gzdoom-gles/src/r_poly_sky.cpp

180 lines
4.8 KiB
C++

/*
** Sky dome rendering
** Copyright(C) 2003-2016 Christoph Oelckers
** All rights reserved.
**
** This program is free software: you can redistribute it and/or modify
** it under the terms of the GNU Lesser General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU Lesser General Public License for more details.
**
** You should have received a copy of the GNU Lesser General Public License
** along with this program. If not, see http:**www.gnu.org/licenses/
**
** Loosely based on the JDoom sky and the ZDoomGL 0.66.2 sky.
*/
#include <stdlib.h>
#include "templates.h"
#include "doomdef.h"
#include "sbar.h"
#include "r_data/r_translate.h"
#include "r_poly_sky.h"
#include "r_poly_portal.h"
#include "r_sky.h" // for skyflatnum
PolySkyDome::PolySkyDome()
{
CreateDome();
}
void PolySkyDome::Render(const TriMatrix &worldToClip)
{
FTextureID sky1tex, sky2tex;
if ((level.flags & LEVEL_SWAPSKIES) && !(level.flags & LEVEL_DOUBLESKY))
sky1tex = sky2texture;
else
sky1tex = sky1texture;
sky2tex = sky2texture;
FTexture *frontskytex = TexMan(sky1tex, true);
FTexture *backskytex = nullptr;
if (level.flags & LEVEL_DOUBLESKY)
backskytex = TexMan(sky2tex, true);
TriMatrix objectToWorld = TriMatrix::translate((float)ViewPos.X, (float)ViewPos.Y, (float)ViewPos.Z);
objectToClip = worldToClip * objectToWorld;
int rc = mRows + 1;
PolyDrawArgs args;
args.uniforms.light = 256;
args.uniforms.flags = 0;
args.uniforms.subsectorDepth = RenderPolyScene::SkySubsectorDepth;
args.objectToClip = &objectToClip;
args.stenciltestvalue = 255;
args.stencilwritevalue = 255;
args.SetTexture(frontskytex);
args.SetColormap(&NormalLight);
args.SetClipPlane(0.0f, 0.0f, 0.0f, 0.0f);
RenderCapColorRow(args, frontskytex, 0, false);
RenderCapColorRow(args, frontskytex, rc, true);
uint32_t topcapcolor = frontskytex->GetSkyCapColor(false);
uint32_t bottomcapcolor = frontskytex->GetSkyCapColor(true);
for (int i = 1; i <= mRows; i++)
{
RenderRow(args, i, topcapcolor);
RenderRow(args, rc + i, bottomcapcolor);
}
}
void PolySkyDome::RenderRow(PolyDrawArgs &args, int row, uint32_t capcolor)
{
args.vinput = &mVertices[mPrimStart[row]];
args.vcount = mPrimStart[row + 1] - mPrimStart[row];
args.mode = TriangleDrawMode::Strip;
args.ccw = false;
args.uniforms.color = capcolor;
PolyTriangleDrawer::draw(args, TriDrawVariant::DrawNormal, TriBlendMode::Skycap);
}
void PolySkyDome::RenderCapColorRow(PolyDrawArgs &args, FTexture *skytex, int row, bool bottomCap)
{
uint32_t solid = skytex->GetSkyCapColor(bottomCap);
if (!swrenderer::r_swtruecolor)
solid = RGB32k.RGB[(RPART(solid) >> 3)][(GPART(solid) >> 3)][(BPART(solid) >> 3)];
args.vinput = &mVertices[mPrimStart[row]];
args.vcount = mPrimStart[row + 1] - mPrimStart[row];
args.mode = TriangleDrawMode::Fan;
args.ccw = bottomCap;
args.uniforms.color = solid;
PolyTriangleDrawer::draw(args, TriDrawVariant::FillNormal, TriBlendMode::Copy);
}
void PolySkyDome::CreateDome()
{
mColumns = 128;
mRows = 4;
CreateSkyHemisphere(false);
CreateSkyHemisphere(true);
mPrimStart.Push(mVertices.Size());
}
void PolySkyDome::CreateSkyHemisphere(bool zflip)
{
int r, c;
mPrimStart.Push(mVertices.Size());
for (c = 0; c < mColumns; c++)
{
SkyVertex(1, c, zflip);
}
// The total number of triangles per hemisphere can be calculated
// as follows: rows * columns * 2 + 2 (for the top cap).
for (r = 0; r < mRows; r++)
{
mPrimStart.Push(mVertices.Size());
for (c = 0; c <= mColumns; c++)
{
SkyVertex(r + zflip, c, zflip);
SkyVertex(r + 1 - zflip, c, zflip);
}
}
}
TriVertex PolySkyDome::SetVertexXYZ(float xx, float yy, float zz, float uu, float vv)
{
TriVertex v;
v.x = xx;
v.y = zz;
v.z = yy;
v.w = 1.0f;
v.varying[0] = uu;
v.varying[1] = vv;
return v;
}
void PolySkyDome::SkyVertex(int r, int c, bool zflip)
{
static const FAngle maxSideAngle = 60.f;
static const float scale = 10000.;
FAngle topAngle = (c / (float)mColumns * 360.f);
FAngle sideAngle = maxSideAngle * (float)(mRows - r) / (float)mRows;
float height = sideAngle.Sin();
float realRadius = scale * sideAngle.Cos();
FVector2 pos = topAngle.ToVector(realRadius);
float z = (!zflip) ? scale * height : -scale * height;
float u, v;
// And the texture coordinates.
if (!zflip) // Flipped Y is for the lower hemisphere.
{
u = (-c / (float)mColumns);
v = (r / (float)mRows);
}
else
{
u = (-c / (float)mColumns);
v = 1.0f + ((mRows - r) / (float)mRows);
}
if (r != 4) z += 300;
// And finally the vertex.
TriVertex vert;
vert = SetVertexXYZ(-pos.X, z - 1.f, pos.Y, u * 4.0f, v * 1.2f - 0.5f);
mVertices.Push(vert);
}