gzdoom-gles/src/sfmt/SFMT.cpp

583 lines
16 KiB
C++

/**
* @file SFMT.c
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#include <string.h>
#include <assert.h>
#include "m_random.h"
#include "SFMT-params.h"
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
#if defined(__GNUC__)
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
#endif
#undef ONLY64
#endif
/** a parity check vector which certificate the period of 2^{MEXP} */
static const uint32_t parity[4] = { PARITY1, PARITY2, PARITY3, PARITY4 };
/*----------------
STATIC FUNCTIONS
----------------*/
inline static int idxof(int i);
inline static void rshift128(w128_t *out, w128_t const *in, int shift);
inline static void lshift128(w128_t *out, w128_t const *in, int shift);
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
inline static void swap(w128_t *array, int size);
#endif
// These SIMD versions WILL NOT work as-is. I'm not even sure SSE2 is
// safe to provide as a runtime option without significant changes to
// how the state is stored, since the VC++ docs warn that:
// Using variables of type __m128i will cause the compiler to generate
// the SSE2 movdqa instruction. This instruction does not cause a fault
// on Pentium III processors but will result in silent failure, with
// possible side effects caused by whatever instructions movdqa
// translates into on Pentium III processors.
#if defined(HAVE_ALTIVEC)
#include "SFMT-alti.h"
#elif defined(HAVE_SSE2)
#include "SFMT-sse2.h"
#endif
/**
* This function simulate a 64-bit index of LITTLE ENDIAN
* in BIG ENDIAN machine.
*/
#ifdef ONLY64
inline static int idxof(int i) {
return i ^ 1;
}
#else
inline static int idxof(int i) {
return i;
}
#endif
/**
* This function simulates SIMD 128-bit right shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#ifdef ONLY64
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
/**
* This function simulates SIMD 128-bit left shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#ifdef ONLY64
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
/**
* This function represents the recursion formula.
* @param r output
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param c a 128-bit part of the internal state array
* @param d a 128-bit part of the internal state array
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
^ (d->u[3] << SL1);
}
#else
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
^ (d->u[3] << SL1);
}
#endif
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
void FRandom::GenRandAll()
{
int i;
w128_t *r1, *r2;
r1 = &sfmt.w128[SFMT::N - 2];
r2 = &sfmt.w128[SFMT::N - 1];
for (i = 0; i < SFMT::N - POS1; i++) {
do_recursion(&sfmt.w128[i], &sfmt.w128[i], &sfmt.w128[i + POS1], r1, r2);
r1 = r2;
r2 = &sfmt.w128[i];
}
for (; i < SFMT::N; i++) {
do_recursion(&sfmt.w128[i], &sfmt.w128[i], &sfmt.w128[i + POS1 - SFMT::N], r1, r2);
r1 = r2;
r2 = &sfmt.w128[i];
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
void FRandom::GenRandArray(w128_t *array, int size)
{
int i, j;
w128_t *r1, *r2;
r1 = &sfmt.w128[SFMT::N - 2];
r2 = &sfmt.w128[SFMT::N - 1];
for (i = 0; i < SFMT::N - POS1; i++) {
do_recursion(&array[i], &sfmt.w128[i], &sfmt.w128[i + POS1], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < SFMT::N; i++) {
do_recursion(&array[i], &sfmt.w128[i], &array[i + POS1 - SFMT::N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < size - SFMT::N; i++) {
do_recursion(&array[i], &array[i - SFMT::N], &array[i + POS1 - SFMT::N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (j = 0; j < 2 * SFMT::N - size; j++) {
sfmt.w128[j] = array[j + size - SFMT::N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - SFMT::N], &array[i + POS1 - SFMT::N], r1, r2);
r1 = r2;
r2 = &array[i];
sfmt.w128[j] = array[i];
}
}
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
inline static void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
for (i = 0; i < size; i++) {
x = array[i].u[0];
y = array[i].u[2];
array[i].u[0] = array[i].u[1];
array[i].u[2] = array[i].u[3];
array[i].u[1] = x;
array[i].u[3] = y;
}
}
#endif
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func1(uint32_t x)
{
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func2(uint32_t x)
{
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function certificate the period of 2^{MEXP}
*/
void FRandom::PeriodCertification()
{
int inner = 0;
int i, j;
uint32_t work;
for (i = 0; i < 4; i++)
inner ^= sfmt.u[idxof(i)] & parity[i];
for (i = 16; i > 0; i >>= 1)
inner ^= inner >> i;
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
for (i = 0; i < 4; i++) {
work = 1;
for (j = 0; j < 32; j++) {
if ((work & parity[i]) != 0) {
sfmt.u[idxof(i)] ^= work;
return;
}
work = work << 1;
}
}
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
/**
* This function returns the minimum size of array used for \b
* fill_array32() function.
* @return minimum size of array used for FillArray32() function.
*/
int FRandom::GetMinArraySize32()
{
return SFMT::N32;
}
/**
* This function returns the minimum size of array used for \b
* fill_array64() function.
* @return minimum size of array used for FillArray64() function.
*/
int FRandom::GetMinArraySize64()
{
return SFMT::N64;
}
#ifndef ONLY64
/**
* This function generates and returns 32-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* @return 32-bit pseudorandom number
*/
unsigned int FRandom::GenRand32()
{
uint32_t r;
assert(initialized);
if (idx >= SFMT::N32)
{
GenRandAll();
idx = 0;
}
r = sfmt.u[idx++];
return r;
}
#endif
/**
* This function generates and returns 64-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* The function gen_rand64 should not be called after gen_rand32,
* unless an initialization is again executed.
* @return 64-bit pseudorandom number
*/
uint64_t FRandom::GenRand64()
{
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
uint32_t r1, r2;
#else
uint64_t r;
#endif
assert(initialized);
assert(idx % 2 == 0);
if (idx >= SFMT::N32)
{
GenRandAll();
idx = 0;
}
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
r1 = sfmt.u[idx];
r2 = sfmt.u[idx + 1];
idx += 2;
return ((uint64_t)r2 << 32) | r1;
#else
r = sfmt.u64[idx / 2];
idx += 2;
return r;
#endif
}
#ifndef ONLY64
/**
* This function generates pseudorandom 32-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 624 and a
* multiple of four. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 32-bit integers are filled
* by this function. The pointer to the array must be \b "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 32-bit pseudorandom integers to be
* generated. size must be a multiple of 4, and greater than or equal
* to (MEXP / 128 + 1) * 4.
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void FRandom::FillArray32(uint32_t *array, int size)
{
assert(initialized);
assert(idx == SFMT::N32);
assert(size % 4 == 0);
assert(size >= SFMT::N32);
GenRandArray((w128_t *)array, size / 4);
idx = SFMT::N32;
}
#endif
/**
* This function generates pseudorandom 64-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 312 and a
* multiple of two. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 64-bit integers are filled
* by this function. The pointer to the array must be "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 64-bit pseudorandom integers to be
* generated. size must be a multiple of 2, and greater than or equal
* to (MEXP / 128 + 1) * 2
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void FRandom::FillArray64(uint64_t *array, int size)
{
assert(initialized);
assert(idx == SFMT::N32);
assert(size % 2 == 0);
assert(size >= SFMT::N64);
GenRandArray((w128_t *)array, size / 2);
idx = SFMT::N32;
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
swap((w128_t *)array, size / 2);
#endif
}
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
*
* @param seed a 32-bit integer used as the seed.
*/
void FRandom::InitGenRand(uint32_t seed)
{
int i;
sfmt.u[idxof(0)] = seed;
for (i = 1; i < SFMT::N32; i++)
{
sfmt.u[idxof(i)] = 1812433253UL * (sfmt.u[idxof(i - 1)]
^ (sfmt.u[idxof(i - 1)] >> 30))
+ i;
}
idx = SFMT::N32;
PeriodCertification();
#ifndef NDEBUG
initialized = 1;
#endif
}
/**
* This function initializes the internal state array,
* with an array of 32-bit integers used as the seeds
* @param init_key the array of 32-bit integers, used as a seed.
* @param key_length the length of init_key.
*/
void FRandom::InitByArray(uint32_t *init_key, int key_length)
{
int i, j, count;
uint32_t r;
int lag;
int mid;
int size = SFMT::N * 4;
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
memset(&sfmt, 0x8b, sizeof(sfmt));
if (key_length + 1 > SFMT::N32) {
count = key_length + 1;
} else {
count = SFMT::N32;
}
r = func1(sfmt.u[idxof(0)] ^ sfmt.u[idxof(mid)] ^ sfmt.u[idxof(SFMT::N32 - 1)]);
sfmt.u[idxof(mid)] += r;
r += key_length;
sfmt.u[idxof(mid + lag)] += r;
sfmt.u[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++)
{
r = func1(sfmt.u[idxof(i)] ^ sfmt.u[idxof((i + mid) % SFMT::N32)] ^ sfmt.u[idxof((i + SFMT::N32 - 1) % SFMT::N32)]);
sfmt.u[idxof((i + mid) % SFMT::N32)] += r;
r += init_key[j] + i;
sfmt.u[idxof((i + mid + lag) % SFMT::N32)] += r;
sfmt.u[idxof(i)] = r;
i = (i + 1) % SFMT::N32;
}
for (; j < count; j++)
{
r = func1(sfmt.u[idxof(i)] ^ sfmt.u[idxof((i + mid) % SFMT::N32)] ^ sfmt.u[idxof((i + SFMT::N32 - 1) % SFMT::N32)]);
sfmt.u[idxof((i + mid) % SFMT::N32)] += r;
r += i;
sfmt.u[idxof((i + mid + lag) % SFMT::N32)] += r;
sfmt.u[idxof(i)] = r;
i = (i + 1) % SFMT::N32;
}
for (j = 0; j < SFMT::N32; j++)
{
r = func2(sfmt.u[idxof(i)] + sfmt.u[idxof((i + mid) % SFMT::N32)] + sfmt.u[idxof((i + SFMT::N32 - 1) % SFMT::N32)]);
sfmt.u[idxof((i + mid) % SFMT::N32)] ^= r;
r -= i;
sfmt.u[idxof((i + mid + lag) % SFMT::N32)] ^= r;
sfmt.u[idxof(i)] = r;
i = (i + 1) % SFMT::N32;
}
idx = SFMT::N32;
PeriodCertification();
#ifndef NDEBUG
initialized = 1;
#endif
}