mirror of
https://github.com/ZDoom/gzdoom.git
synced 2024-12-13 06:01:11 +00:00
915 lines
24 KiB
GLSL
915 lines
24 KiB
GLSL
|
|
|
|
layout(location = 0) in vec4 vTexCoord;
|
|
layout(location = 1) in vec4 vColor;
|
|
layout(location = 2) in vec4 pixelpos;
|
|
layout(location = 3) in vec3 glowdist;
|
|
layout(location = 4) in vec3 gradientdist;
|
|
layout(location = 5) in vec4 vWorldNormal;
|
|
layout(location = 6) in vec4 vEyeNormal;
|
|
layout(location = 9) in vec3 vLightmap;
|
|
|
|
#ifdef NO_CLIPDISTANCE_SUPPORT
|
|
layout(location = 7) in vec4 ClipDistanceA;
|
|
layout(location = 8) in vec4 ClipDistanceB;
|
|
#endif
|
|
|
|
layout(location=0) out vec4 FragColor;
|
|
#ifdef GBUFFER_PASS
|
|
layout(location=1) out vec4 FragFog;
|
|
layout(location=2) out vec4 FragNormal;
|
|
#endif
|
|
|
|
struct Material
|
|
{
|
|
vec4 Base;
|
|
vec4 Bright;
|
|
vec4 Glow;
|
|
vec3 Normal;
|
|
vec3 Specular;
|
|
float Glossiness;
|
|
float SpecularLevel;
|
|
float Metallic;
|
|
float Roughness;
|
|
float AO;
|
|
};
|
|
|
|
vec4 Process(vec4 color);
|
|
vec4 ProcessTexel();
|
|
Material ProcessMaterial(); // note that this is deprecated. Use SetupMaterial!
|
|
void SetupMaterial(inout Material mat);
|
|
vec4 ProcessLight(Material mat, vec4 color);
|
|
vec3 ProcessMaterialLight(Material material, vec3 color);
|
|
vec2 GetTexCoord();
|
|
|
|
// These get Or'ed into uTextureMode because it only uses its 3 lowermost bits.
|
|
const int TEXF_Brightmap = 0x10000;
|
|
const int TEXF_Detailmap = 0x20000;
|
|
const int TEXF_Glowmap = 0x40000;
|
|
const int TEXF_ClampY = 0x80000;
|
|
|
|
//===========================================================================
|
|
//
|
|
// RGB to HSV
|
|
//
|
|
//===========================================================================
|
|
|
|
vec3 rgb2hsv(vec3 c)
|
|
{
|
|
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
|
|
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
|
|
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
|
|
|
|
float d = q.x - min(q.w, q.y);
|
|
float e = 1.0e-10;
|
|
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Color to grayscale
|
|
//
|
|
//===========================================================================
|
|
|
|
float grayscale(vec4 color)
|
|
{
|
|
return dot(color.rgb, vec3(0.3, 0.56, 0.14));
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Desaturate a color
|
|
//
|
|
//===========================================================================
|
|
|
|
vec4 dodesaturate(vec4 texel, float factor)
|
|
{
|
|
if (factor != 0.0)
|
|
{
|
|
float gray = grayscale(texel);
|
|
return mix (texel, vec4(gray,gray,gray,texel.a), factor);
|
|
}
|
|
else
|
|
{
|
|
return texel;
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Desaturate a color
|
|
//
|
|
//===========================================================================
|
|
|
|
vec4 desaturate(vec4 texel)
|
|
{
|
|
return dodesaturate(texel, uDesaturationFactor);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Texture tinting code originally from JFDuke but with a few more options
|
|
//
|
|
//===========================================================================
|
|
|
|
const int Tex_Blend_Alpha = 1;
|
|
const int Tex_Blend_Screen = 2;
|
|
const int Tex_Blend_Overlay = 3;
|
|
const int Tex_Blend_Hardlight = 4;
|
|
|
|
vec4 ApplyTextureManipulation(vec4 texel, int blendflags)
|
|
{
|
|
// Step 1: desaturate according to the material's desaturation factor.
|
|
texel = dodesaturate(texel, uTextureModulateColor.a);
|
|
|
|
// Step 2: Invert if requested
|
|
if ((blendflags & 8) != 0)
|
|
{
|
|
texel.rgb = vec3(1.0 - texel.r, 1.0 - texel.g, 1.0 - texel.b);
|
|
}
|
|
|
|
// Step 3: Apply additive color
|
|
texel.rgb += uTextureAddColor.rgb;
|
|
|
|
// Step 4: Colorization, including gradient if set.
|
|
texel.rgb *= uTextureModulateColor.rgb;
|
|
|
|
// Before applying the blend the value needs to be clamped to [0..1] range.
|
|
texel.rgb = clamp(texel.rgb, 0.0, 1.0);
|
|
|
|
// Step 5: Apply a blend. This may just be a translucent overlay or one of the blend modes present in current Build engines.
|
|
if ((blendflags & 7) != 0)
|
|
{
|
|
vec3 tcol = texel.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math.
|
|
vec4 tint = uTextureBlendColor * 255.0;
|
|
|
|
switch (blendflags & 7)
|
|
{
|
|
default:
|
|
tcol.b = tcol.b * (1.0 - uTextureBlendColor.a) + tint.b * uTextureBlendColor.a;
|
|
tcol.g = tcol.g * (1.0 - uTextureBlendColor.a) + tint.g * uTextureBlendColor.a;
|
|
tcol.r = tcol.r * (1.0 - uTextureBlendColor.a) + tint.r * uTextureBlendColor.a;
|
|
break;
|
|
// The following 3 are taken 1:1 from the Build engine
|
|
case Tex_Blend_Screen:
|
|
tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - tint.r)) / 256.0);
|
|
tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 256.0);
|
|
tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - tint.b)) / 256.0);
|
|
break;
|
|
case Tex_Blend_Overlay:
|
|
tcol.b = tcol.b < 128.0? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0);
|
|
tcol.g = tcol.g < 128.0? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0);
|
|
tcol.r = tcol.r < 128.0? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0);
|
|
break;
|
|
case Tex_Blend_Hardlight:
|
|
tcol.b = tint.b < 128.0 ? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0);
|
|
tcol.g = tint.g < 128.0 ? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0);
|
|
tcol.r = tint.r < 128.0 ? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0);
|
|
break;
|
|
}
|
|
texel.rgb = tcol / 255.0;
|
|
}
|
|
return texel;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// This function is common for all (non-special-effect) fragment shaders
|
|
//
|
|
//===========================================================================
|
|
|
|
vec4 getTexel(vec2 st)
|
|
{
|
|
vec4 texel = texture(tex, st);
|
|
|
|
//
|
|
// Apply texture modes
|
|
//
|
|
switch (uTextureMode & 0xffff)
|
|
{
|
|
case 1: // TM_STENCIL
|
|
texel.rgb = vec3(1.0,1.0,1.0);
|
|
break;
|
|
|
|
case 2: // TM_OPAQUE
|
|
texel.a = 1.0;
|
|
break;
|
|
|
|
case 3: // TM_INVERSE
|
|
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a);
|
|
break;
|
|
|
|
case 4: // TM_ALPHATEXTURE
|
|
{
|
|
float gray = grayscale(texel);
|
|
texel = vec4(1.0, 1.0, 1.0, gray*texel.a);
|
|
break;
|
|
}
|
|
|
|
case 5: // TM_CLAMPY
|
|
if (st.t < 0.0 || st.t > 1.0)
|
|
{
|
|
texel.a = 0.0;
|
|
}
|
|
break;
|
|
|
|
case 6: // TM_OPAQUEINVERSE
|
|
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, 1.0);
|
|
break;
|
|
|
|
case 7: //TM_FOGLAYER
|
|
return texel;
|
|
|
|
}
|
|
|
|
if ((uTextureMode & TEXF_ClampY) != 0)
|
|
{
|
|
if (st.t < 0.0 || st.t > 1.0)
|
|
{
|
|
texel.a = 0.0;
|
|
}
|
|
}
|
|
|
|
// Apply the texture modification colors.
|
|
int blendflags = int(uTextureAddColor.a); // this alpha is unused otherwise
|
|
if (blendflags != 0)
|
|
{
|
|
// only apply the texture manipulation if it contains something.
|
|
texel = ApplyTextureManipulation(texel, blendflags);
|
|
}
|
|
|
|
// Apply the Doom64 style material colors on top of everything from the texture modification settings.
|
|
// This may be a bit redundant in terms of features but the data comes from different sources so this is unavoidable.
|
|
texel.rgb += uAddColor.rgb;
|
|
if (uObjectColor2.a == 0.0) texel *= uObjectColor;
|
|
else texel *= mix(uObjectColor, uObjectColor2, gradientdist.z);
|
|
|
|
// Last but not least apply the desaturation from the sector's light.
|
|
return desaturate(texel);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Vanilla Doom wall colormap equation
|
|
//
|
|
//===========================================================================
|
|
float R_WallColormap(float lightnum, float z, vec3 normal)
|
|
{
|
|
// R_ScaleFromGlobalAngle calculation
|
|
float projection = 160.0; // projection depends on SCREENBLOCKS!! 160 is the fullscreen value
|
|
vec2 line_v1 = pixelpos.xz; // in vanilla this is the first curline vertex
|
|
vec2 line_normal = normal.xz;
|
|
float texscale = projection * clamp(dot(normalize(uCameraPos.xz - line_v1), line_normal), 0.0, 1.0) / z;
|
|
|
|
float lightz = clamp(16.0 * texscale, 0.0, 47.0);
|
|
|
|
// scalelight[lightnum][lightz] lookup
|
|
float startmap = (15.0 - lightnum) * 4.0;
|
|
return startmap - lightz * 0.5;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Vanilla Doom plane colormap equation
|
|
//
|
|
//===========================================================================
|
|
float R_PlaneColormap(float lightnum, float z)
|
|
{
|
|
float lightz = clamp(z / 16.0f, 0.0, 127.0);
|
|
|
|
// zlight[lightnum][lightz] lookup
|
|
float startmap = (15.0 - lightnum) * 4.0;
|
|
float scale = 160.0 / (lightz + 1.0);
|
|
return startmap - scale * 0.5;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// zdoom colormap equation
|
|
//
|
|
//===========================================================================
|
|
float R_ZDoomColormap(float light, float z)
|
|
{
|
|
float L = light * 255.0;
|
|
float vis = min(uGlobVis / z, 24.0 / 32.0);
|
|
float shade = 2.0 - (L + 12.0) / 128.0;
|
|
float lightscale = shade - vis;
|
|
return lightscale * 31.0;
|
|
}
|
|
|
|
float R_DoomColormap(float light, float z)
|
|
{
|
|
if ((uPalLightLevels >> 16) == 16) // gl_lightmode 16
|
|
{
|
|
float lightnum = clamp(light * 15.0, 0.0, 15.0);
|
|
|
|
if (dot(vWorldNormal.xyz, vWorldNormal.xyz) > 0.5)
|
|
{
|
|
vec3 normal = normalize(vWorldNormal.xyz);
|
|
return mix(R_WallColormap(lightnum, z, normal), R_PlaneColormap(lightnum, z), abs(normal.y));
|
|
}
|
|
else // vWorldNormal is not set on sprites
|
|
{
|
|
return R_PlaneColormap(lightnum, z);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return R_ZDoomColormap(light, z);
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Doom software lighting equation
|
|
//
|
|
//===========================================================================
|
|
float R_DoomLightingEquation(float light)
|
|
{
|
|
// z is the depth in view space, positive going into the screen
|
|
float z;
|
|
if (((uPalLightLevels >> 8) & 0xff) == 2)
|
|
{
|
|
z = distance(pixelpos.xyz, uCameraPos.xyz);
|
|
}
|
|
else
|
|
{
|
|
z = pixelpos.w;
|
|
}
|
|
|
|
if ((uPalLightLevels >> 16) == 5) // gl_lightmode 5: Build software lighting emulation.
|
|
{
|
|
// This is a lot more primitive than Doom's lighting...
|
|
float numShades = float(uPalLightLevels & 255);
|
|
float curshade = (1.0 - light) * (numShades - 1.0);
|
|
float visibility = max(uGlobVis * uLightFactor * z, 0.0);
|
|
float shade = clamp((curshade + visibility), 0.0, numShades - 1.0);
|
|
return clamp(shade * uLightDist, 0.0, 1.0);
|
|
}
|
|
|
|
float colormap = R_DoomColormap(light, z);
|
|
|
|
if ((uPalLightLevels & 0xff) != 0)
|
|
colormap = floor(colormap) + 0.5;
|
|
|
|
// Result is the normalized colormap index (0 bright .. 1 dark)
|
|
return clamp(colormap, 0.0, 31.0) / 32.0;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Check if light is in shadow
|
|
//
|
|
//===========================================================================
|
|
|
|
#ifdef SUPPORTS_RAYTRACING
|
|
|
|
bool traceHit(vec3 origin, vec3 direction, float dist)
|
|
{
|
|
rayQueryEXT rayQuery;
|
|
rayQueryInitializeEXT(rayQuery, TopLevelAS, gl_RayFlagsTerminateOnFirstHitEXT, 0xFF, origin, 0.01f, direction, dist);
|
|
while(rayQueryProceedEXT(rayQuery)) { }
|
|
return rayQueryGetIntersectionTypeEXT(rayQuery, true) != gl_RayQueryCommittedIntersectionNoneEXT;
|
|
}
|
|
|
|
vec2 softshadow[9 * 3] = vec2[](
|
|
vec2( 0.0, 0.0),
|
|
vec2(-2.0,-2.0),
|
|
vec2( 2.0, 2.0),
|
|
vec2( 2.0,-2.0),
|
|
vec2(-2.0, 2.0),
|
|
vec2(-1.0,-1.0),
|
|
vec2( 1.0, 1.0),
|
|
vec2( 1.0,-1.0),
|
|
vec2(-1.0, 1.0),
|
|
|
|
vec2( 0.0, 0.0),
|
|
vec2(-1.5,-1.5),
|
|
vec2( 1.5, 1.5),
|
|
vec2( 1.5,-1.5),
|
|
vec2(-1.5, 1.5),
|
|
vec2(-0.5,-0.5),
|
|
vec2( 0.5, 0.5),
|
|
vec2( 0.5,-0.5),
|
|
vec2(-0.5, 0.5),
|
|
|
|
vec2( 0.0, 0.0),
|
|
vec2(-1.25,-1.75),
|
|
vec2( 1.75, 1.25),
|
|
vec2( 1.25,-1.75),
|
|
vec2(-1.75, 1.75),
|
|
vec2(-0.75,-0.25),
|
|
vec2( 0.25, 0.75),
|
|
vec2( 0.75,-0.25),
|
|
vec2(-0.25, 0.75)
|
|
);
|
|
|
|
float shadowAttenuation(vec4 lightpos, float lightcolorA)
|
|
{
|
|
float shadowIndex = abs(lightcolorA) - 1.0;
|
|
if (shadowIndex >= 1024.0)
|
|
return 1.0; // Don't cast rays for this light
|
|
|
|
vec3 origin = pixelpos.xzy;
|
|
vec3 target = lightpos.xzy + 0.01; // nudge light position slightly as Doom maps tend to have their lights perfectly aligned with planes
|
|
|
|
vec3 direction = normalize(target - origin);
|
|
float dist = distance(origin, target);
|
|
|
|
if (uShadowmapFilter <= 0)
|
|
{
|
|
return traceHit(origin, direction, dist) ? 0.0 : 1.0;
|
|
}
|
|
else
|
|
{
|
|
vec3 v = (abs(direction.x) > abs(direction.y)) ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
|
|
vec3 xdir = normalize(cross(direction, v));
|
|
vec3 ydir = cross(direction, xdir);
|
|
|
|
float sum = 0.0;
|
|
int step_count = uShadowmapFilter * 9;
|
|
for (int i = 0; i <= step_count; i++)
|
|
{
|
|
vec3 pos = target + xdir * softshadow[i].x + ydir * softshadow[i].y;
|
|
sum += traceHit(origin, normalize(pos - origin), dist) ? 0.0 : 1.0;
|
|
}
|
|
return sum / step_count;
|
|
}
|
|
}
|
|
|
|
#else
|
|
#ifdef SUPPORTS_SHADOWMAPS
|
|
|
|
float shadowDirToU(vec2 dir)
|
|
{
|
|
if (abs(dir.y) > abs(dir.x))
|
|
{
|
|
float x = dir.x / dir.y * 0.125;
|
|
if (dir.y >= 0.0)
|
|
return 0.125 + x;
|
|
else
|
|
return (0.50 + 0.125) + x;
|
|
}
|
|
else
|
|
{
|
|
float y = dir.y / dir.x * 0.125;
|
|
if (dir.x >= 0.0)
|
|
return (0.25 + 0.125) - y;
|
|
else
|
|
return (0.75 + 0.125) - y;
|
|
}
|
|
}
|
|
|
|
vec2 shadowUToDir(float u)
|
|
{
|
|
u *= 4.0;
|
|
vec2 raydir;
|
|
switch (int(u))
|
|
{
|
|
case 0: raydir = vec2(u * 2.0 - 1.0, 1.0); break;
|
|
case 1: raydir = vec2(1.0, 1.0 - (u - 1.0) * 2.0); break;
|
|
case 2: raydir = vec2(1.0 - (u - 2.0) * 2.0, -1.0); break;
|
|
case 3: raydir = vec2(-1.0, (u - 3.0) * 2.0 - 1.0); break;
|
|
}
|
|
return raydir;
|
|
}
|
|
|
|
float sampleShadowmap(vec3 planePoint, float v)
|
|
{
|
|
float bias = 1.0;
|
|
float negD = dot(vWorldNormal.xyz, planePoint);
|
|
|
|
vec3 ray = planePoint;
|
|
|
|
vec2 isize = textureSize(ShadowMap, 0);
|
|
float scale = float(isize.x) * 0.25;
|
|
|
|
// Snap to shadow map texel grid
|
|
if (abs(ray.z) > abs(ray.x))
|
|
{
|
|
ray.y = ray.y / abs(ray.z);
|
|
ray.x = ray.x / abs(ray.z);
|
|
ray.x = (floor((ray.x + 1.0) * 0.5 * scale) + 0.5) / scale * 2.0 - 1.0;
|
|
ray.z = sign(ray.z);
|
|
}
|
|
else
|
|
{
|
|
ray.y = ray.y / abs(ray.x);
|
|
ray.z = ray.z / abs(ray.x);
|
|
ray.z = (floor((ray.z + 1.0) * 0.5 * scale) + 0.5) / scale * 2.0 - 1.0;
|
|
ray.x = sign(ray.x);
|
|
}
|
|
|
|
float t = negD / dot(vWorldNormal.xyz, ray) - bias;
|
|
vec2 dir = ray.xz * t;
|
|
|
|
float u = shadowDirToU(dir);
|
|
float dist2 = dot(dir, dir);
|
|
return step(dist2, texture(ShadowMap, vec2(u, v)).x);
|
|
}
|
|
|
|
float sampleShadowmapPCF(vec3 planePoint, float v)
|
|
{
|
|
float bias = 1.0;
|
|
float negD = dot(vWorldNormal.xyz, planePoint);
|
|
|
|
vec3 ray = planePoint;
|
|
|
|
if (abs(ray.z) > abs(ray.x))
|
|
ray.y = ray.y / abs(ray.z);
|
|
else
|
|
ray.y = ray.y / abs(ray.x);
|
|
|
|
vec2 isize = textureSize(ShadowMap, 0);
|
|
float scale = float(isize.x);
|
|
float texelPos = floor(shadowDirToU(ray.xz) * scale);
|
|
|
|
float sum = 0.0;
|
|
float step_count = uShadowmapFilter;
|
|
|
|
texelPos -= step_count + 0.5;
|
|
for (float x = -step_count; x <= step_count; x++)
|
|
{
|
|
float u = fract(texelPos / scale);
|
|
vec2 dir = shadowUToDir(u);
|
|
|
|
ray.x = dir.x;
|
|
ray.z = dir.y;
|
|
float t = negD / dot(vWorldNormal.xyz, ray) - bias;
|
|
dir = ray.xz * t;
|
|
|
|
float dist2 = dot(dir, dir);
|
|
sum += step(dist2, texture(ShadowMap, vec2(u, v)).x);
|
|
texelPos++;
|
|
}
|
|
return sum / (uShadowmapFilter * 2.0 + 1.0);
|
|
}
|
|
|
|
float shadowmapAttenuation(vec4 lightpos, float shadowIndex)
|
|
{
|
|
if (shadowIndex >= 1024.0)
|
|
return 1.0; // No shadowmap available for this light
|
|
|
|
vec3 planePoint = pixelpos.xyz - lightpos.xyz;
|
|
planePoint += 0.01; // nudge light position slightly as Doom maps tend to have their lights perfectly aligned with planes
|
|
|
|
if (dot(planePoint.xz, planePoint.xz) < 1.0)
|
|
return 1.0; // Light is too close
|
|
|
|
float v = (shadowIndex + 0.5) / 1024.0;
|
|
|
|
if (uShadowmapFilter <= 0)
|
|
{
|
|
return sampleShadowmap(planePoint, v);
|
|
}
|
|
else
|
|
{
|
|
return sampleShadowmapPCF(planePoint, v);
|
|
}
|
|
}
|
|
|
|
float shadowAttenuation(vec4 lightpos, float lightcolorA)
|
|
{
|
|
float shadowIndex = abs(lightcolorA) - 1.0;
|
|
return shadowmapAttenuation(lightpos, shadowIndex);
|
|
}
|
|
|
|
#else
|
|
|
|
float shadowAttenuation(vec4 lightpos, float lightcolorA)
|
|
{
|
|
return 1.0;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
float spotLightAttenuation(vec4 lightpos, vec3 spotdir, float lightCosInnerAngle, float lightCosOuterAngle)
|
|
{
|
|
vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz);
|
|
float cosDir = dot(lightDirection, spotdir);
|
|
return smoothstep(lightCosOuterAngle, lightCosInnerAngle, cosDir);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Adjust normal vector according to the normal map
|
|
//
|
|
//===========================================================================
|
|
|
|
#if defined(NORMALMAP)
|
|
mat3 cotangent_frame(vec3 n, vec3 p, vec2 uv)
|
|
{
|
|
// get edge vectors of the pixel triangle
|
|
vec3 dp1 = dFdx(p);
|
|
vec3 dp2 = dFdy(p);
|
|
vec2 duv1 = dFdx(uv);
|
|
vec2 duv2 = dFdy(uv);
|
|
|
|
// solve the linear system
|
|
vec3 dp2perp = cross(n, dp2); // cross(dp2, n);
|
|
vec3 dp1perp = cross(dp1, n); // cross(n, dp1);
|
|
vec3 t = dp2perp * duv1.x + dp1perp * duv2.x;
|
|
vec3 b = dp2perp * duv1.y + dp1perp * duv2.y;
|
|
|
|
// construct a scale-invariant frame
|
|
float invmax = inversesqrt(max(dot(t,t), dot(b,b)));
|
|
return mat3(t * invmax, b * invmax, n);
|
|
}
|
|
|
|
vec3 ApplyNormalMap(vec2 texcoord)
|
|
{
|
|
#define WITH_NORMALMAP_UNSIGNED
|
|
#define WITH_NORMALMAP_GREEN_UP
|
|
//#define WITH_NORMALMAP_2CHANNEL
|
|
|
|
vec3 interpolatedNormal = normalize(vWorldNormal.xyz);
|
|
|
|
vec3 map = texture(normaltexture, texcoord).xyz;
|
|
#if defined(WITH_NORMALMAP_UNSIGNED)
|
|
map = map * 255./127. - 128./127.; // Math so "odd" because 0.5 cannot be precisely described in an unsigned format
|
|
#endif
|
|
#if defined(WITH_NORMALMAP_2CHANNEL)
|
|
map.z = sqrt(1 - dot(map.xy, map.xy));
|
|
#endif
|
|
#if defined(WITH_NORMALMAP_GREEN_UP)
|
|
map.y = -map.y;
|
|
#endif
|
|
|
|
mat3 tbn = cotangent_frame(interpolatedNormal, pixelpos.xyz, vTexCoord.st);
|
|
vec3 bumpedNormal = normalize(tbn * map);
|
|
return bumpedNormal;
|
|
}
|
|
#else
|
|
vec3 ApplyNormalMap(vec2 texcoord)
|
|
{
|
|
return normalize(vWorldNormal.xyz);
|
|
}
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//
|
|
// Sets the common material properties.
|
|
//
|
|
//===========================================================================
|
|
|
|
void SetMaterialProps(inout Material material, vec2 texCoord)
|
|
{
|
|
#ifdef NPOT_EMULATION
|
|
if (uNpotEmulation.y != 0.0)
|
|
{
|
|
float period = floor(texCoord.t / uNpotEmulation.y);
|
|
texCoord.s += uNpotEmulation.x * floor(mod(texCoord.t, uNpotEmulation.y));
|
|
texCoord.t = period + mod(texCoord.t, uNpotEmulation.y);
|
|
}
|
|
#endif
|
|
material.Base = getTexel(texCoord.st);
|
|
material.Normal = ApplyNormalMap(texCoord.st);
|
|
|
|
// OpenGL doesn't care, but Vulkan pukes all over the place if these texture samplings are included in no-texture shaders, even though never called.
|
|
#ifndef NO_LAYERS
|
|
if ((uTextureMode & TEXF_Brightmap) != 0)
|
|
material.Bright = desaturate(texture(brighttexture, texCoord.st));
|
|
|
|
if ((uTextureMode & TEXF_Detailmap) != 0)
|
|
{
|
|
vec4 Detail = texture(detailtexture, texCoord.st * uDetailParms.xy) * uDetailParms.z;
|
|
material.Base.rgb *= Detail.rgb;
|
|
}
|
|
|
|
if ((uTextureMode & TEXF_Glowmap) != 0)
|
|
material.Glow = desaturate(texture(glowtexture, texCoord.st));
|
|
#endif
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Calculate light
|
|
//
|
|
// It is important to note that the light color is not desaturated
|
|
// due to ZDoom's implementation weirdness. Everything that's added
|
|
// on top of it, e.g. dynamic lights and glows are, though, because
|
|
// the objects emitting these lights are also.
|
|
//
|
|
// This is making this a bit more complicated than it needs to
|
|
// because we can't just desaturate the final fragment color.
|
|
//
|
|
//===========================================================================
|
|
|
|
vec4 getLightColor(Material material, float fogdist, float fogfactor)
|
|
{
|
|
vec4 color = vColor;
|
|
|
|
if (uLightLevel >= 0.0)
|
|
{
|
|
float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel);
|
|
color.rgb *= newlightlevel;
|
|
}
|
|
else if (uFogEnabled > 0)
|
|
{
|
|
// brightening around the player for light mode 2
|
|
if (fogdist < uLightDist)
|
|
{
|
|
color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0);
|
|
}
|
|
|
|
//
|
|
// apply light diminishing through fog equation
|
|
//
|
|
color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor);
|
|
}
|
|
|
|
//
|
|
// handle glowing walls
|
|
//
|
|
if (uGlowTopColor.a > 0.0 && glowdist.x < uGlowTopColor.a)
|
|
{
|
|
color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb;
|
|
}
|
|
if (uGlowBottomColor.a > 0.0 && glowdist.y < uGlowBottomColor.a)
|
|
{
|
|
color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb;
|
|
}
|
|
color = min(color, 1.0);
|
|
|
|
// these cannot be safely applied by the legacy format where the implementation cannot guarantee that the values are set.
|
|
#if !defined LEGACY_USER_SHADER && !defined NO_LAYERS
|
|
//
|
|
// apply glow
|
|
//
|
|
color.rgb = mix(color.rgb, material.Glow.rgb, material.Glow.a);
|
|
|
|
//
|
|
// apply brightmaps
|
|
//
|
|
color.rgb = min(color.rgb + material.Bright.rgb, 1.0);
|
|
#endif
|
|
|
|
//
|
|
// apply other light manipulation by custom shaders, default is a NOP.
|
|
//
|
|
color = ProcessLight(material, color);
|
|
|
|
//
|
|
// apply lightmaps
|
|
//
|
|
if (vLightmap.z >= 0.0)
|
|
{
|
|
color.rgb += texture(LightMap, vLightmap).rgb;
|
|
}
|
|
|
|
//
|
|
// apply dynamic lights
|
|
//
|
|
return vec4(ProcessMaterialLight(material, color.rgb), material.Base.a * vColor.a);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Applies colored fog
|
|
//
|
|
//===========================================================================
|
|
|
|
vec4 applyFog(vec4 frag, float fogfactor)
|
|
{
|
|
return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// The color of the fragment if it is fully occluded by ambient lighting
|
|
//
|
|
//===========================================================================
|
|
|
|
vec3 AmbientOcclusionColor()
|
|
{
|
|
float fogdist;
|
|
float fogfactor;
|
|
|
|
//
|
|
// calculate fog factor
|
|
//
|
|
if (uFogEnabled == -1)
|
|
{
|
|
fogdist = max(16.0, pixelpos.w);
|
|
}
|
|
else
|
|
{
|
|
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
|
|
}
|
|
fogfactor = exp2 (uFogDensity * fogdist);
|
|
|
|
return mix(uFogColor.rgb, vec3(0.0), fogfactor);
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Main shader routine
|
|
//
|
|
//===========================================================================
|
|
|
|
void main()
|
|
{
|
|
#ifdef NO_CLIPDISTANCE_SUPPORT
|
|
if (ClipDistanceA.x < 0 || ClipDistanceA.y < 0 || ClipDistanceA.z < 0 || ClipDistanceA.w < 0 || ClipDistanceB.x < 0) discard;
|
|
#endif
|
|
|
|
#ifndef LEGACY_USER_SHADER
|
|
Material material;
|
|
|
|
material.Base = vec4(0.0);
|
|
material.Bright = vec4(0.0);
|
|
material.Glow = vec4(0.0);
|
|
material.Normal = vec3(0.0);
|
|
material.Specular = vec3(0.0);
|
|
material.Glossiness = 0.0;
|
|
material.SpecularLevel = 0.0;
|
|
material.Metallic = 0.0;
|
|
material.Roughness = 0.0;
|
|
material.AO = 0.0;
|
|
SetupMaterial(material);
|
|
#else
|
|
Material material = ProcessMaterial();
|
|
#endif
|
|
vec4 frag = material.Base;
|
|
|
|
#ifndef NO_ALPHATEST
|
|
if (frag.a <= uAlphaThreshold) discard;
|
|
#endif
|
|
|
|
if (uFogEnabled != -3) // check for special 2D 'fog' mode.
|
|
{
|
|
float fogdist = 0.0;
|
|
float fogfactor = 0.0;
|
|
|
|
//
|
|
// calculate fog factor
|
|
//
|
|
if (uFogEnabled != 0)
|
|
{
|
|
if (uFogEnabled == 1 || uFogEnabled == -1)
|
|
{
|
|
fogdist = max(16.0, pixelpos.w);
|
|
}
|
|
else
|
|
{
|
|
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
|
|
}
|
|
fogfactor = exp2 (uFogDensity * fogdist);
|
|
}
|
|
|
|
if ((uTextureMode & 0xffff) != 7)
|
|
{
|
|
frag = getLightColor(material, fogdist, fogfactor);
|
|
|
|
//
|
|
// colored fog
|
|
//
|
|
if (uFogEnabled < 0)
|
|
{
|
|
frag = applyFog(frag, fogfactor);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a);
|
|
}
|
|
}
|
|
else // simple 2D (uses the fog color to add a color overlay)
|
|
{
|
|
if ((uTextureMode & 0xffff) == 7)
|
|
{
|
|
float gray = grayscale(frag);
|
|
vec4 cm = (uObjectColor + gray * (uAddColor - uObjectColor)) * 2;
|
|
frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a);
|
|
}
|
|
frag = frag * ProcessLight(material, vColor);
|
|
frag.rgb = frag.rgb + uFogColor.rgb;
|
|
}
|
|
FragColor = frag;
|
|
|
|
#ifdef DITHERTRANS
|
|
int index = (int(pixelpos.x) % 8) * 8 + int(pixelpos.y) % 8;
|
|
const float DITHER_THRESHOLDS[64] =
|
|
float[64](
|
|
1.0 / 65.0, 33.0 / 65.0, 9.0 / 65.0, 41.0 / 65.0, 3.0 / 65.0, 35.0 / 65.0, 11.0 / 65.0, 43.0 / 65.0,
|
|
49.0 / 65.0, 17.0 / 65.0, 57.0 / 65.0, 25.0 / 65.0, 51.0 / 65.0, 19.0 / 65.0, 59.0 / 65.0, 27.0 / 65.0,
|
|
13.0 / 65.0, 45.0 / 65.0, 5.0 / 65.0, 37.0 / 65.0, 15.0 / 65.0, 47.0 / 65.0, 7.0 / 65.0, 39.0 / 65.0,
|
|
61.0 / 65.0, 29.0 / 65.0, 53.0 / 65.0, 21.0 / 65.0, 63.0 / 65.0, 31.0 / 65.0, 55.0 / 65.0, 23.0 / 65.0,
|
|
4.0 / 65.0, 36.0 / 65.0, 12.0 / 65.0, 44.0 / 65.0, 2.0 / 65.0, 34.0 / 65.0, 10.0 / 65.0, 42.0 / 65.0,
|
|
52.0 / 65.0, 20.0 / 65.0, 60.0 / 65.0, 28.0 / 65.0, 50.0 / 65.0, 18.0 / 65.0, 58.0 / 65.0, 26.0 / 65.0,
|
|
16.0 / 65.0, 48.0 / 65.0, 8.0 / 65.0, 40.0 / 65.0, 14.0 / 65.0, 46.0 / 65.0, 6.0 / 65.0, 38.0 / 65.0,
|
|
64.0 / 65.0, 32.0 / 65.0, 56.0 / 65.0, 24.0 / 65.0, 62.0 / 65.0, 30.0 / 65.0, 54.0 / 65.0, 22.0 /65.0
|
|
);
|
|
|
|
vec3 fragHSV = rgb2hsv(FragColor.rgb);
|
|
float brightness = clamp(1.5*fragHSV.z, 0.1, 1.0);
|
|
if (DITHER_THRESHOLDS[index] < brightness) discard;
|
|
else FragColor *= 0.5;
|
|
#endif
|
|
|
|
#ifdef GBUFFER_PASS
|
|
FragFog = vec4(AmbientOcclusionColor(), 1.0);
|
|
FragNormal = vec4(vEyeNormal.xyz * 0.5 + 0.5, 1.0);
|
|
#endif
|
|
}
|