gzdoom/src/sdl/i_system.cpp

635 lines
15 KiB
C++
Raw Normal View History

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
//
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fnmatch.h>
#include <unistd.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/time.h>
#include <gtk/gtk.h>
#include <gdk/gdkkeysyms.h>
#include "doomerrors.h"
#include <math.h>
2006-04-12 01:50:09 +00:00
#include "SDL.h"
#include "doomtype.h"
#include "version.h"
#include "doomdef.h"
#include "cmdlib.h"
#include "m_argv.h"
#include "m_misc.h"
#include "i_video.h"
#include "i_sound.h"
#include "i_music.h"
#include "d_main.h"
#include "d_net.h"
#include "g_game.h"
#include "i_system.h"
#include "c_dispatch.h"
#include "templates.h"
#include "stats.h"
#include "hardware.h"
#include "zstring.h"
#include "gameconfigfile.h"
EXTERN_CVAR (String, language)
#ifdef USEASM
extern "C" void STACK_ARGS CheckMMX (CPUInfo *cpu);
#endif
extern "C"
{
double SecondsPerCycle = 1e-8;
double CyclesPerSecond = 1e8;
CPUInfo CPU;
}
extern bool GtkAvailable;
void CalculateCPUSpeed ();
DWORD LanguageIDs[4] =
{
MAKE_ID ('e','n','u',0),
MAKE_ID ('e','n','u',0),
MAKE_ID ('e','n','u',0),
MAKE_ID ('e','n','u',0)
};
int (*I_GetTime) (bool saveMS);
int (*I_WaitForTic) (int);
void I_Tactile (int on, int off, int total)
{
// UNUSED.
on = off = total = 0;
}
ticcmd_t emptycmd;
ticcmd_t *I_BaseTiccmd(void)
{
return &emptycmd;
}
void I_BeginRead(void)
{
}
void I_EndRead(void)
{
}
// [RH] Returns time in milliseconds
unsigned int I_MSTime (void)
{
return SDL_GetTicks ();
}
static DWORD TicStart;
static DWORD TicNext;
//
// I_GetTime
// returns time in 1/35th second tics
//
int I_GetTimePolled (bool saveMS)
{
DWORD tm = SDL_GetTicks ();
if (saveMS)
{
TicStart = tm;
TicNext = Scale ((Scale (tm, TICRATE, 1000) + 1), 1000, TICRATE);
}
return Scale (tm, TICRATE, 1000);
}
int I_WaitForTicPolled (int prevtic)
{
int time;
while ((time = I_GetTimePolled(false)) <= prevtic)
;
return time;
}
// Returns the fractional amount of a tic passed since the most recent tic
fixed_t I_GetTimeFrac (uint32 *ms)
{
DWORD now = SDL_GetTicks ();
if (ms) *ms = TicNext;
DWORD step = TicNext - TicStart;
if (step == 0)
{
return FRACUNIT;
}
else
{
fixed_t frac = clamp<fixed_t> ((now - TicStart)*FRACUNIT/step, 0, FRACUNIT);
return frac;
}
}
void I_WaitVBL (int count)
{
// I_WaitVBL is never used to actually synchronize to the
// vertical blank. Instead, it's used for delay purposes.
usleep (1000000 * count / 70);
}
//
// SetLanguageIDs
//
void SetLanguageIDs ()
{
}
//
// I_Init
//
void I_Init (void)
{
#ifndef USEASM
memset (&CPU, 0, sizeof(CPU));
#else
CheckMMX (&CPU);
CalculateCPUSpeed ();
// Why does Intel right-justify this string?
char *f = CPU.CPUString, *t = f;
while (*f == ' ')
{
++f;
}
if (f != t)
{
while (*f != 0)
{
*t++ = *f++;
}
}
#endif
if (CPU.VendorID[0])
{
Printf ("CPU Vendor ID: %s\n", CPU.VendorID);
if (CPU.CPUString[0])
{
Printf (" Name: %s\n", CPU.CPUString);
}
if (CPU.bIsAMD)
{
Printf (" Family %d (%d), Model %d, Stepping %d\n",
CPU.Family, CPU.AMDFamily, CPU.AMDModel, CPU.AMDStepping);
}
else
{
Printf (" Family %d, Model %d, Stepping %d\n",
CPU.Family, CPU.Model, CPU.Stepping);
}
Printf (" Features:");
if (CPU.bMMX) Printf (" MMX");
if (CPU.bMMXPlus) Printf (" MMX+");
if (CPU.bSSE) Printf (" SSE");
if (CPU.bSSE2) Printf (" SSE2");
if (CPU.bSSE3) Printf (" SSE3");
if (CPU.b3DNow) Printf (" 3DNow!");
if (CPU.b3DNowPlus) Printf (" 3DNow!+");
Printf ("\n");
}
I_GetTime = I_GetTimePolled;
I_WaitForTic = I_WaitForTicPolled;
I_InitSound ();
}
void CalculateCPUSpeed ()
{
timeval start, stop, now;
cycle_t ClockCycles;
DWORD usec;
if (CPU.bRDTSC)
{
ClockCycles = 0;
clock (ClockCycles);
gettimeofday (&start, NULL);
// Count cycles for at least 100 milliseconds.
// We don't have the same accuracy we can get with the Win32
// performance counters, so we have to time longer.
stop.tv_usec = start.tv_usec + 100000;
stop.tv_sec = start.tv_sec;
if (stop.tv_usec >= 1000000)
{
stop.tv_usec -= 1000000;
stop.tv_sec += 1;
}
do
{
gettimeofday (&now, NULL);
} while (timercmp (&now, &stop, <));
unclock (ClockCycles);
gettimeofday (&now, NULL);
usec = now.tv_usec - start.tv_usec;
CyclesPerSecond = (double)ClockCycles * 1e6 / (double)usec;
SecondsPerCycle = 1.0 / CyclesPerSecond;
}
Printf (PRINT_HIGH, "CPU Speed: ~%f MHz\n", CyclesPerSecond / 1e6);
}
//
// I_Quit
//
static int has_exited;
void I_Quit (void)
{
has_exited = 1; /* Prevent infinitely recursive exits -- killough */
if (demorecording)
G_CheckDemoStatus();
G_ClearSnapshots ();
}
//
// I_Error
//
extern FILE *Logfile;
bool gameisdead;
void STACK_ARGS I_FatalError (const char *error, ...)
{
static bool alreadyThrown = false;
gameisdead = true;
if (!alreadyThrown) // ignore all but the first message -- killough
{
alreadyThrown = true;
char errortext[MAX_ERRORTEXT];
int index;
va_list argptr;
va_start (argptr, error);
index = vsprintf (errortext, error, argptr);
va_end (argptr);
// Record error to log (if logging)
if (Logfile)
fprintf (Logfile, "\n**** DIED WITH FATAL ERROR:\n%s\n", errortext);
// throw CFatalError (errortext);
fprintf (stderr, "%s\n", errortext);
exit (-1);
}
if (!has_exited) // If it hasn't exited yet, exit now -- killough
{
has_exited = 1; // Prevent infinitely recursive exits -- killough
exit(-1);
}
}
void STACK_ARGS I_Error (const char *error, ...)
{
va_list argptr;
char errortext[MAX_ERRORTEXT];
va_start (argptr, error);
vsprintf (errortext, error, argptr);
va_end (argptr);
throw CRecoverableError (errortext);
}
Note: I have not tried compiling these recent changes under Linux. I wouldn't be surprised if it doesn't work. - Reorganized the network startup loops so now they are event driven. There is a single function that gets called to drive it, and it uses callbacks to perform the different stages of the synchronization. This lets me have a nice, responsive abort button instead of the previous unannounced hit-escape-to- abort behavior, and I think the rearranged code is slightly easier to understand too. - Increased the number of bytes for version info during D_ArbitrateNetStart(), in preparation for the day when NETGAMEVERSION requires more than one byte. - I noticed an issue with Vista RC1 and the new fatal error setup. Even after releasing a DirectDraw or Direct3D interface, the DWM can still use the last image drawn using them when it composites the window. It doesn't always do it but it does often enough that it is a real problem. At this point, I don't know if it's a problem with the release version of Vista or not. After messing around, I discovered the problem was caused by ~Win32Video() hiding the window and then having it immediately shown soon after. The DWM kept an image of the window to do the transition effect with, and then when it didn't get a chance to do the transition, it didn't properly forget about its saved image and kept plastering it on top of everything else underneath. - Added a network synchronization panel to the window during netgame startup. - Fixed: PClass::CreateDerivedClass() must initialize StateList to NULL. Otherwise, classic DECORATE definitions generate a big, fat crash. - Resurrected the R_Init progress bar, now as a standard Windows control. - Removed the sound failure dialog. The FMOD setup already defaulted to no sound if initialization failed, so this only applies when snd_output is set to "alternate" which now also falls back to no sound. In addition, it wasn't working right, and I didn't feel like fixing it for the probably 0% of users it affected. - Fixed: The edit control used for logging output added text in reverse order on Win9x. - Went back to the roots and made graphics initialization one of the last things to happen during setup. Now the startup text is visible again. More importantly, the main window is no longer created invisible, which seems to cause trouble with it not always appearing in the taskbar. The fatal error dialog is now also embedded in the main window instead of being a separate modal dialog, so you can play with the log window to see any problems that might be reported there. Rather than completely restoring the original startup order, I tried to keep things as close to the way they were with early graphics startup. In particular, V_Init() now creates a dummy screen so that things that need screen dimensions can get them. It gets replaced by the real screen later in I_InitGraphics(). Will need to check this under Linux to make sure it didn't cause any problems there. - Removed the following stubs that just called functions in Video: - I_StartModeIterator() - I_NextMode() - I_DisplayType() I_FullscreenChanged() was also removed, and a new fullscreen parameter was added to IVideo::StartModeIterator(), since that's all it controlled. - Renamed I_InitHardware() back to I_InitGraphics(), since that's all it's initialized post-1.22. SVN r416 (trunk)
2006-12-19 04:09:10 +00:00
void I_SetIWADInfo (const IWADInfo *info)
{
}
Note: I have not tried compiling these recent changes under Linux. I wouldn't be surprised if it doesn't work. - Reorganized the network startup loops so now they are event driven. There is a single function that gets called to drive it, and it uses callbacks to perform the different stages of the synchronization. This lets me have a nice, responsive abort button instead of the previous unannounced hit-escape-to- abort behavior, and I think the rearranged code is slightly easier to understand too. - Increased the number of bytes for version info during D_ArbitrateNetStart(), in preparation for the day when NETGAMEVERSION requires more than one byte. - I noticed an issue with Vista RC1 and the new fatal error setup. Even after releasing a DirectDraw or Direct3D interface, the DWM can still use the last image drawn using them when it composites the window. It doesn't always do it but it does often enough that it is a real problem. At this point, I don't know if it's a problem with the release version of Vista or not. After messing around, I discovered the problem was caused by ~Win32Video() hiding the window and then having it immediately shown soon after. The DWM kept an image of the window to do the transition effect with, and then when it didn't get a chance to do the transition, it didn't properly forget about its saved image and kept plastering it on top of everything else underneath. - Added a network synchronization panel to the window during netgame startup. - Fixed: PClass::CreateDerivedClass() must initialize StateList to NULL. Otherwise, classic DECORATE definitions generate a big, fat crash. - Resurrected the R_Init progress bar, now as a standard Windows control. - Removed the sound failure dialog. The FMOD setup already defaulted to no sound if initialization failed, so this only applies when snd_output is set to "alternate" which now also falls back to no sound. In addition, it wasn't working right, and I didn't feel like fixing it for the probably 0% of users it affected. - Fixed: The edit control used for logging output added text in reverse order on Win9x. - Went back to the roots and made graphics initialization one of the last things to happen during setup. Now the startup text is visible again. More importantly, the main window is no longer created invisible, which seems to cause trouble with it not always appearing in the taskbar. The fatal error dialog is now also embedded in the main window instead of being a separate modal dialog, so you can play with the log window to see any problems that might be reported there. Rather than completely restoring the original startup order, I tried to keep things as close to the way they were with early graphics startup. In particular, V_Init() now creates a dummy screen so that things that need screen dimensions can get them. It gets replaced by the real screen later in I_InitGraphics(). Will need to check this under Linux to make sure it didn't cause any problems there. - Removed the following stubs that just called functions in Video: - I_StartModeIterator() - I_NextMode() - I_DisplayType() I_FullscreenChanged() was also removed, and a new fullscreen parameter was added to IVideo::StartModeIterator(), since that's all it controlled. - Renamed I_InitHardware() back to I_InitGraphics(), since that's all it's initialized post-1.22. SVN r416 (trunk)
2006-12-19 04:09:10 +00:00
void I_PrintStr (const char *cp)
{
fputs (cp, stdout);
fflush (stdout);
}
// GtkTreeViews eats return keys. I want this to be like a Windows listbox
// where pressing Return can still activate the default button.
gint AllowDefault(GtkWidget *widget, GdkEventKey *event, gpointer func_data)
{
if (event->type == GDK_KEY_PRESS && event->keyval == GDK_Return)
{
gtk_window_activate_default (GTK_WINDOW(func_data));
}
return FALSE;
}
// Double-clicking an entry in the list is the same as pressing OK.
gint DoubleClickChecker(GtkWidget *widget, GdkEventButton *event, gpointer func_data)
{
if (event->type == GDK_2BUTTON_PRESS)
{
*(int *)func_data = 1;
gtk_main_quit();
}
return FALSE;
}
// When the user presses escape, that should be the same as canceling the dialog.
gint CheckEscape (GtkWidget *widget, GdkEventKey *event, gpointer func_data)
{
if (event->type == GDK_KEY_PRESS && event->keyval == GDK_Escape)
{
gtk_main_quit();
}
return FALSE;
}
void ClickedOK(GtkButton *button, gpointer func_data)
{
*(int *)func_data = 1;
gtk_main_quit();
}
EXTERN_CVAR (Bool, queryiwad);
int I_PickIWad_Gtk (WadStuff *wads, int numwads, bool showwin, int defaultiwad)
{
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *bbox;
GtkWidget *widget;
GtkWidget *tree;
GtkWidget *check;
GtkListStore *store;
GtkCellRenderer *renderer;
GtkTreeViewColumn *column;
GtkTreeSelection *selection;
GtkTreeIter iter, defiter;
int close_style = 0;
int i;
// Create the dialog window.
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW(window), GAMESIG " " DOTVERSIONSTR ": Select an IWAD to use");
gtk_window_set_position (GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_container_set_border_width (GTK_CONTAINER(window), 10);
g_signal_connect (window, "delete_event", G_CALLBACK(gtk_main_quit), NULL);
g_signal_connect (window, "key_press_event", G_CALLBACK(CheckEscape), NULL);
// Create the vbox container.
vbox = gtk_vbox_new (FALSE, 10);
gtk_container_add (GTK_CONTAINER(window), vbox);
// Create the top label.
widget = gtk_label_new ("ZDoom found more than one IWAD\nSelect from the list below to determine which one to use:");
gtk_box_pack_start (GTK_BOX(vbox), widget, false, false, 0);
gtk_misc_set_alignment (GTK_MISC(widget), 0, 0);
// Create a list store with all the found IWADs.
store = gtk_list_store_new (3, G_TYPE_STRING, G_TYPE_STRING, G_TYPE_INT);
for (i = 0; i < numwads; ++i)
{
const char *filepart = strrchr (wads[i].Path, '/');
if (filepart == NULL)
filepart = wads[i].Path;
else
filepart++;
gtk_list_store_append (store, &iter);
gtk_list_store_set (store, &iter,
0, filepart,
1, IWADInfos[wads[i].Type].Name,
2, i,
-1);
if (i == defaultiwad)
{
defiter = iter;
}
}
// Create the tree view control to show the list.
tree = gtk_tree_view_new_with_model (GTK_TREE_MODEL(store));
renderer = gtk_cell_renderer_text_new ();
column = gtk_tree_view_column_new_with_attributes ("IWAD", renderer, "text", 0, NULL);
gtk_tree_view_append_column (GTK_TREE_VIEW(tree), column);
renderer = gtk_cell_renderer_text_new ();
column = gtk_tree_view_column_new_with_attributes ("Game", renderer, "text", 1, NULL);
gtk_tree_view_append_column (GTK_TREE_VIEW(tree), column);
gtk_box_pack_start (GTK_BOX(vbox), GTK_WIDGET(tree), true, true, 0);
g_signal_connect(G_OBJECT(tree), "button_press_event", G_CALLBACK(DoubleClickChecker), &close_style);
g_signal_connect(G_OBJECT(tree), "key_press_event", G_CALLBACK(AllowDefault), window);
// Select the default IWAD.
selection = gtk_tree_view_get_selection (GTK_TREE_VIEW(tree));
gtk_tree_selection_select_iter (selection, &defiter);
// Create the hbox for the bottom row.
hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_end (GTK_BOX(vbox), hbox, false, false, 0);
// Create the "Don't ask" checkbox.
check = gtk_check_button_new_with_label ("Don't ask me this again");
gtk_box_pack_start (GTK_BOX(hbox), check, false, false, 0);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON(check), !showwin);
// Create the OK/Cancel button box.
bbox = gtk_hbutton_box_new ();
gtk_button_box_set_layout (GTK_BUTTON_BOX(bbox), GTK_BUTTONBOX_END);
gtk_box_set_spacing (GTK_BOX(bbox), 10);
gtk_box_pack_end (GTK_BOX(hbox), bbox, false, false, 0);
// Create the OK button.
widget = gtk_button_new_from_stock (GTK_STOCK_OK);
gtk_box_pack_start (GTK_BOX(bbox), widget, false, false, 0);
GTK_WIDGET_SET_FLAGS (widget, GTK_CAN_DEFAULT);
gtk_widget_grab_default (widget);
g_signal_connect (widget, "clicked", G_CALLBACK(ClickedOK), &close_style);
g_signal_connect (widget, "activate", G_CALLBACK(ClickedOK), &close_style);
// Create the cancel button.
widget = gtk_button_new_from_stock (GTK_STOCK_CANCEL);
gtk_box_pack_start (GTK_BOX(bbox), widget, false, false, 0);
g_signal_connect (widget, "clicked", G_CALLBACK(gtk_main_quit), &window);
// Finally we can show everything.
gtk_widget_show_all (window);
gtk_main ();
if (close_style == 1)
{
GtkTreeModel *model;
GValue value = { 0, };
// Find out which IWAD was selected.
gtk_tree_selection_get_selected (selection, &model, &iter);
gtk_tree_model_get_value (GTK_TREE_MODEL(model), &iter, 2, &value);
i = g_value_get_int (&value);
g_value_unset (&value);
// Set state of queryiwad based on the checkbox.
queryiwad = !gtk_toggle_button_get_active (GTK_TOGGLE_BUTTON(check));
}
else
{
i = -1;
}
if (GTK_IS_WINDOW(window))
{
gtk_widget_destroy (window);
// If we don't do this, then the X window might not actually disappear.
while (g_main_context_iteration (NULL, FALSE)) {}
}
return i;
}
int I_PickIWad (WadStuff *wads, int numwads, bool showwin, int defaultiwad)
{
int i;
if (!showwin)
{
return defaultiwad;
}
if (GtkAvailable)
{
return I_PickIWad_Gtk (wads, numwads, showwin, defaultiwad);
}
printf ("Please select a game wad (or 0 to exit):\n");
for (i = 0; i < numwads; ++i)
{
const char *filepart = strrchr (wads[i].Path, '/');
if (filepart == NULL)
filepart = wads[i].Path;
else
filepart++;
Note: I have not tried compiling these recent changes under Linux. I wouldn't be surprised if it doesn't work. - Reorganized the network startup loops so now they are event driven. There is a single function that gets called to drive it, and it uses callbacks to perform the different stages of the synchronization. This lets me have a nice, responsive abort button instead of the previous unannounced hit-escape-to- abort behavior, and I think the rearranged code is slightly easier to understand too. - Increased the number of bytes for version info during D_ArbitrateNetStart(), in preparation for the day when NETGAMEVERSION requires more than one byte. - I noticed an issue with Vista RC1 and the new fatal error setup. Even after releasing a DirectDraw or Direct3D interface, the DWM can still use the last image drawn using them when it composites the window. It doesn't always do it but it does often enough that it is a real problem. At this point, I don't know if it's a problem with the release version of Vista or not. After messing around, I discovered the problem was caused by ~Win32Video() hiding the window and then having it immediately shown soon after. The DWM kept an image of the window to do the transition effect with, and then when it didn't get a chance to do the transition, it didn't properly forget about its saved image and kept plastering it on top of everything else underneath. - Added a network synchronization panel to the window during netgame startup. - Fixed: PClass::CreateDerivedClass() must initialize StateList to NULL. Otherwise, classic DECORATE definitions generate a big, fat crash. - Resurrected the R_Init progress bar, now as a standard Windows control. - Removed the sound failure dialog. The FMOD setup already defaulted to no sound if initialization failed, so this only applies when snd_output is set to "alternate" which now also falls back to no sound. In addition, it wasn't working right, and I didn't feel like fixing it for the probably 0% of users it affected. - Fixed: The edit control used for logging output added text in reverse order on Win9x. - Went back to the roots and made graphics initialization one of the last things to happen during setup. Now the startup text is visible again. More importantly, the main window is no longer created invisible, which seems to cause trouble with it not always appearing in the taskbar. The fatal error dialog is now also embedded in the main window instead of being a separate modal dialog, so you can play with the log window to see any problems that might be reported there. Rather than completely restoring the original startup order, I tried to keep things as close to the way they were with early graphics startup. In particular, V_Init() now creates a dummy screen so that things that need screen dimensions can get them. It gets replaced by the real screen later in I_InitGraphics(). Will need to check this under Linux to make sure it didn't cause any problems there. - Removed the following stubs that just called functions in Video: - I_StartModeIterator() - I_NextMode() - I_DisplayType() I_FullscreenChanged() was also removed, and a new fullscreen parameter was added to IVideo::StartModeIterator(), since that's all it controlled. - Renamed I_InitHardware() back to I_InitGraphics(), since that's all it's initialized post-1.22. SVN r416 (trunk)
2006-12-19 04:09:10 +00:00
printf ("%d. %s (%s)\n", i+1, IWADInfos[wads[i].Type].Name, filepart);
}
printf ("Which one? ");
scanf ("%d", &i);
if (i > numwads)
return -1;
return i-1;
}
bool I_WriteIniFailed ()
{
printf ("The config file %s could not be saved:\n%s\n", GameConfig->GetPathName(), strerror(errno));
return false;
// return true to retry
}
static const char *pattern;
#ifdef OSF1
static int matchfile (struct dirent *ent)
#else
static int matchfile (const struct dirent *ent)
#endif
{
return fnmatch (pattern, ent->d_name, FNM_NOESCAPE) == 0;
}
void *I_FindFirst (const char *filespec, findstate_t *fileinfo)
{
FString dir;
char *slash = strrchr (filespec, '/');
if (slash)
{
pattern = slash+1;
dir = FString(filespec, slash-filespec+1);
}
else
{
pattern = filespec;
dir = ".";
}
fileinfo->current = 0;
fileinfo->count = scandir (dir.GetChars(), &fileinfo->namelist,
matchfile, alphasort);
if (fileinfo->count > 0)
{
return fileinfo;
}
return (void*)-1;
}
int I_FindNext (void *handle, findstate_t *fileinfo)
{
findstate_t *state = (findstate_t *)handle;
if (state->current < fileinfo->count)
{
return ++state->current < fileinfo->count ? 0 : -1;
}
return -1;
}
int I_FindClose (void *handle)
{
findstate_t *state = (findstate_t *)handle;
if (handle != (void*)-1 && state->count > 0)
{
state->count = 0;
free (state->namelist);
state->namelist = NULL;
}
return 0;
}
int I_FindAttr (findstate_t *fileinfo)
{
struct dirent *ent = fileinfo->namelist[fileinfo->current];
#ifdef OSF1
return 0; // I don't know how to detect dirs under OSF/1
#else
return (ent->d_type == DT_DIR) ? FA_DIREC : 0;
#endif
}
// No clipboard support for Linux
void I_PutInClipboard (const char *str)
{
}
char *I_GetFromClipboard ()
{
return NULL;
}