gzdoom/src/v_video.cpp
Christoph Oelckers 37f701a462 - Fixed: The rewrite of FMemLump broke the non-standard use of it in
P_TranslateLinedefs.
- Fixed: ShowErrorPane can be called before ST_NetDone is valid so it has to
  check whether it is NULL.
- Fixed: The Megasphere had an incorrect pickup sound.
- Fixed: The new video initialization code could set the screen's Font pointer
  to NULL, causing a crash with levels that start in a secret sector.


SVN r464 (trunk)
2007-01-26 21:46:47 +00:00

1073 lines
23 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Functions to draw patches (by post) directly to screen->
// Functions to blit a block to the screen->
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include "m_alloc.h"
#include "i_system.h"
#include "i_video.h"
#include "r_local.h"
#include "r_draw.h"
#include "r_plane.h"
#include "r_state.h"
#include "doomdef.h"
#include "doomdata.h"
#include "doomstat.h"
#include "c_console.h"
#include "hu_stuff.h"
#include "m_argv.h"
#include "m_bbox.h"
#include "m_swap.h"
#include "m_menu.h"
#include "i_video.h"
#include "v_video.h"
#include "v_text.h"
#include "w_wad.h"
#include "c_cvars.h"
#include "c_dispatch.h"
#include "cmdlib.h"
#include "gi.h"
#include "templates.h"
#include "sbar.h"
#include "hardware.h"
IMPLEMENT_ABSTRACT_CLASS (DCanvas)
IMPLEMENT_ABSTRACT_CLASS (DFrameBuffer)
#if defined(_DEBUG) && defined(_M_IX86)
#define DBGBREAK { __asm int 3 }
#else
#define DBGBREAK
#endif
class DDummyFrameBuffer : public DFrameBuffer
{
DECLARE_CLASS (DDummyFrameBuffer, DFrameBuffer);
public:
DDummyFrameBuffer (int width, int height)
: DFrameBuffer (0, 0)
{
Width = width;
Height = height;
}
bool Lock(bool buffered) { DBGBREAK; return false; }
void Update() { DBGBREAK; }
PalEntry *GetPalette() { DBGBREAK; return NULL; }
void GetFlashedPalette(PalEntry palette[256]) { DBGBREAK; }
void UpdatePalette() { DBGBREAK; }
bool SetGamma(float gamma) { Gamma = gamma; return true; }
bool SetFlash(PalEntry rgb, int amount) { DBGBREAK; return false; }
void GetFlash(PalEntry &rgb, int &amount) { DBGBREAK; }
int GetPageCount() { DBGBREAK; return 0; }
bool IsFullscreen() { DBGBREAK; return 0; }
#ifdef _WIN32
void PaletteChanged() {}
int QueryNewPalette() { return 0; }
#endif
float Gamma;
};
IMPLEMENT_ABSTRACT_CLASS (DDummyFrameBuffer)
// SimpleCanvas is not really abstract, but this macro does not
// try to generate a CreateNew() function.
IMPLEMENT_ABSTRACT_CLASS (DSimpleCanvas)
int DisplayWidth, DisplayHeight, DisplayBits;
FFont *SmallFont, *SmallFont2, *BigFont, *ConFont;
extern "C" {
DWORD *Col2RGB8_LessPrecision[65];
DWORD Col2RGB8[65][256];
BYTE RGB32k[32][32][32];
}
static DWORD Col2RGB8_2[63][256];
// [RH] The framebuffer is no longer a mere byte array.
// There's also only one, not four.
DFrameBuffer *screen;
CVAR (Int, vid_defwidth, 640, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, vid_defheight, 480, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, vid_defbits, 8, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Bool, vid_fps, false, 0)
CVAR (Bool, ticker, false, 0)
CVAR (Int, vid_showpalette, 0, 0)
CUSTOM_CVAR (Bool, vid_vsync, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (screen != NULL)
{
screen->SetVSync (*self);
}
}
CUSTOM_CVAR (Float, dimamount, 0.2f, CVAR_ARCHIVE)
{
if (self < 0.f)
{
self = 0.f;
}
else if (self > 1.f)
{
self = 1.f;
}
}
CVAR (Color, dimcolor, 0xffd700, CVAR_ARCHIVE)
// [RH] Set true when vid_setmode command has been executed
bool setmodeneeded = false;
// [RH] Resolution to change to when setmodeneeded is true
int NewWidth, NewHeight, NewBits;
//
// V_MarkRect
//
void V_MarkRect (int x, int y, int width, int height)
{
}
DCanvas *DCanvas::CanvasChain = NULL;
DCanvas::DCanvas (int _width, int _height)
{
// Init member vars
Buffer = NULL;
Font = NULL;
LockCount = 0;
Width = _width;
Height = _height;
// Add to list of active canvases
Next = CanvasChain;
CanvasChain = this;
}
DCanvas::~DCanvas ()
{
// Remove from list of active canvases
DCanvas *probe = CanvasChain, **prev;
prev = &CanvasChain;
probe = CanvasChain;
while (probe != NULL)
{
if (probe == this)
{
*prev = probe->Next;
break;
}
prev = &probe->Next;
probe = probe->Next;
}
}
bool DCanvas::IsValid ()
{
// A nun-subclassed DCanvas is never valid
return false;
}
// [RH] Fill an area with a 64x64 flat texture
// right and bottom are one pixel *past* the boundaries they describe.
void DCanvas::FlatFill (int left, int top, int right, int bottom, FTexture *src)
{
int w = src->GetWidth();
int h = src->GetHeight();
// Repeatedly draw the texture, left-to-right, top-to-bottom. The
// texture is positioned so that no matter what coordinates you pass
// to FlatFill, the origin of the repeating pattern is always (0,0).
for (int y = top / h * h; y < bottom; y += h)
{
for (int x = left / w * w; x < right; x += w)
{
DrawTexture (src, x, y,
DTA_ClipLeft, left,
DTA_ClipRight, right,
DTA_ClipTop, top,
DTA_ClipBottom, bottom,
TAG_DONE);
}
}
}
// [RH] Set an area to a specified color
void DCanvas::Clear (int left, int top, int right, int bottom, int color) const
{
int x, y;
BYTE *dest;
if (left == right || top == bottom)
{
return;
}
assert (left < right);
assert (top < bottom);
dest = Buffer + top * Pitch + left;
x = right - left;
for (y = top; y < bottom; y++)
{
memset (dest, color, x);
dest += Pitch;
}
}
void DCanvas::Dim (PalEntry color) const
{
PalEntry dimmer;
float amount = dimamount;
if (gameinfo.gametype == GAME_Hexen && gamestate == GS_DEMOSCREEN)
{ // On the Hexen title screen, the default dimming is not
// enough to make the menus readable.
amount = MIN<float> (1.f, amount*2.f);
}
dimmer = PalEntry(dimcolor);
// Add the cvar's dimming on top of the color passed to the function
if (color.a != 0)
{
float dim[4] = { color.r/255.f, color.g/255.f, color.b/255.f, color.a/255.f };
FBaseStatusBar::AddBlend (dimmer.r/255.f, dimmer.g/255.f, dimmer.b/255.f, amount, dim);
dimmer = PalEntry (BYTE(dim[0]*255), BYTE(dim[1]*255), BYTE(dim[2]*255));
amount = dim[3];
}
Dim (dimmer, amount, 0, 0, Width, Height);
}
void DCanvas::Dim (PalEntry color, float damount, int x1, int y1, int w, int h) const
{
if (damount == 0.f)
return;
DWORD *bg2rgb;
DWORD fg;
int gap;
BYTE *spot;
int x, y;
{
int amount;
amount = (int)(damount * 64);
bg2rgb = Col2RGB8[64-amount];
fg = (((color.r * amount) >> 4) << 20) |
((color.g * amount) >> 4) |
(((color.b * amount) >> 4) << 10);
}
spot = Buffer + x1 + y1*Pitch;
gap = Pitch - w;
for (y = h; y != 0; y--)
{
for (x = w; x != 0; x--)
{
DWORD bg;
bg = bg2rgb[(*spot)&0xff];
bg = (fg+bg) | 0x1f07c1f;
*spot = RGB32k[0][0][bg&(bg>>15)];
spot++;
}
spot += gap;
}
}
int V_GetColorFromString (const DWORD *palette, const char *cstr)
{
int c[3], i, p;
char val[3];
val[2] = '\0';
// Check for HTML-style #RRGGBB or #RGB color string
if (cstr[0] == '#')
{
size_t len = strlen (cstr);
if (len == 7)
{
// Extract each eight-bit component into c[].
for (i = 0; i < 3; ++i)
{
val[0] = cstr[1 + i*2];
val[1] = cstr[2 + i*2];
c[i] = ParseHex (val);
}
}
else if (len == 4)
{
// Extract each four-bit component into c[], expanding to eight bits.
for (i = 0; i < 3; ++i)
{
val[1] = val[0] = cstr[1 + i];
c[i] = ParseHex (val);
}
}
else
{
// Bad HTML-style; pretend it's black.
c[2] = c[1] = c[0] = 0;
}
}
else
{
// Treat it as a space-delemited hexadecimal string
for (i = 0; i < 3; ++i)
{
// Skip leading whitespace
while (*cstr <= ' ' && *cstr != '\0')
{
cstr++;
}
// Extract a component and convert it to eight-bit
for (p = 0; *cstr > ' '; ++p, ++cstr)
{
if (p < 2)
{
val[p] = *cstr;
}
}
if (p == 0)
{
c[i] = 0;
}
else
{
if (p == 1)
{
val[1] = val[0];
}
c[i] = ParseHex (val);
}
}
}
if (palette)
return ColorMatcher.Pick (c[0]>>8, c[1]>>8, c[2]>>8);
else
return MAKERGB(c[0], c[1], c[2]);
}
FString V_GetColorStringByName (const char *name)
{
FMemLump rgbNames;
char *rgbEnd;
char *rgb, *endp;
int rgblump;
int c[3], step;
size_t namelen;
if (Wads.GetNumLumps()==0) return FString();
rgblump = Wads.CheckNumForName ("X11R6RGB");
if (rgblump == -1)
{
Printf ("X11R6RGB lump not found\n");
return FString();
}
rgbNames = Wads.ReadLump (rgblump);
rgb = (char *)rgbNames.GetMem();
rgbEnd = rgb + Wads.LumpLength (rgblump);
step = 0;
namelen = strlen (name);
while (rgb < rgbEnd)
{
// Skip white space
if (*rgb <= ' ')
{
do
{
rgb++;
} while (rgb < rgbEnd && *rgb <= ' ');
}
else if (step == 0 && *rgb == '!')
{ // skip comment lines
do
{
rgb++;
} while (rgb < rgbEnd && *rgb != '\n');
}
else if (step < 3)
{ // collect RGB values
c[step++] = strtoul (rgb, &endp, 10);
if (endp == rgb)
{
break;
}
rgb = endp;
}
else
{ // Check color name
endp = rgb;
// Find the end of the line
while (endp < rgbEnd && *endp != '\n')
endp++;
// Back up over any whitespace
while (endp > rgb && *endp <= ' ')
endp--;
if (endp == rgb)
{
break;
}
size_t checklen = ++endp - rgb;
if (checklen == namelen && strnicmp (rgb, name, checklen) == 0)
{
FString descr;
descr.Format ("#%02x%02x%02x", c[0], c[1], c[2]);
return descr;
}
rgb = endp;
step = 0;
}
}
if (rgb < rgbEnd)
{
Printf ("X11R6RGB lump is corrupt\n");
}
return FString();
}
int V_GetColor (const DWORD *palette, const char *str)
{
FString string = V_GetColorStringByName (str);
int res;
if (!string.IsEmpty())
{
res = V_GetColorFromString (palette, string);
}
else
{
res = V_GetColorFromString (palette, str);
}
return res;
}
// Build the tables necessary for blending
static void BuildTransTable (const PalEntry *palette)
{
int r, g, b;
// create the RGB555 lookup table
for (r = 0; r < 32; r++)
for (g = 0; g < 32; g++)
for (b = 0; b < 32; b++)
RGB32k[r][g][b] = ColorMatcher.Pick ((r<<3)|(r>>2), (g<<3)|(g>>2), (b<<3)|(b>>2));
int x, y;
// create the swizzled palette
for (x = 0; x < 65; x++)
for (y = 0; y < 256; y++)
Col2RGB8[x][y] = (((palette[y].r*x)>>4)<<20) |
((palette[y].g*x)>>4) |
(((palette[y].b*x)>>4)<<10);
// create the swizzled palette with the lsb of red and blue forced to 0
// (for green, a 1 is okay since it never gets added into)
for (x = 1; x < 64; x++)
{
Col2RGB8_LessPrecision[x] = Col2RGB8_2[x-1];
for (y = 0; y < 256; y++)
{
Col2RGB8_2[x-1][y] = Col2RGB8[x][y] & 0x3feffbff;
}
}
Col2RGB8_LessPrecision[0] = Col2RGB8[0];
Col2RGB8_LessPrecision[64] = Col2RGB8[64];
}
void DCanvas::Blit (int srcx, int srcy, int srcwidth, int srcheight,
DCanvas *dest, int destx, int desty, int destwidth, int destheight)
{
fixed_t fracxstep, fracystep;
fixed_t fracx, fracy;
int x, y;
bool lockthis, lockdest;
if ( (lockthis = (LockCount == 0)) )
{
if (Lock ())
{ // Surface was lost, so nothing to blit
Unlock ();
return;
}
}
if ( (lockdest = (dest->LockCount == 0)) )
{
dest->Lock ();
}
fracy = srcy << FRACBITS;
fracystep = (srcheight << FRACBITS) / destheight;
fracxstep = (srcwidth << FRACBITS) / destwidth;
BYTE *destline, *srcline;
BYTE *destbuffer = dest->Buffer;
BYTE *srcbuffer = Buffer;
if (fracxstep == FRACUNIT)
{
for (y = desty; y < desty + destheight; y++, fracy += fracystep)
{
memcpy (destbuffer + y * dest->Pitch + destx,
srcbuffer + (fracy >> FRACBITS) * Pitch + srcx,
destwidth);
}
}
else
{
for (y = desty; y < desty + destheight; y++, fracy += fracystep)
{
srcline = srcbuffer + (fracy >> FRACBITS) * Pitch + srcx;
destline = destbuffer + y * dest->Pitch + destx;
for (x = fracx = 0; x < destwidth; x++, fracx += fracxstep)
{
destline[x] = srcline[fracx >> FRACBITS];
}
}
}
if (lockthis)
{
Unlock ();
}
if (lockdest)
{
Unlock ();
}
}
void DCanvas::CalcGamma (float gamma, BYTE gammalookup[256])
{
// I found this formula on the web at
// <http://panda.mostang.com/sane/sane-gamma.html>,
// but that page no longer exits.
double invgamma = 1.f / gamma;
int i;
for (i = 0; i < 256; i++)
{
gammalookup[i] = (BYTE)(255.0 * pow (i / 255.0, invgamma));
}
}
DSimpleCanvas::DSimpleCanvas (int width, int height)
: DCanvas (width, height)
{
// Making the pitch a power of 2 is very bad for performance
// Try to maximize the number of cache lines that can be filled
// for each column drawing operation by making the pitch slightly
// longer than the width. The values used here are all based on
// empirical evidence.
if (width <= 640)
{
// For low resolutions, just keep the pitch the same as the width.
// Some speedup can be seen using the technique below, but the speedup
// is so marginal that I don't consider it worthwhile.
Pitch = width;
}
else
{
// If we couldn't figure out the CPU's L1 cache line size, assume
// it's 32 bytes wide.
if (CPU.DataL1LineSize == 0)
{
CPU.DataL1LineSize = 32;
}
// The Athlon and P3 have very different caches, apparently.
// I am going to generalize the Athlon's performance to all AMD
// processors and the P3's to all non-AMD processors. I don't know
// how smart that is, but I don't have a vast plethora of
// processors to test with.
if (CPU.bIsAMD)
{
Pitch = width + CPU.DataL1LineSize;
}
else
{
Pitch = width + MAX(0, CPU.DataL1LineSize - 8);
}
}
MemBuffer = new BYTE[Pitch * height];
memset (MemBuffer, 0, Pitch * height);
}
DSimpleCanvas::~DSimpleCanvas ()
{
if (MemBuffer != NULL)
{
delete[] MemBuffer;
MemBuffer = NULL;
}
}
bool DSimpleCanvas::IsValid ()
{
return (MemBuffer != NULL);
}
bool DSimpleCanvas::Lock ()
{
if (LockCount == 0)
{
Buffer = MemBuffer;
}
LockCount++;
return false; // System surfaces are never lost
}
void DSimpleCanvas::Unlock ()
{
if (--LockCount <= 0)
{
LockCount = 0;
Buffer = NULL; // Enforce buffer access only between Lock/Unlock
}
}
DFrameBuffer::DFrameBuffer (int width, int height)
: DSimpleCanvas (width, height)
{
LastMS = LastSec = FrameCount = LastCount = LastTic = 0;
}
void DFrameBuffer::DrawRateStuff ()
{
// Draws frame time and cumulative fps
if (vid_fps)
{
DWORD ms = I_MSTime ();
DWORD howlong = ms - LastMS;
if (howlong > 0)
{
char fpsbuff[40];
int chars;
chars = sprintf (fpsbuff, "%2u ms (%3u fps)", howlong, LastCount);
Clear (Width - chars * 8, 0, Width, 8, 0);
SetFont (ConFont);
DrawText (CR_WHITE, Width - chars * 8, 0, (char *)&fpsbuff[0], TAG_DONE);
SetFont (SmallFont);
DWORD thisSec = ms/1000;
if (LastSec < thisSec)
{
LastCount = FrameCount / (thisSec - LastSec);
LastSec = thisSec;
FrameCount = 0;
}
FrameCount++;
}
LastMS = ms;
}
// draws little dots on the bottom of the screen
if (ticker)
{
int i = I_GetTime(false);
int tics = i - LastTic;
BYTE *buffer = GetBuffer () + (GetHeight()-1)*GetPitch();
LastTic = i;
if (tics > 20) tics = 20;
for (i = 0; i < tics*2; i += 2) buffer[i] = 0xff;
for ( ; i < 20*2; i += 2) buffer[i] = 0x00;
}
// draws the palette for debugging
if (vid_showpalette)
{
int i, j, k, l;
BYTE *buffer = GetBuffer();
for (i = k = 0; i < 16; ++i)
{
for (j = 0; j < 8; ++j)
{
for (l = 0; l < 16; ++l)
{
int color;
if (vid_showpalette > 1 && vid_showpalette < 9)
{
color = translationtables[TRANSLATION_Standard][(vid_showpalette-2)*256+k];
}
else
{
color = k;
}
memset (buffer, color, 8);
buffer += 8;
k++;
}
k -= 16;
buffer += GetPitch() - 16*8;
}
k += 16;
}
}
}
void DFrameBuffer::CopyFromBuff (BYTE *src, int srcPitch, int width, int height, BYTE *dest)
{
if (Pitch == width && Pitch == Width && srcPitch == width)
{
memcpy (dest, src, Width * Height);
}
else
{
for (int y = 0; y < height; y++)
{
memcpy (dest, src, width);
dest += Pitch;
src += srcPitch;
}
}
}
void DFrameBuffer::SetVSync (bool vsync)
{
}
//
// V_SetResolution
//
bool V_DoModeSetup (int width, int height, int bits)
{
DFrameBuffer *buff = I_SetMode (width, height, screen);
if (buff == NULL)
{
return false;
}
screen = buff;
screen->SetFont (SmallFont);
screen->SetGamma (Gamma);
{
int ratio;
int cwidth;
int cheight;
ratio = CheckRatio (width, height);
if (ratio & 4)
{
cwidth = width;
cheight = height * BaseRatioSizes[ratio][3] / 48;
}
else
{
cwidth = width * BaseRatioSizes[ratio][3] / 48;
cheight = height;
}
CleanXfac = MAX (cwidth / 320, 1);
CleanYfac = MAX (cheight / 200, 1);
}
if (CleanXfac > 1 && CleanYfac > 1 && CleanXfac != CleanYfac)
{
if (CleanXfac < CleanYfac)
CleanYfac = CleanXfac;
else
CleanXfac = CleanYfac;
}
CleanWidth = width / CleanXfac;
CleanHeight = height / CleanYfac;
DisplayWidth = width;
DisplayHeight = height;
DisplayBits = bits;
R_MultiresInit ();
RenderTarget = screen;
screen->Lock (true);
R_SetupBuffer (false);
screen->Unlock ();
M_RefreshModesList ();
return true;
}
bool V_SetResolution (int width, int height, int bits)
{
int oldwidth, oldheight;
int oldbits;
if (screen)
{
oldwidth = SCREENWIDTH;
oldheight = SCREENHEIGHT;
oldbits = DisplayBits;
}
else
{ // Harmless if screen wasn't allocated
oldwidth = width;
oldheight = height;
oldbits = bits;
}
I_ClosestResolution (&width, &height, bits);
if (!I_CheckResolution (width, height, bits))
{ // Try specified resolution
if (!I_CheckResolution (oldwidth, oldheight, oldbits))
{ // Try previous resolution (if any)
return false;
}
else
{
width = oldwidth;
height = oldheight;
bits = oldbits;
}
}
return V_DoModeSetup (width, height, bits);
}
CCMD (vid_setmode)
{
bool goodmode = false;
int width = 0, height = SCREENHEIGHT;
int bits = DisplayBits;
if (argv.argc() > 1)
{
width = atoi (argv[1]);
if (argv.argc() > 2)
{
height = atoi (argv[2]);
if (argv.argc() > 3)
{
bits = atoi (argv[3]);
}
}
}
if (width && I_CheckResolution (width, height, bits))
{
goodmode = true;
}
if (goodmode)
{
// The actual change of resolution will take place
// near the beginning of D_Display().
if (gamestate != GS_STARTUP)
{
setmodeneeded = true;
NewWidth = width;
NewHeight = height;
NewBits = bits;
}
}
else if (width)
{
Printf ("Unknown resolution %d x %d x %d\n", width, height, bits);
}
else
{
Printf ("Usage: vid_setmode <width> <height> <mode>\n");
}
}
//
// V_Init
//
void V_Init (void)
{
char *i;
int width, height, bits;
atterm (V_Shutdown);
// [RH] Initialize palette management
InitPalette ();
width = height = bits = 0;
if ( (i = Args.CheckValue ("-width")) )
width = atoi (i);
if ( (i = Args.CheckValue ("-height")) )
height = atoi (i);
if ( (i = Args.CheckValue ("-bits")) )
bits = atoi (i);
if (width == 0)
{
if (height == 0)
{
width = vid_defwidth;
height = vid_defheight;
}
else
{
width = (height * 8) / 6;
}
}
else if (height == 0)
{
height = (width * 6) / 8;
}
if (bits == 0)
{
bits = vid_defbits;
}
screen = new DDummyFrameBuffer (width, height);
BuildTransTable (GPalette.BaseColors);
}
void V_Init2()
{
assert (screen->IsKindOf(RUNTIME_CLASS(DDummyFrameBuffer)));
int width = screen->GetWidth();
int height = screen->GetHeight();
float gamma = static_cast<DDummyFrameBuffer *>(screen)->Gamma;
FFont *font = screen->Font;
delete screen;
screen = NULL;
I_InitGraphics();
I_ClosestResolution (&width, &height, 8);
if (!V_SetResolution (width, height, 8))
I_FatalError ("Could not set resolution to %d x %d x %d", width, height, 8);
else
Printf ("Resolution: %d x %d\n", SCREENWIDTH, SCREENHEIGHT);
screen->SetGamma (gamma);
if (font != NULL) screen->SetFont (font);
FBaseCVar::ResetColors ();
C_NewModeAdjust();
M_InitVideoModesMenu();
BorderNeedRefresh = screen->GetPageCount ();
setsizeneeded = true;
}
void V_Shutdown()
{
if (screen != NULL)
{
delete screen;
screen = NULL;
}
while (FFont::FirstFont != NULL)
{
delete FFont::FirstFont;
}
}
EXTERN_CVAR (Bool, vid_tft)
CUSTOM_CVAR (Bool, vid_nowidescreen, false, CVAR_GLOBALCONFIG|CVAR_ARCHIVE)
{
setsizeneeded = true;
if (StatusBar != NULL)
{
StatusBar->ScreenSizeChanged();
}
}
// Tries to guess the physical dimensions of the screen based on the
// screen's pixel dimensions. Can return:
// 0: 4:3
// 1: 16:9
// 2: 16:10
// 4: 5:4
int CheckRatio (int width, int height)
{
if (vid_nowidescreen)
{
if (!vid_tft)
{
return 0;
}
return (height * 5/4 == width) ? 4 : 0;
}
// If the size is approximately 16:9, consider it so.
if (abs (height * 16/9 - width) < 10)
{
return 1;
}
// 16:10 has more variance in the pixel dimensions. Grr.
if (abs (height * 16/10 - width) < 60)
{
// 320x200 and 640x400 are always 4:3, not 16:10
if ((width == 320 && height == 200) || (width == 640 && height == 400))
{
return 0;
}
return 2;
}
// Unless vid_tft is set, 1280x1024 is 4:3, not 5:4.
if (height * 5/4 == width && vid_tft)
{
return 4;
}
// Assume anything else is 4:3.
return 0;
}
// First column: Base width (unused)
// Second column: Base height (used for wall visibility multiplier)
// Third column: Psprite offset (needed for "tallscreen" modes)
// Fourth column: Width or height multiplier
const int BaseRatioSizes[5][4] =
{
{ 960, 600, 0, 48 }, // 4:3 320, 200, multiplied by three
{ 1280, 450, 0, 48*3/4 }, // 16:9 426.6667, 150, multiplied by three
{ 1152, 500, 0, 48*5/6 }, // 16:10 386, 166.6667, multiplied by three
{ 960, 600, 0, 48 },
{ 960, 640, (int)(6.5*FRACUNIT), 48*15/16 } // 5:4 320, 213.3333, multiplied by three
};