gzdoom-gles/src/gl/scene/gl_drawinfo.cpp
2017-03-17 00:22:52 +01:00

1326 lines
33 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2002-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_drawinfo.cpp
** Implements the draw info structure which contains most of the
** data in a scene and the draw lists - including a very thorough BSP
** style sorting algorithm for translucent objects.
**
*/
#include "gl/system/gl_system.h"
#include "r_sky.h"
#include "r_utility.h"
#include "r_state.h"
#include "doomstat.h"
#include "g_levellocals.h"
#include "gl/system/gl_cvars.h"
#include "gl/data/gl_data.h"
#include "gl/data/gl_vertexbuffer.h"
#include "gl/scene/gl_drawinfo.h"
#include "gl/scene/gl_portal.h"
#include "gl/scene/gl_scenedrawer.h"
#include "gl/renderer/gl_lightdata.h"
#include "gl/renderer/gl_renderstate.h"
#include "gl/textures/gl_material.h"
#include "gl/utility/gl_clock.h"
#include "gl/utility/gl_templates.h"
#include "gl/shaders/gl_shader.h"
#include "gl/stereo3d/scoped_color_mask.h"
#include "gl/renderer/gl_quaddrawer.h"
FDrawInfo * gl_drawinfo;
//==========================================================================
//
//
//
//==========================================================================
class StaticSortNodeArray : public TDeletingArray<SortNode*>
{
unsigned usecount;
public:
unsigned Size() { return usecount; }
void Clear() { usecount=0; }
void Release(int start) { usecount=start; }
SortNode * GetNew();
};
SortNode * StaticSortNodeArray::GetNew()
{
if (usecount==TArray<SortNode*>::Size())
{
Push(new SortNode);
}
return operator[](usecount++);
}
static StaticSortNodeArray SortNodes;
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::Reset()
{
if (sorted) SortNodes.Release(SortNodeStart);
sorted=NULL;
walls.Clear();
flats.Clear();
sprites.Clear();
drawitems.Clear();
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Translucent polygon sorting - uses a BSP algorithm with an additional 'equal' branch
inline double GLSprite::CalcIntersectionVertex(GLWall * w2)
{
float ax = x1, ay=y1;
float bx = x2, by=y2;
float cx = w2->glseg.x1, cy=w2->glseg.y1;
float dx = w2->glseg.x2, dy=w2->glseg.y2;
return ((ay-cy)*(dx-cx)-(ax-cx)*(dy-cy)) / ((bx-ax)*(dy-cy)-(by-ay)*(dx-cx));
}
//==========================================================================
//
//
//
//==========================================================================
inline void SortNode::UnlinkFromChain()
{
if (parent) parent->next=next;
if (next) next->parent=parent;
parent=next=NULL;
}
//==========================================================================
//
//
//
//==========================================================================
inline void SortNode::Link(SortNode * hook)
{
if (hook)
{
parent=hook->parent;
hook->parent=this;
}
next=hook;
if (parent) parent->next=this;
}
//==========================================================================
//
//
//
//==========================================================================
inline void SortNode::AddToEqual(SortNode *child)
{
child->UnlinkFromChain();
child->equal=equal;
equal=child;
}
//==========================================================================
//
//
//
//==========================================================================
inline void SortNode::AddToLeft(SortNode * child)
{
child->UnlinkFromChain();
child->Link(left);
left=child;
}
//==========================================================================
//
//
//
//==========================================================================
inline void SortNode::AddToRight(SortNode * child)
{
child->UnlinkFromChain();
child->Link(right);
right=child;
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::MakeSortList()
{
SortNode * p, * n, * c;
unsigned i;
SortNodeStart=SortNodes.Size();
p=NULL;
n=SortNodes.GetNew();
for(i=0;i<drawitems.Size();i++)
{
n->itemindex=(int)i;
n->left=n->equal=n->right=NULL;
n->parent=p;
p=n;
if (i!=drawitems.Size()-1)
{
c=SortNodes.GetNew();
n->next=c;
n=c;
}
else
{
n->next=NULL;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
SortNode * GLDrawList::FindSortPlane(SortNode * head)
{
while (head->next && drawitems[head->itemindex].rendertype!=GLDIT_FLAT)
head=head->next;
if (drawitems[head->itemindex].rendertype==GLDIT_FLAT) return head;
return NULL;
}
//==========================================================================
//
//
//
//==========================================================================
SortNode * GLDrawList::FindSortWall(SortNode * head)
{
float farthest = -FLT_MAX;
float nearest = FLT_MAX;
SortNode * best = NULL;
SortNode * node = head;
float bestdist = FLT_MAX;
while (node)
{
GLDrawItem * it = &drawitems[node->itemindex];
if (it->rendertype == GLDIT_WALL)
{
float d = walls[it->index].ViewDistance;
if (d > farthest) farthest = d;
if (d < nearest) nearest = d;
}
node = node->next;
}
if (farthest == INT_MIN) return NULL;
node = head;
farthest = (farthest + nearest) / 2;
while (node)
{
GLDrawItem * it = &drawitems[node->itemindex];
if (it->rendertype == GLDIT_WALL)
{
float di = fabsf(walls[it->index].ViewDistance - farthest);
if (!best || di < bestdist)
{
best = node;
bestdist = di;
}
}
node = node->next;
}
return best;
}
//==========================================================================
//
// Note: sloped planes are a huge problem...
//
//==========================================================================
void GLDrawList::SortPlaneIntoPlane(SortNode * head,SortNode * sort)
{
GLFlat * fh=&flats[drawitems[head->itemindex].index];
GLFlat * fs=&flats[drawitems[sort->itemindex].index];
if (fh->z==fs->z)
head->AddToEqual(sort);
else if ( (fh->z<fs->z && fh->ceiling) || (fh->z>fs->z && !fh->ceiling))
head->AddToLeft(sort);
else
head->AddToRight(sort);
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::SortWallIntoPlane(SortNode * head,SortNode * sort)
{
GLFlat * fh=&flats[drawitems[head->itemindex].index];
GLWall * ws=&walls[drawitems[sort->itemindex].index];
bool ceiling = fh->z > r_viewpoint.Pos.Z;
if ((ws->ztop[0] > fh->z || ws->ztop[1] > fh->z) && (ws->zbottom[0] < fh->z || ws->zbottom[1] < fh->z))
{
// We have to split this wall!
// WARNING: NEVER EVER push a member of an array onto the array itself.
// Bad things will happen if the memory must be reallocated!
GLWall w = *ws;
AddWall(&w);
// Splitting is done in the shader with clip planes, if available
if (gl.flags & RFL_NO_CLIP_PLANES)
{
GLWall * ws1;
ws->vertcount = 0; // invalidate current vertices.
ws1=&walls[walls.Size()-1];
ws=&walls[drawitems[sort->itemindex].index]; // may have been reallocated!
float newtexv = ws->tcs[GLWall::UPLFT].v + ((ws->tcs[GLWall::LOLFT].v - ws->tcs[GLWall::UPLFT].v) / (ws->zbottom[0] - ws->ztop[0])) * (fh->z - ws->ztop[0]);
// I make the very big assumption here that translucent walls in sloped sectors
// and 3D-floors never coexist in the same level. If that were the case this
// code would become extremely more complicated.
if (!ceiling)
{
ws->ztop[1] = ws1->zbottom[1] = ws->ztop[0] = ws1->zbottom[0] = fh->z;
ws->tcs[GLWall::UPRGT].v = ws1->tcs[GLWall::LORGT].v = ws->tcs[GLWall::UPLFT].v = ws1->tcs[GLWall::LOLFT].v = newtexv;
}
else
{
ws1->ztop[1] = ws->zbottom[1] = ws1->ztop[0] = ws->zbottom[0] = fh->z;
ws1->tcs[GLWall::UPLFT].v = ws->tcs[GLWall::LOLFT].v = ws1->tcs[GLWall::UPRGT].v = ws->tcs[GLWall::LORGT].v=newtexv;
}
}
SortNode * sort2 = SortNodes.GetNew();
memset(sort2, 0, sizeof(SortNode));
sort2->itemindex = drawitems.Size() - 1;
head->AddToLeft(sort);
head->AddToRight(sort2);
}
else if ((ws->zbottom[0]<fh->z && !ceiling) || (ws->ztop[0]>fh->z && ceiling)) // completely on the left side
{
head->AddToLeft(sort);
}
else
{
head->AddToRight(sort);
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::SortSpriteIntoPlane(SortNode * head,SortNode * sort)
{
GLFlat * fh=&flats[drawitems[head->itemindex].index];
GLSprite * ss=&sprites[drawitems[sort->itemindex].index];
bool ceiling = fh->z > r_viewpoint.Pos.Z;
if ((ss->z1>fh->z && ss->z2<fh->z) || ss->modelframe)
{
// We have to split this sprite
GLSprite s=*ss;
AddSprite(&s); // add a copy to avoid reallocation issues.
// Splitting is done in the shader with clip planes, if available
if (gl.flags & RFL_NO_CLIP_PLANES)
{
GLSprite * ss1;
ss1=&sprites[sprites.Size()-1];
ss=&sprites[drawitems[sort->itemindex].index]; // may have been reallocated!
float newtexv=ss->vt + ((ss->vb-ss->vt)/(ss->z2-ss->z1))*(fh->z-ss->z1);
if (!ceiling)
{
ss->z1=ss1->z2=fh->z;
ss->vt=ss1->vb=newtexv;
}
else
{
ss1->z1=ss->z2=fh->z;
ss1->vt=ss->vb=newtexv;
}
}
SortNode * sort2=SortNodes.GetNew();
memset(sort2,0,sizeof(SortNode));
sort2->itemindex=drawitems.Size()-1;
head->AddToLeft(sort);
head->AddToRight(sort2);
}
else if ((ss->z2<fh->z && !ceiling) || (ss->z1>fh->z && ceiling)) // completely on the left side
{
head->AddToLeft(sort);
}
else
{
head->AddToRight(sort);
}
}
//==========================================================================
//
//
//
//==========================================================================
#define MIN_EQ (0.0005f)
void GLDrawList::SortWallIntoWall(SortNode * head,SortNode * sort)
{
GLWall * wh=&walls[drawitems[head->itemindex].index];
GLWall * ws=&walls[drawitems[sort->itemindex].index];
GLWall * ws1;
float v1=wh->PointOnSide(ws->glseg.x1,ws->glseg.y1);
float v2=wh->PointOnSide(ws->glseg.x2,ws->glseg.y2);
if (fabs(v1)<MIN_EQ && fabs(v2)<MIN_EQ)
{
if (ws->type==RENDERWALL_FOGBOUNDARY && wh->type!=RENDERWALL_FOGBOUNDARY)
{
head->AddToRight(sort);
}
else if (ws->type!=RENDERWALL_FOGBOUNDARY && wh->type==RENDERWALL_FOGBOUNDARY)
{
head->AddToLeft(sort);
}
else
{
head->AddToEqual(sort);
}
}
else if (v1<MIN_EQ && v2<MIN_EQ)
{
head->AddToLeft(sort);
}
else if (v1>-MIN_EQ && v2>-MIN_EQ)
{
head->AddToRight(sort);
}
else
{
double r=ws->CalcIntersectionVertex(wh);
float ix=(float)(ws->glseg.x1+r*(ws->glseg.x2-ws->glseg.x1));
float iy=(float)(ws->glseg.y1+r*(ws->glseg.y2-ws->glseg.y1));
float iu=(float)(ws->tcs[GLWall::UPLFT].u + r * (ws->tcs[GLWall::UPRGT].u - ws->tcs[GLWall::UPLFT].u));
float izt=(float)(ws->ztop[0]+r*(ws->ztop[1]-ws->ztop[0]));
float izb=(float)(ws->zbottom[0]+r*(ws->zbottom[1]-ws->zbottom[0]));
ws->vertcount = 0; // invalidate current vertices.
GLWall w=*ws;
AddWall(&w);
ws1=&walls[walls.Size()-1];
ws=&walls[drawitems[sort->itemindex].index]; // may have been reallocated!
ws1->glseg.x1=ws->glseg.x2=ix;
ws1->glseg.y1=ws->glseg.y2=iy;
ws1->glseg.fracleft = ws->glseg.fracright = ws->glseg.fracleft + r*(ws->glseg.fracright - ws->glseg.fracleft);
ws1->ztop[0]=ws->ztop[1]=izt;
ws1->zbottom[0]=ws->zbottom[1]=izb;
ws1->tcs[GLWall::LOLFT].u = ws1->tcs[GLWall::UPLFT].u = ws->tcs[GLWall::LORGT].u = ws->tcs[GLWall::UPRGT].u = iu;
if (gl.buffermethod == BM_DEFERRED)
{
ws->MakeVertices(false);
ws1->MakeVertices(false);
}
SortNode * sort2=SortNodes.GetNew();
memset(sort2,0,sizeof(SortNode));
sort2->itemindex=drawitems.Size()-1;
if (v1>0)
{
head->AddToLeft(sort2);
head->AddToRight(sort);
}
else
{
head->AddToLeft(sort);
head->AddToRight(sort2);
}
}
}
//==========================================================================
//
//
//
//==========================================================================
EXTERN_CVAR(Int, gl_billboard_mode)
EXTERN_CVAR(Bool, gl_billboard_faces_camera)
EXTERN_CVAR(Bool, gl_billboard_particles)
void GLDrawList::SortSpriteIntoWall(SortNode * head,SortNode * sort)
{
GLWall * wh=&walls[drawitems[head->itemindex].index];
GLSprite * ss=&sprites[drawitems[sort->itemindex].index];
GLSprite * ss1;
float v1 = wh->PointOnSide(ss->x1, ss->y1);
float v2 = wh->PointOnSide(ss->x2, ss->y2);
if (fabs(v1)<MIN_EQ && fabs(v2)<MIN_EQ)
{
if (wh->type==RENDERWALL_FOGBOUNDARY)
{
head->AddToLeft(sort);
}
else
{
head->AddToEqual(sort);
}
}
else if (v1<MIN_EQ && v2<MIN_EQ)
{
head->AddToLeft(sort);
}
else if (v1>-MIN_EQ && v2>-MIN_EQ)
{
head->AddToRight(sort);
}
else
{
const bool drawWithXYBillboard = ((ss->particle && gl_billboard_particles) || (!(ss->actor && ss->actor->renderflags & RF_FORCEYBILLBOARD)
&& (gl_billboard_mode == 1 || (ss->actor && ss->actor->renderflags & RF_FORCEXYBILLBOARD))));
const bool drawBillboardFacingCamera = gl_billboard_faces_camera;
// [Nash] has +ROLLSPRITE
const bool rotated = (ss->actor != nullptr && ss->actor->renderflags & (RF_ROLLSPRITE | RF_WALLSPRITE | RF_FLATSPRITE));
// cannot sort them at the moment. This requires more complex splitting.
if (drawWithXYBillboard || drawBillboardFacingCamera || rotated)
{
float v1 = wh->PointOnSide(ss->x, ss->y);
if (v1 < 0)
{
head->AddToLeft(sort);
}
else
{
head->AddToRight(sort);
}
return;
}
double r=ss->CalcIntersectionVertex(wh);
float ix=(float)(ss->x1 + r * (ss->x2-ss->x1));
float iy=(float)(ss->y1 + r * (ss->y2-ss->y1));
float iu=(float)(ss->ul + r * (ss->ur-ss->ul));
GLSprite s=*ss;
AddSprite(&s);
ss1=&sprites[sprites.Size()-1];
ss=&sprites[drawitems[sort->itemindex].index]; // may have been reallocated!
ss1->x1=ss->x2=ix;
ss1->y1=ss->y2=iy;
ss1->ul=ss->ur=iu;
SortNode * sort2=SortNodes.GetNew();
memset(sort2,0,sizeof(SortNode));
sort2->itemindex=drawitems.Size()-1;
if (v1>0)
{
head->AddToLeft(sort2);
head->AddToRight(sort);
}
else
{
head->AddToLeft(sort);
head->AddToRight(sort2);
}
}
}
//==========================================================================
//
//
//
//==========================================================================
inline int GLDrawList::CompareSprites(SortNode * a,SortNode * b)
{
GLSprite * s1=&sprites[drawitems[a->itemindex].index];
GLSprite * s2=&sprites[drawitems[b->itemindex].index];
int res = s1->depth - s2->depth;
if (res != 0) return -res;
else return (i_compatflags & COMPATF_SPRITESORT)? s1->index-s2->index : s2->index-s1->index;
}
//==========================================================================
//
//
//
//==========================================================================
static GLDrawList * gd;
int CompareSprite(const void * a,const void * b)
{
return gd->CompareSprites(*(SortNode**)a,*(SortNode**)b);
}
//==========================================================================
//
//
//
//==========================================================================
SortNode * GLDrawList::SortSpriteList(SortNode * head)
{
SortNode * n;
int count;
unsigned i;
static TArray<SortNode*> sortspritelist;
SortNode * parent=head->parent;
sortspritelist.Clear();
for(count=0,n=head;n;n=n->next) sortspritelist.Push(n);
gd=this;
qsort(&sortspritelist[0],sortspritelist.Size(),sizeof(SortNode *),CompareSprite);
for(i=0;i<sortspritelist.Size();i++)
{
sortspritelist[i]->next=NULL;
if (parent) parent->equal=sortspritelist[i];
parent=sortspritelist[i];
}
return sortspritelist[0];
}
//==========================================================================
//
//
//
//==========================================================================
SortNode * GLDrawList::DoSort(SortNode * head)
{
SortNode * node, * sn, * next;
sn=FindSortPlane(head);
if (sn)
{
if (sn==head) head=head->next;
sn->UnlinkFromChain();
node=head;
head=sn;
while (node)
{
next=node->next;
switch(drawitems[node->itemindex].rendertype)
{
case GLDIT_FLAT:
SortPlaneIntoPlane(head,node);
break;
case GLDIT_WALL:
SortWallIntoPlane(head,node);
break;
case GLDIT_SPRITE:
SortSpriteIntoPlane(head,node);
break;
}
node=next;
}
}
else
{
sn=FindSortWall(head);
if (sn)
{
if (sn==head) head=head->next;
sn->UnlinkFromChain();
node=head;
head=sn;
while (node)
{
next=node->next;
switch(drawitems[node->itemindex].rendertype)
{
case GLDIT_WALL:
SortWallIntoWall(head,node);
break;
case GLDIT_SPRITE:
SortSpriteIntoWall(head,node);
break;
case GLDIT_FLAT: break;
}
node=next;
}
}
else
{
return SortSpriteList(head);
}
}
if (head->left) head->left=DoSort(head->left);
if (head->right) head->right=DoSort(head->right);
return sn;
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::DoDraw(int pass, int i, bool trans)
{
switch(drawitems[i].rendertype)
{
case GLDIT_FLAT:
{
GLFlat * f=&flats[drawitems[i].index];
RenderFlat.Clock();
f->Draw(pass, trans);
RenderFlat.Unclock();
}
break;
case GLDIT_WALL:
{
GLWall * w=&walls[drawitems[i].index];
RenderWall.Clock();
w->Draw(pass);
RenderWall.Unclock();
}
break;
case GLDIT_SPRITE:
{
GLSprite * s=&sprites[drawitems[i].index];
RenderSprite.Clock();
s->Draw(pass);
RenderSprite.Unclock();
}
break;
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::DoDrawSorted(SortNode * head)
{
float clipsplit[2];
int relation = 0;
float z = 0.f;
gl_RenderState.GetClipSplit(clipsplit);
if (drawitems[head->itemindex].rendertype == GLDIT_FLAT)
{
z = flats[drawitems[head->itemindex].index].z;
relation = z > r_viewpoint.Pos.Z ? 1 : -1;
}
// left is further away, i.e. for stuff above viewz its z coordinate higher, for stuff below viewz its z coordinate is lower
if (head->left)
{
if (relation == -1)
{
gl_RenderState.SetClipSplit(clipsplit[0], z); // render below: set flat as top clip plane
}
else if (relation == 1)
{
gl_RenderState.SetClipSplit(z, clipsplit[1]); // render above: set flat as bottom clip plane
}
DoDrawSorted(head->left);
gl_RenderState.SetClipSplit(clipsplit);
}
DoDraw(GLPASS_TRANSLUCENT, head->itemindex, true);
if (head->equal)
{
SortNode * ehead=head->equal;
while (ehead)
{
DoDraw(GLPASS_TRANSLUCENT, ehead->itemindex, true);
ehead=ehead->equal;
}
}
// right is closer, i.e. for stuff above viewz its z coordinate is lower, for stuff below viewz its z coordinate is higher
if (head->right)
{
if (relation == 1)
{
gl_RenderState.SetClipSplit(clipsplit[0], z); // render below: set flat as top clip plane
}
else if (relation == -1)
{
gl_RenderState.SetClipSplit(z, clipsplit[1]); // render above: set flat as bottom clip plane
}
DoDrawSorted(head->right);
gl_RenderState.SetClipSplit(clipsplit);
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::DrawSorted()
{
if (drawitems.Size()==0) return;
if (!sorted)
{
GLRenderer->mVBO->Map();
MakeSortList();
sorted=DoSort(SortNodes[SortNodeStart]);
GLRenderer->mVBO->Unmap();
}
gl_RenderState.ClearClipSplit();
if (!(gl.flags & RFL_NO_CLIP_PLANES))
{
glEnable(GL_CLIP_DISTANCE1);
glEnable(GL_CLIP_DISTANCE2);
}
DoDrawSorted(sorted);
if (!(gl.flags & RFL_NO_CLIP_PLANES))
{
glDisable(GL_CLIP_DISTANCE1);
glDisable(GL_CLIP_DISTANCE2);
}
gl_RenderState.ClearClipSplit();
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::Draw(int pass, bool trans)
{
for(unsigned i=0;i<drawitems.Size();i++)
{
DoDraw(pass, i, trans);
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::DrawWalls(int pass)
{
RenderWall.Clock();
for(unsigned i=0;i<drawitems.Size();i++)
{
walls[drawitems[i].index].Draw(pass);
}
RenderWall.Unclock();
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::DrawFlats(int pass)
{
RenderFlat.Clock();
for(unsigned i=0;i<drawitems.Size();i++)
{
flats[drawitems[i].index].Draw(pass, false);
}
RenderFlat.Unclock();
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::DrawDecals()
{
for(unsigned i=0;i<drawitems.Size();i++)
{
walls[drawitems[i].index].DoDrawDecals();
}
}
//==========================================================================
//
// Sorting the drawitems first by texture and then by light level.
//
//==========================================================================
static GLDrawList * sortinfo;
static int diwcmp (const void *a, const void *b)
{
const GLDrawItem * di1 = (const GLDrawItem *)a;
GLWall * w1=&sortinfo->walls[di1->index];
const GLDrawItem * di2 = (const GLDrawItem *)b;
GLWall * w2=&sortinfo->walls[di2->index];
if (w1->gltexture != w2->gltexture) return w1->gltexture - w2->gltexture;
return ((w1->flags & 3) - (w2->flags & 3));
}
static int difcmp (const void *a, const void *b)
{
const GLDrawItem * di1 = (const GLDrawItem *)a;
GLFlat * w1=&sortinfo->flats[di1->index];
const GLDrawItem * di2 = (const GLDrawItem *)b;
GLFlat* w2=&sortinfo->flats[di2->index];
return w1->gltexture - w2->gltexture;
}
void GLDrawList::SortWalls()
{
if (drawitems.Size() > 1)
{
sortinfo=this;
qsort(&drawitems[0], drawitems.Size(), sizeof(drawitems[0]), diwcmp);
}
}
void GLDrawList::SortFlats()
{
if (drawitems.Size() > 1)
{
sortinfo=this;
qsort(&drawitems[0], drawitems.Size(), sizeof(drawitems[0]), difcmp);
}
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::AddWall(GLWall * wall)
{
drawitems.Push(GLDrawItem(GLDIT_WALL,walls.Push(*wall)));
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::AddFlat(GLFlat * flat)
{
drawitems.Push(GLDrawItem(GLDIT_FLAT,flats.Push(*flat)));
}
//==========================================================================
//
//
//
//==========================================================================
void GLDrawList::AddSprite(GLSprite * sprite)
{
drawitems.Push(GLDrawItem(GLDIT_SPRITE,sprites.Push(*sprite)));
}
//==========================================================================
//
// Try to reuse the lists as often as possible as they contain resources that
// are expensive to create and delete.
//
//==========================================================================
FDrawInfo *FDrawInfoList::GetNew()
{
if (mList.Size() > 0)
{
FDrawInfo *di;
mList.Pop(di);
return di;
}
return new FDrawInfo;
}
void FDrawInfoList::Release(FDrawInfo * di)
{
di->ClearBuffers();
mList.Push(di);
}
static FDrawInfoList di_list;
//==========================================================================
//
//
//
//==========================================================================
FDrawInfo::FDrawInfo()
{
next = NULL;
if (gl.legacyMode)
{
dldrawlists = new GLDrawList[GLLDL_TYPES];
}
}
FDrawInfo::~FDrawInfo()
{
if (dldrawlists != NULL) delete[] dldrawlists;
ClearBuffers();
}
//==========================================================================
//
// Sets up a new drawinfo struct
//
//==========================================================================
void FDrawInfo::StartDrawInfo(GLSceneDrawer *drawer)
{
FDrawInfo *di=di_list.GetNew();
di->mDrawer = drawer;
di->StartScene();
}
void FDrawInfo::StartScene()
{
ClearBuffers();
sectorrenderflags.Resize(level.sectors.Size());
ss_renderflags.Resize(level.subsectors.Size());
no_renderflags.Resize(level.subsectors.Size());
memset(&sectorrenderflags[0], 0, level.sectors.Size() * sizeof(sectorrenderflags[0]));
memset(&ss_renderflags[0], 0, level.subsectors.Size() * sizeof(ss_renderflags[0]));
memset(&no_renderflags[0], 0, numnodes * sizeof(no_renderflags[0]));
next = gl_drawinfo;
gl_drawinfo = this;
for (int i = 0; i < GLDL_TYPES; i++) drawlists[i].Reset();
if (dldrawlists != NULL)
{
for (int i = 0; i < GLLDL_TYPES; i++) dldrawlists[i].Reset();
}
}
//==========================================================================
//
//
//
//==========================================================================
void FDrawInfo::EndDrawInfo()
{
FDrawInfo * di = gl_drawinfo;
for(int i=0;i<GLDL_TYPES;i++) di->drawlists[i].Reset();
if (di->dldrawlists != NULL)
{
for (int i = 0; i < GLLDL_TYPES; i++) di->dldrawlists[i].Reset();
}
gl_drawinfo=di->next;
di_list.Release(di);
}
//==========================================================================
//
// Flood gaps with the back side's ceiling/floor texture
// This requires a stencil because the projected plane interferes with
// the depth buffer
//
//==========================================================================
void FDrawInfo::SetupFloodStencil(wallseg * ws)
{
int recursion = GLPortal::GetRecursion();
// Create stencil
glStencilFunc(GL_EQUAL, recursion, ~0); // create stencil
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); // increment stencil of valid pixels
{
// Use revertible color mask, to avoid stomping on anaglyph 3D state
ScopedColorMask colorMask(0, 0, 0, 0); // glColorMask(0, 0, 0, 0); // don't write to the graphics buffer
gl_RenderState.EnableTexture(false);
gl_RenderState.ResetColor();
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
gl_RenderState.Apply();
FQuadDrawer qd;
qd.Set(0, ws->x1, ws->z1, ws->y1, 0, 0);
qd.Set(1, ws->x1, ws->z2, ws->y1, 0, 0);
qd.Set(2, ws->x2, ws->z2, ws->y2, 0, 0);
qd.Set(3, ws->x2, ws->z1, ws->y2, 0, 0);
qd.Render(GL_TRIANGLE_FAN);
glStencilFunc(GL_EQUAL, recursion + 1, ~0); // draw sky into stencil
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // this stage doesn't modify the stencil
} // glColorMask(1, 1, 1, 1); // don't write to the graphics buffer
gl_RenderState.EnableTexture(true);
glDisable(GL_DEPTH_TEST);
glDepthMask(false);
}
void FDrawInfo::ClearFloodStencil(wallseg * ws)
{
int recursion = GLPortal::GetRecursion();
glStencilOp(GL_KEEP,GL_KEEP,GL_DECR);
gl_RenderState.EnableTexture(false);
{
// Use revertible color mask, to avoid stomping on anaglyph 3D state
ScopedColorMask colorMask(0, 0, 0, 0); // glColorMask(0,0,0,0); // don't write to the graphics buffer
gl_RenderState.ResetColor();
gl_RenderState.Apply();
FQuadDrawer qd;
qd.Set(0, ws->x1, ws->z1, ws->y1, 0, 0);
qd.Set(1, ws->x1, ws->z2, ws->y1, 0, 0);
qd.Set(2, ws->x2, ws->z2, ws->y2, 0, 0);
qd.Set(3, ws->x2, ws->z1, ws->y2, 0, 0);
qd.Render(GL_TRIANGLE_FAN);
// restore old stencil op.
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_EQUAL, recursion, ~0);
gl_RenderState.EnableTexture(true);
} // glColorMask(1, 1, 1, 1);
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
}
//==========================================================================
//
// Draw the plane segment into the gap
//
//==========================================================================
void FDrawInfo::DrawFloodedPlane(wallseg * ws, float planez, sector_t * sec, bool ceiling)
{
GLSectorPlane plane;
int lightlevel;
FColormap Colormap;
FMaterial * gltexture;
plane.GetFromSector(sec, ceiling);
gltexture=FMaterial::ValidateTexture(plane.texture, false, true);
if (!gltexture) return;
if (mDrawer->FixedColormap)
{
Colormap.Clear();
lightlevel=255;
}
else
{
Colormap = sec->Colormap;
if (gltexture->tex->isFullbright())
{
Colormap.MakeWhite();
lightlevel=255;
}
else lightlevel=abs(ceiling? sec->GetCeilingLight() : sec->GetFloorLight());
}
int rel = getExtraLight();
mDrawer->SetColor(lightlevel, rel, Colormap, 1.0f);
mDrawer->SetFog(lightlevel, rel, &Colormap, false);
gl_RenderState.SetMaterial(gltexture, CLAMP_NONE, 0, -1, false);
float fviewx = r_viewpoint.Pos.X;
float fviewy = r_viewpoint.Pos.Y;
float fviewz = r_viewpoint.Pos.Z;
gl_SetPlaneTextureRotation(&plane, gltexture);
gl_RenderState.Apply();
float prj_fac1 = (planez-fviewz)/(ws->z1-fviewz);
float prj_fac2 = (planez-fviewz)/(ws->z2-fviewz);
float px1 = fviewx + prj_fac1 * (ws->x1-fviewx);
float py1 = fviewy + prj_fac1 * (ws->y1-fviewy);
float px2 = fviewx + prj_fac2 * (ws->x1-fviewx);
float py2 = fviewy + prj_fac2 * (ws->y1-fviewy);
float px3 = fviewx + prj_fac2 * (ws->x2-fviewx);
float py3 = fviewy + prj_fac2 * (ws->y2-fviewy);
float px4 = fviewx + prj_fac1 * (ws->x2-fviewx);
float py4 = fviewy + prj_fac1 * (ws->y2-fviewy);
FQuadDrawer qd;
qd.Set(0, px1, planez, py1, px1 / 64, -py1 / 64);
qd.Set(1, px2, planez, py2, px2 / 64, -py2 / 64);
qd.Set(2, px3, planez, py3, px3 / 64, -py3 / 64);
qd.Set(3, px4, planez, py4, px4 / 64, -py4 / 64);
qd.Render(GL_TRIANGLE_FAN);
gl_RenderState.EnableTextureMatrix(false);
}
//==========================================================================
//
//
//
//==========================================================================
void FDrawInfo::FloodUpperGap(seg_t * seg)
{
wallseg ws;
sector_t ffake, bfake;
sector_t * fakefsector = gl_FakeFlat(seg->frontsector, &ffake, mDrawer->in_area, true);
sector_t * fakebsector = gl_FakeFlat(seg->backsector, &bfake, mDrawer->in_area, false);
vertex_t * v1, * v2;
// Although the plane can be sloped this code will only be called
// when the edge itself is not.
double backz = fakebsector->ceilingplane.ZatPoint(seg->v1);
double frontz = fakefsector->ceilingplane.ZatPoint(seg->v1);
if (fakebsector->GetTexture(sector_t::ceiling)==skyflatnum) return;
if (backz < r_viewpoint.Pos.Z) return;
if (seg->sidedef == seg->linedef->sidedef[0])
{
v1=seg->linedef->v1;
v2=seg->linedef->v2;
}
else
{
v1=seg->linedef->v2;
v2=seg->linedef->v1;
}
ws.x1 = v1->fX();
ws.y1 = v1->fY();
ws.x2 = v2->fX();
ws.y2 = v2->fY();
ws.z1= frontz;
ws.z2= backz;
// Step1: Draw a stencil into the gap
SetupFloodStencil(&ws);
// Step2: Project the ceiling plane into the gap
DrawFloodedPlane(&ws, ws.z2, fakebsector, true);
// Step3: Delete the stencil
ClearFloodStencil(&ws);
}
//==========================================================================
//
//
//
//==========================================================================
void FDrawInfo::FloodLowerGap(seg_t * seg)
{
wallseg ws;
sector_t ffake, bfake;
sector_t * fakefsector = gl_FakeFlat(seg->frontsector, &ffake, mDrawer->in_area, true);
sector_t * fakebsector = gl_FakeFlat(seg->backsector, &bfake, mDrawer->in_area, false);
vertex_t * v1, * v2;
// Although the plane can be sloped this code will only be called
// when the edge itself is not.
double backz = fakebsector->floorplane.ZatPoint(seg->v1);
double frontz = fakefsector->floorplane.ZatPoint(seg->v1);
if (fakebsector->GetTexture(sector_t::floor) == skyflatnum) return;
if (fakebsector->GetPlaneTexZ(sector_t::floor) > r_viewpoint.Pos.Z) return;
if (seg->sidedef == seg->linedef->sidedef[0])
{
v1=seg->linedef->v1;
v2=seg->linedef->v2;
}
else
{
v1=seg->linedef->v2;
v2=seg->linedef->v1;
}
ws.x1 = v1->fX();
ws.y1 = v1->fY();
ws.x2 = v2->fX();
ws.y2 = v2->fY();
ws.z2= frontz;
ws.z1= backz;
// Step1: Draw a stencil into the gap
SetupFloodStencil(&ws);
// Step2: Project the ceiling plane into the gap
DrawFloodedPlane(&ws, ws.z1, fakebsector, false);
// Step3: Delete the stencil
ClearFloodStencil(&ws);
}