound menu. - Added FMOD as MIDI device -1, to replace the MIDI mapper. This is still the default device. By default, it uses exactly the same DLS instruments as the Microsoft GS Wavetable Synth. If you have another set DLS level 1 patch set you want to use, set the snd_midipatchfile cvar to specify where it should load the instruments from. - Changed the ProduceMIDI function to store its output into a TArray<BYTE>. An overloaded version wraps around it to continue to supply file-writing support for external Timidity++ usage. - Added an FMOD credits banner to comply with their non-commercial license. - Reimplemented the snd_buffersize cvar for the FMOD Ex sound system. Rather than a time in ms, this is now the length in samples of the DSP buffer. Also added the snd_buffercount cvar to offer complete control over the call to FMOD::System::setDSPBufferSize(). Note that with any snd_samplerate below about 44kHz, you will need to set snd_buffersize to avoid long latencies. - Reimplemented the snd_output cvar for the FMOD Ex sound system. - Changed snd_samplerate default to 0. This now means to use the default sample rate. - Made snd_output, snd_output_format, snd_speakermode, snd_resampler, and snd_hrtf available through the menu. - Split the HRTF effect selection into its own cvar: snd_hrtf. - Removed 96000 Hz option from the menu. It's still available through the cvar, if desired. - Fixed: If Windows sound init failed, retry with DirectSound. (Apparently, WASAPI doesn't work with more than two speakers and PCM-Float output at the same time.) - Fixed: Area sounds only played from the front speakers once you got within the 2D panning area. SVN r854 (trunk)
2008-03-26 04:27:07 +00:00
//==========================================================================
//
// STAT music
//
//==========================================================================
ADD_STAT(music)
{
if (currSong != NULL)
{
return currSong->GetStats();
}
return "No song playing";
}
//==========================================================================
//
// CCMD writeopl
//
// If the current song can be played with OPL instruments, dump it to
// the specified file on disk.
//
//==========================================================================
CCMD (writeopl)
{
if (argv.argc() == 2)
{
if (currSong == NULL)
{
Printf ("No song is currently playing.\n");
}
else
{
MusInfo *dumper = currSong->GetOPLDumper(argv[1]);
if (dumper == NULL)
{
Printf ("Current song cannot be saved as OPL data.\n");
}
else
{
dumper->Play(false, 0); // FIXME: Remember subsong.
delete dumper;
}
}
}
else
{
Printf ("Usage: writeopl <filename>\n");
}
}
//==========================================================================
//
// CCMD writewave
//
// If the current song can be represented as a waveform, dump it to
// the specified file on disk. The sample rate parameter is merely a
// suggestion, and the dumper is free to ignore it.
//
//==========================================================================
CCMD (writewave)
{
if (argv.argc() >= 2 && argv.argc() <= 3)
{
if (currSong == NULL)
{
Printf ("No song is currently playing.\n");
}
else
{
MusInfo *dumper = currSong->GetWaveDumper(argv[1], argv.argc() == 3 ? atoi(argv[2]) : 0);
if (dumper == NULL)
{
Printf ("Current song cannot be saved as wave data.\n");
}
else
{
dumper->Play(false, 0); // FIXME: Remember subsong
delete dumper;
}
}
}
else
{
Printf ("Usage: writewave <filename> [sample rate]");
}
}
//==========================================================================
//
// CCMD writemidi
//
// If the currently playing song is a MIDI variant, write it to disk.
// If successful, the current song will restart, since MIDI file generation
// involves a simulated playthrough of the song.
//
//==========================================================================
CCMD (writemidi)
{
if (argv.argc() != 2)
{
Printf("Usage: writemidi <filename>");
return;
}
if (currSong == NULL)
{
Printf("No song is currently playing.\n");
return;
}
if (!currSong->IsMIDI())
{
Printf("Current song is not MIDI-based.\n");
return;
}
TArray<BYTE> midi;
FILE *f;
bool success;
static_cast<MIDIStreamer *>(currSong)->CreateSMF(midi, 1);
f = fopen(argv[1], "wb");
if (f == NULL)
{
Printf("Could not open %s.\n", argv[1]);
return;
}
success = (fwrite(&midi[0], 1, midi.Size(), f) == (size_t)midi.Size());
fclose (f);
if (!success)
{
Printf("Could not write to music file.\n");
}
}