mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-11-19 19:01:24 +00:00
5ac0789e6e
meaningful message instead of the nondescript 'Tried to spawn a class-less actor'. - Converted AGlassJunk to DECORATE and made the spawn function a little more flexible so that replacing the shard is easier. - Converted ABloodSplatter to DECORATE. - Removed A_Jiggle because it never worked properly. - Changed DECORATE parser to allow commas between arguments for multi- argument properties. For all newly added properties this format will become mandatory but for backwards compatibility it is optional for old ones. - Added a check for negative indices to TAutoGrowArray::SetVal to prevent passing an index of -1 from crashing the game. - Fixed: Morphing must clear the weapon's flash sprite. - Fixed: Resurrecting a morphed player caused a crash. - Fixed: Random sounds that recursively refer to themselves caused a stack overflow. Now they print a warning and get ignored. SVN r277 (trunk)
301 lines
6.7 KiB
C++
301 lines
6.7 KiB
C++
/*
|
|
** tarray.h
|
|
** Templated, automatically resizing array
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 1998-2006 Randy Heit
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#ifndef __TARRAY_H__
|
|
#define __TARRAY_H__
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <new>
|
|
#include "m_alloc.h"
|
|
|
|
|
|
template <class T>
|
|
class TArray
|
|
{
|
|
public:
|
|
////////
|
|
// This is a dummy constructor that does nothing. The purpose of this
|
|
// is so you can create a global TArray in the data segment that gets
|
|
// used by code before startup without worrying about the constructor
|
|
// resetting it after it's already been used. You MUST NOT use it for
|
|
// heap- or stack-allocated TArrays.
|
|
enum ENoInit
|
|
{
|
|
NoInit
|
|
};
|
|
TArray (ENoInit dummy)
|
|
{
|
|
}
|
|
////////
|
|
TArray ()
|
|
{
|
|
Most = 0;
|
|
Count = 0;
|
|
Array = NULL;
|
|
}
|
|
TArray (int max)
|
|
{
|
|
Most = max;
|
|
Count = 0;
|
|
Array = (T *)M_Malloc (sizeof(T)*max);
|
|
}
|
|
TArray (const TArray<T> &other)
|
|
{
|
|
DoCopy (other);
|
|
}
|
|
TArray<T> &operator= (const TArray<T> &other)
|
|
{
|
|
if (&other != this)
|
|
{
|
|
if (Array != NULL)
|
|
{
|
|
if (Count > 0)
|
|
{
|
|
DoDelete (0, Count-1);
|
|
}
|
|
free (Array);
|
|
}
|
|
DoCopy (other);
|
|
}
|
|
return *this;
|
|
}
|
|
~TArray ()
|
|
{
|
|
if (Array)
|
|
{
|
|
if (Count > 0)
|
|
{
|
|
DoDelete (0, Count-1);
|
|
}
|
|
free (Array);
|
|
Array = NULL;
|
|
Count = 0;
|
|
Most = 0;
|
|
}
|
|
}
|
|
T &operator[] (unsigned int index) const
|
|
{
|
|
return Array[index];
|
|
}
|
|
unsigned int Push (const T &item)
|
|
{
|
|
Grow (1);
|
|
::new((void*)&Array[Count]) T(item);
|
|
return Count++;
|
|
}
|
|
bool Pop (T &item)
|
|
{
|
|
if (Count > 0)
|
|
{
|
|
item = Array[--Count];
|
|
Array[Count].~T();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
void Delete (unsigned int index)
|
|
{
|
|
if (index < Count)
|
|
{
|
|
Array[index].~T();
|
|
memmove (&Array[index], &Array[index+1], sizeof(T)*(Count - index - 1));
|
|
Count--;
|
|
}
|
|
}
|
|
// Inserts an item into the array, shifting elements as needed
|
|
void Insert (unsigned int index, const T &item)
|
|
{
|
|
if (index >= Count)
|
|
{
|
|
// Inserting somewhere past the end of the array, so we can
|
|
// just add it without moving things.
|
|
Resize (index + 1);
|
|
::new ((void *)&Array[index]) T(item);
|
|
}
|
|
else
|
|
{
|
|
// Inserting somewhere in the middle of the array,
|
|
// so make room for it
|
|
Resize (Count + 1);
|
|
|
|
// Now move items from the index and onward out of the way
|
|
memmove (&Array[index+1], &Array[index], sizeof(T)*(Count - index - 1));
|
|
|
|
// And put the new element in
|
|
::new ((void *)&Array[index]) T(item);
|
|
}
|
|
}
|
|
void ShrinkToFit ()
|
|
{
|
|
if (Most > Count)
|
|
{
|
|
Most = Count;
|
|
if (Most == 0)
|
|
{
|
|
if (Array != NULL)
|
|
{
|
|
free (Array);
|
|
Array = NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
DoResize ();
|
|
}
|
|
}
|
|
}
|
|
// Grow Array to be large enough to hold amount more entries without
|
|
// further growing.
|
|
void Grow (unsigned int amount)
|
|
{
|
|
if (Count + amount > Most)
|
|
{
|
|
const unsigned int choicea = Count + amount;
|
|
const unsigned int choiceb = Most = (Most >= 16) ? Most + Most / 2 : 16;
|
|
Most = (choicea > choiceb ? choicea : choiceb);
|
|
DoResize ();
|
|
}
|
|
}
|
|
// Resize Array so that it has exactly amount entries in use.
|
|
void Resize (unsigned int amount)
|
|
{
|
|
if (Count < amount)
|
|
{
|
|
// Adding new entries
|
|
Grow (amount - Count);
|
|
for (unsigned int i = Count; i < amount; ++i)
|
|
{
|
|
::new((void *)&Array[i]) T;
|
|
}
|
|
}
|
|
else if (Count != amount)
|
|
{
|
|
// Deleting old entries
|
|
DoDelete (amount, Count - 1);
|
|
}
|
|
Count = amount;
|
|
}
|
|
// Reserves amount entries at the end of the array, but does nothing
|
|
// with them.
|
|
unsigned int Reserve (unsigned int amount)
|
|
{
|
|
Grow (amount);
|
|
unsigned int place = Count;
|
|
Count += amount;
|
|
return place;
|
|
}
|
|
unsigned int Size () const
|
|
{
|
|
return Count;
|
|
}
|
|
unsigned int Max () const
|
|
{
|
|
return Most;
|
|
}
|
|
void Clear ()
|
|
{
|
|
if (Count > 0)
|
|
{
|
|
DoDelete (0, Count-1);
|
|
Count = 0;
|
|
}
|
|
}
|
|
private:
|
|
T *Array;
|
|
unsigned int Most;
|
|
unsigned int Count;
|
|
|
|
void DoCopy (const TArray<T> &other)
|
|
{
|
|
Most = Count = other.Count;
|
|
if (Count != 0)
|
|
{
|
|
Array = (T *)M_Malloc (sizeof(T)*Most);
|
|
for (unsigned int i = 0; i < Count; ++i)
|
|
{
|
|
Array[i] = other.Array[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Array = NULL;
|
|
}
|
|
}
|
|
|
|
void DoResize ()
|
|
{
|
|
size_t allocsize = sizeof(T)*Most;
|
|
Array = (T *)M_Realloc (Array, allocsize);
|
|
}
|
|
|
|
void DoDelete (unsigned int first, unsigned int last)
|
|
{
|
|
assert (last != ~0u);
|
|
for (unsigned int i = first; i <= last; ++i)
|
|
{
|
|
Array[i].~T();
|
|
}
|
|
}
|
|
};
|
|
|
|
// An array with accessors that automatically grow the
|
|
// array as needed. But can still be used as a normal
|
|
// TArray if needed. Used by ACS world and global arrays.
|
|
|
|
template <class T>
|
|
class TAutoGrowArray : public TArray<T>
|
|
{
|
|
public:
|
|
T GetVal (unsigned int index)
|
|
{
|
|
if (index >= this->Size())
|
|
{
|
|
return 0;
|
|
}
|
|
return (*this)[index];
|
|
}
|
|
void SetVal (unsigned int index, T val)
|
|
{
|
|
if ((int)index < 0) return; // These always result in an out of memory condition.
|
|
|
|
if (index >= this->Size())
|
|
{
|
|
this->Resize (index + 1);
|
|
}
|
|
(*this)[index] = val;
|
|
}
|
|
};
|
|
|
|
#endif //__TARRAY_H__
|