lilium-voyager/code/renderergl2/tr_model.c

1390 lines
35 KiB
C
Raw Normal View History

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_models.c -- model loading and caching
#include "tr_local.h"
#define LL(x) x=LittleLong(x)
static qboolean R_LoadMD3(model_t *mod, int lod, void *buffer, int bufferSize, const char *modName);
static qboolean R_LoadMDR(model_t *mod, void *buffer, int filesize, const char *name );
/*
====================
R_RegisterMD3
====================
*/
qhandle_t R_RegisterMD3(const char *name, model_t *mod)
{
union {
unsigned *u;
void *v;
} buf;
int size;
int lod;
int ident;
qboolean loaded = qfalse;
int numLoaded;
char filename[MAX_QPATH], namebuf[MAX_QPATH+20];
char *fext, defex[] = "md3";
numLoaded = 0;
strcpy(filename, name);
fext = strchr(filename, '.');
if(!fext)
fext = defex;
else
{
*fext = '\0';
fext++;
}
for (lod = MD3_MAX_LODS - 1 ; lod >= 0 ; lod--)
{
if(lod)
Com_sprintf(namebuf, sizeof(namebuf), "%s_%d.%s", filename, lod, fext);
else
Com_sprintf(namebuf, sizeof(namebuf), "%s.%s", filename, fext);
size = ri.FS_ReadFile( namebuf, &buf.v );
if(!buf.u)
continue;
ident = LittleLong(* (unsigned *) buf.u);
2013-11-30 00:13:47 +00:00
if (ident == MD3_IDENT)
loaded = R_LoadMD3(mod, lod, buf.u, size, name);
else
2013-11-30 00:13:47 +00:00
ri.Printf(PRINT_WARNING,"R_RegisterMD3: unknown fileid for %s\n", name);
ri.FS_FreeFile(buf.v);
if(loaded)
{
mod->numLods++;
numLoaded++;
}
else
break;
}
if(numLoaded)
{
// duplicate into higher lod spots that weren't
// loaded, in case the user changes r_lodbias on the fly
for(lod--; lod >= 0; lod--)
{
mod->numLods++;
mod->mdv[lod] = mod->mdv[lod + 1];
}
return mod->index;
}
#ifdef _DEBUG
ri.Printf(PRINT_WARNING,"R_RegisterMD3: couldn't load %s\n", name);
#endif
mod->type = MOD_BAD;
return 0;
}
/*
====================
R_RegisterMDR
====================
*/
qhandle_t R_RegisterMDR(const char *name, model_t *mod)
{
union {
unsigned *u;
void *v;
} buf;
int ident;
qboolean loaded = qfalse;
int filesize;
filesize = ri.FS_ReadFile(name, (void **) &buf.v);
if(!buf.u)
{
mod->type = MOD_BAD;
return 0;
}
ident = LittleLong(*(unsigned *)buf.u);
if(ident == MDR_IDENT)
loaded = R_LoadMDR(mod, buf.u, filesize, name);
ri.FS_FreeFile (buf.v);
if(!loaded)
{
ri.Printf(PRINT_WARNING,"R_RegisterMDR: couldn't load mdr file %s\n", name);
mod->type = MOD_BAD;
return 0;
}
return mod->index;
}
/*
====================
R_RegisterIQM
====================
*/
qhandle_t R_RegisterIQM(const char *name, model_t *mod)
{
union {
unsigned *u;
void *v;
} buf;
qboolean loaded = qfalse;
int filesize;
filesize = ri.FS_ReadFile(name, (void **) &buf.v);
if(!buf.u)
{
mod->type = MOD_BAD;
return 0;
}
loaded = R_LoadIQM(mod, buf.u, filesize, name);
ri.FS_FreeFile (buf.v);
if(!loaded)
{
ri.Printf(PRINT_WARNING,"R_RegisterIQM: couldn't load iqm file %s\n", name);
mod->type = MOD_BAD;
return 0;
}
return mod->index;
}
typedef struct
{
char *ext;
qhandle_t (*ModelLoader)( const char *, model_t * );
} modelExtToLoaderMap_t;
// Note that the ordering indicates the order of preference used
// when there are multiple models of different formats available
static modelExtToLoaderMap_t modelLoaders[ ] =
{
{ "iqm", R_RegisterIQM },
{ "mdr", R_RegisterMDR },
{ "md3", R_RegisterMD3 }
};
static int numModelLoaders = ARRAY_LEN(modelLoaders);
//===============================================================================
/*
** R_GetModelByHandle
*/
model_t *R_GetModelByHandle( qhandle_t index ) {
model_t *mod;
// out of range gets the defualt model
if ( index < 1 || index >= tr.numModels ) {
return tr.models[0];
}
mod = tr.models[index];
return mod;
}
//===============================================================================
/*
** R_AllocModel
*/
model_t *R_AllocModel( void ) {
model_t *mod;
if ( tr.numModels == MAX_MOD_KNOWN ) {
return NULL;
}
mod = ri.Hunk_Alloc( sizeof( *tr.models[tr.numModels] ), h_low );
mod->index = tr.numModels;
tr.models[tr.numModels] = mod;
tr.numModels++;
return mod;
}
/*
====================
RE_RegisterModel
Loads in a model for the given name
Zero will be returned if the model fails to load.
An entry will be retained for failed models as an
optimization to prevent disk rescanning if they are
asked for again.
====================
*/
qhandle_t RE_RegisterModel( const char *name ) {
model_t *mod;
qhandle_t hModel;
qboolean orgNameFailed = qfalse;
int orgLoader = -1;
int i;
char localName[ MAX_QPATH ];
const char *ext;
char altName[ MAX_QPATH ];
if ( !name || !name[0] ) {
ri.Printf( PRINT_ALL, "RE_RegisterModel: NULL name\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
ri.Printf( PRINT_ALL, "Model name exceeds MAX_QPATH\n" );
return 0;
}
//
// search the currently loaded models
//
for ( hModel = 1 ; hModel < tr.numModels; hModel++ ) {
mod = tr.models[hModel];
if ( !strcmp( mod->name, name ) ) {
if( mod->type == MOD_BAD ) {
return 0;
}
return hModel;
}
}
// allocate a new model_t
if ( ( mod = R_AllocModel() ) == NULL ) {
ri.Printf( PRINT_WARNING, "RE_RegisterModel: R_AllocModel() failed for '%s'\n", name);
return 0;
}
// only set the name after the model has been successfully loaded
Q_strncpyz( mod->name, name, sizeof( mod->name ) );
2013-01-24 22:53:08 +00:00
R_IssuePendingRenderCommands();
mod->type = MOD_BAD;
mod->numLods = 0;
//
// load the files
//
Q_strncpyz( localName, name, MAX_QPATH );
ext = COM_GetExtension( localName );
if( *ext )
{
// Look for the correct loader and use it
for( i = 0; i < numModelLoaders; i++ )
{
if( !Q_stricmp( ext, modelLoaders[ i ].ext ) )
{
// Load
hModel = modelLoaders[ i ].ModelLoader( localName, mod );
break;
}
}
// A loader was found
if( i < numModelLoaders )
{
if( !hModel )
{
// Loader failed, most likely because the file isn't there;
// try again without the extension
orgNameFailed = qtrue;
orgLoader = i;
COM_StripExtension( name, localName, MAX_QPATH );
}
else
{
// Something loaded
return mod->index;
}
}
}
// Try and find a suitable match using all
// the model formats supported
for( i = 0; i < numModelLoaders; i++ )
{
if (i == orgLoader)
continue;
Com_sprintf( altName, sizeof (altName), "%s.%s", localName, modelLoaders[ i ].ext );
// Load
hModel = modelLoaders[ i ].ModelLoader( altName, mod );
if( hModel )
{
if( orgNameFailed )
{
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
name, altName );
}
break;
}
}
return hModel;
}
/*
=================
R_LoadMD3
=================
*/
static qboolean R_LoadMD3(model_t * mod, int lod, void *buffer, int bufferSize, const char *modName)
{
int f, i, j, k;
md3Header_t *md3Model;
md3Frame_t *md3Frame;
md3Surface_t *md3Surf;
md3Shader_t *md3Shader;
md3Triangle_t *md3Tri;
md3St_t *md3st;
md3XyzNormal_t *md3xyz;
md3Tag_t *md3Tag;
mdvModel_t *mdvModel;
mdvFrame_t *frame;
mdvSurface_t *surf;//, *surface;
int *shaderIndex;
glIndex_t *tri;
mdvVertex_t *v;
mdvSt_t *st;
mdvTag_t *tag;
mdvTagName_t *tagName;
int version;
int size;
md3Model = (md3Header_t *) buffer;
version = LittleLong(md3Model->version);
if(version != MD3_VERSION)
{
ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has wrong version (%i should be %i)\n", modName, version, MD3_VERSION);
return qfalse;
}
mod->type = MOD_MESH;
size = LittleLong(md3Model->ofsEnd);
mod->dataSize += size;
mdvModel = mod->mdv[lod] = ri.Hunk_Alloc(sizeof(mdvModel_t), h_low);
// Com_Memcpy(mod->md3[lod], buffer, LittleLong(md3Model->ofsEnd));
LL(md3Model->ident);
LL(md3Model->version);
LL(md3Model->numFrames);
LL(md3Model->numTags);
LL(md3Model->numSurfaces);
LL(md3Model->ofsFrames);
LL(md3Model->ofsTags);
LL(md3Model->ofsSurfaces);
LL(md3Model->ofsEnd);
if(md3Model->numFrames < 1)
{
ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has no frames\n", modName);
return qfalse;
}
// swap all the frames
mdvModel->numFrames = md3Model->numFrames;
mdvModel->frames = frame = ri.Hunk_Alloc(sizeof(*frame) * md3Model->numFrames, h_low);
md3Frame = (md3Frame_t *) ((byte *) md3Model + md3Model->ofsFrames);
for(i = 0; i < md3Model->numFrames; i++, frame++, md3Frame++)
{
frame->radius = LittleFloat(md3Frame->radius);
for(j = 0; j < 3; j++)
{
frame->bounds[0][j] = LittleFloat(md3Frame->bounds[0][j]);
frame->bounds[1][j] = LittleFloat(md3Frame->bounds[1][j]);
frame->localOrigin[j] = LittleFloat(md3Frame->localOrigin[j]);
}
}
// swap all the tags
mdvModel->numTags = md3Model->numTags;
mdvModel->tags = tag = ri.Hunk_Alloc(sizeof(*tag) * (md3Model->numTags * md3Model->numFrames), h_low);
md3Tag = (md3Tag_t *) ((byte *) md3Model + md3Model->ofsTags);
for(i = 0; i < md3Model->numTags * md3Model->numFrames; i++, tag++, md3Tag++)
{
for(j = 0; j < 3; j++)
{
tag->origin[j] = LittleFloat(md3Tag->origin[j]);
tag->axis[0][j] = LittleFloat(md3Tag->axis[0][j]);
tag->axis[1][j] = LittleFloat(md3Tag->axis[1][j]);
tag->axis[2][j] = LittleFloat(md3Tag->axis[2][j]);
}
}
mdvModel->tagNames = tagName = ri.Hunk_Alloc(sizeof(*tagName) * (md3Model->numTags), h_low);
md3Tag = (md3Tag_t *) ((byte *) md3Model + md3Model->ofsTags);
for(i = 0; i < md3Model->numTags; i++, tagName++, md3Tag++)
{
Q_strncpyz(tagName->name, md3Tag->name, sizeof(tagName->name));
}
// swap all the surfaces
mdvModel->numSurfaces = md3Model->numSurfaces;
mdvModel->surfaces = surf = ri.Hunk_Alloc(sizeof(*surf) * md3Model->numSurfaces, h_low);
md3Surf = (md3Surface_t *) ((byte *) md3Model + md3Model->ofsSurfaces);
for(i = 0; i < md3Model->numSurfaces; i++)
{
LL(md3Surf->ident);
LL(md3Surf->flags);
LL(md3Surf->numFrames);
LL(md3Surf->numShaders);
LL(md3Surf->numTriangles);
LL(md3Surf->ofsTriangles);
LL(md3Surf->numVerts);
LL(md3Surf->ofsShaders);
LL(md3Surf->ofsSt);
LL(md3Surf->ofsXyzNormals);
LL(md3Surf->ofsEnd);
if(md3Surf->numVerts >= SHADER_MAX_VERTEXES)
{
ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has more than %i verts on %s (%i).\n",
modName, SHADER_MAX_VERTEXES - 1, md3Surf->name[0] ? md3Surf->name : "a surface",
md3Surf->numVerts );
return qfalse;
}
if(md3Surf->numTriangles * 3 >= SHADER_MAX_INDEXES)
{
ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has more than %i triangles on %s (%i).\n",
modName, ( SHADER_MAX_INDEXES / 3 ) - 1, md3Surf->name[0] ? md3Surf->name : "a surface",
md3Surf->numTriangles );
return qfalse;
}
// change to surface identifier
surf->surfaceType = SF_MDV;
// give pointer to model for Tess_SurfaceMDX
surf->model = mdvModel;
// copy surface name
Q_strncpyz(surf->name, md3Surf->name, sizeof(surf->name));
// lowercase the surface name so skin compares are faster
Q_strlwr(surf->name);
// strip off a trailing _1 or _2
// this is a crutch for q3data being a mess
j = strlen(surf->name);
if(j > 2 && surf->name[j - 2] == '_')
{
surf->name[j - 2] = 0;
}
// register the shaders
surf->numShaderIndexes = md3Surf->numShaders;
surf->shaderIndexes = shaderIndex = ri.Hunk_Alloc(sizeof(*shaderIndex) * md3Surf->numShaders, h_low);
md3Shader = (md3Shader_t *) ((byte *) md3Surf + md3Surf->ofsShaders);
for(j = 0; j < md3Surf->numShaders; j++, shaderIndex++, md3Shader++)
{
shader_t *sh;
sh = R_FindShader(md3Shader->name, LIGHTMAP_NONE, qtrue);
if(sh->defaultShader)
{
*shaderIndex = 0;
}
else
{
*shaderIndex = sh->index;
}
}
// swap all the triangles
surf->numIndexes = md3Surf->numTriangles * 3;
surf->indexes = tri = ri.Hunk_Alloc(sizeof(*tri) * 3 * md3Surf->numTriangles, h_low);
md3Tri = (md3Triangle_t *) ((byte *) md3Surf + md3Surf->ofsTriangles);
for(j = 0; j < md3Surf->numTriangles; j++, tri += 3, md3Tri++)
{
tri[0] = LittleLong(md3Tri->indexes[0]);
tri[1] = LittleLong(md3Tri->indexes[1]);
tri[2] = LittleLong(md3Tri->indexes[2]);
}
// swap all the XyzNormals
surf->numVerts = md3Surf->numVerts;
surf->verts = v = ri.Hunk_Alloc(sizeof(*v) * (md3Surf->numVerts * md3Surf->numFrames), h_low);
md3xyz = (md3XyzNormal_t *) ((byte *) md3Surf + md3Surf->ofsXyzNormals);
for(j = 0; j < md3Surf->numVerts * md3Surf->numFrames; j++, md3xyz++, v++)
{
unsigned lat, lng;
unsigned short normal;
v->xyz[0] = LittleShort(md3xyz->xyz[0]) * MD3_XYZ_SCALE;
v->xyz[1] = LittleShort(md3xyz->xyz[1]) * MD3_XYZ_SCALE;
v->xyz[2] = LittleShort(md3xyz->xyz[2]) * MD3_XYZ_SCALE;
normal = LittleShort(md3xyz->normal);
lat = ( normal >> 8 ) & 0xff;
lng = ( normal & 0xff );
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
v->normal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
v->normal[1] = tr.sinTable[lat] * tr.sinTable[lng];
v->normal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
}
// swap all the ST
surf->st = st = ri.Hunk_Alloc(sizeof(*st) * md3Surf->numVerts, h_low);
md3st = (md3St_t *) ((byte *) md3Surf + md3Surf->ofsSt);
for(j = 0; j < md3Surf->numVerts; j++, md3st++, st++)
{
st->st[0] = LittleFloat(md3st->st[0]);
st->st[1] = LittleFloat(md3st->st[1]);
}
#ifdef USE_VERT_TANGENT_SPACE
// calc tangent spaces
{
// Valgrind complaints: Conditional jump or move depends on uninitialised value(s)
// So lets Initialize them.
const float *v0 = NULL, *v1 = NULL, *v2 = NULL;
const float *t0 = NULL, *t1 = NULL, *t2 = NULL;
vec3_t tangent = { 0, 0, 0 };
vec3_t bitangent = { 0, 0, 0 };
vec3_t normal = { 0, 0, 0 };
for(j = 0, v = surf->verts; j < (surf->numVerts * mdvModel->numFrames); j++, v++)
{
VectorClear(v->tangent);
VectorClear(v->bitangent);
if (r_recalcMD3Normals->integer)
VectorClear(v->normal);
}
for(f = 0; f < mdvModel->numFrames; f++)
{
for(j = 0, tri = surf->indexes; j < surf->numIndexes; j += 3, tri += 3)
{
v0 = surf->verts[surf->numVerts * f + tri[0]].xyz;
v1 = surf->verts[surf->numVerts * f + tri[1]].xyz;
v2 = surf->verts[surf->numVerts * f + tri[2]].xyz;
t0 = surf->st[tri[0]].st;
t1 = surf->st[tri[1]].st;
t2 = surf->st[tri[2]].st;
if (!r_recalcMD3Normals->integer)
VectorCopy(v->normal, normal);
else
VectorClear(normal);
#if 1
R_CalcTangentSpace(tangent, bitangent, normal, v0, v1, v2, t0, t1, t2);
#else
R_CalcNormalForTriangle(normal, v0, v1, v2);
R_CalcTangentsForTriangle(tangent, bitangent, v0, v1, v2, t0, t1, t2);
#endif
for(k = 0; k < 3; k++)
{
float *v;
v = surf->verts[surf->numVerts * f + tri[k]].tangent;
VectorAdd(v, tangent, v);
v = surf->verts[surf->numVerts * f + tri[k]].bitangent;
VectorAdd(v, bitangent, v);
if (r_recalcMD3Normals->integer)
{
v = surf->verts[surf->numVerts * f + tri[k]].normal;
VectorAdd(v, normal, v);
}
}
}
}
for(j = 0, v = surf->verts; j < (surf->numVerts * mdvModel->numFrames); j++, v++)
{
VectorNormalize(v->tangent);
VectorNormalize(v->bitangent);
VectorNormalize(v->normal);
}
}
#endif
// find the next surface
md3Surf = (md3Surface_t *) ((byte *) md3Surf + md3Surf->ofsEnd);
surf++;
}
{
srfVBOMDVMesh_t *vboSurf;
mdvModel->numVBOSurfaces = mdvModel->numSurfaces;
mdvModel->vboSurfaces = ri.Hunk_Alloc(sizeof(*mdvModel->vboSurfaces) * mdvModel->numSurfaces, h_low);
vboSurf = mdvModel->vboSurfaces;
surf = mdvModel->surfaces;
for (i = 0; i < mdvModel->numSurfaces; i++, vboSurf++, surf++)
{
vec3_t *verts;
vec2_t *texcoords;
uint8_t *normals;
#ifdef USE_VERT_TANGENT_SPACE
uint8_t *tangents;
#endif
byte *data;
int dataSize;
int ofs_xyz, ofs_normal, ofs_st;
#ifdef USE_VERT_TANGENT_SPACE
int ofs_tangent;
#endif
dataSize = 0;
ofs_xyz = dataSize;
dataSize += surf->numVerts * mdvModel->numFrames * sizeof(*verts);
ofs_normal = dataSize;
dataSize += surf->numVerts * mdvModel->numFrames * sizeof(*normals) * 4;
#ifdef USE_VERT_TANGENT_SPACE
ofs_tangent = dataSize;
dataSize += surf->numVerts * mdvModel->numFrames * sizeof(*tangents) * 4;
#endif
ofs_st = dataSize;
dataSize += surf->numVerts * sizeof(*texcoords);
data = ri.Malloc(dataSize);
verts = (void *)(data + ofs_xyz);
normals = (void *)(data + ofs_normal);
#ifdef USE_VERT_TANGENT_SPACE
tangents = (void *)(data + ofs_tangent);
#endif
texcoords = (void *)(data + ofs_st);
v = surf->verts;
for ( j = 0; j < surf->numVerts * mdvModel->numFrames ; j++, v++ )
{
vec3_t nxt;
CrossProduct(v->normal, v->tangent, nxt);
VectorCopy(v->xyz, verts[j]);
normals[j*4+0] = (uint8_t)(v->normal[0] * 127.5f + 128.0f);
normals[j*4+1] = (uint8_t)(v->normal[1] * 127.5f + 128.0f);
normals[j*4+2] = (uint8_t)(v->normal[2] * 127.5f + 128.0f);
normals[j*4+3] = 0;
#ifdef USE_VERT_TANGENT_SPACE
tangents[j*4+0] = (uint8_t)(v->tangent[0] * 127.5f + 128.0f);
tangents[j*4+1] = (uint8_t)(v->tangent[1] * 127.5f + 128.0f);
tangents[j*4+2] = (uint8_t)(v->tangent[2] * 127.5f + 128.0f);
tangents[j*4+3] = (DotProduct(nxt, v->bitangent) < 0.0f) ? 0 : 255;
#endif
}
st = surf->st;
for ( j = 0 ; j < surf->numVerts ; j++, st++ ) {
texcoords[j][0] = st->st[0];
texcoords[j][1] = st->st[1];
}
vboSurf->surfaceType = SF_VBO_MDVMESH;
vboSurf->mdvModel = mdvModel;
vboSurf->mdvSurface = surf;
vboSurf->numIndexes = surf->numIndexes;
vboSurf->numVerts = surf->numVerts;
vboSurf->minIndex = 0;
vboSurf->maxIndex = surf->numVerts;
vboSurf->vbo = R_CreateVBO(va("staticMD3Mesh_VBO '%s'", surf->name), data, dataSize, VBO_USAGE_STATIC);
vboSurf->vbo->ofs_xyz = ofs_xyz;
vboSurf->vbo->ofs_normal = ofs_normal;
#ifdef USE_VERT_TANGENT_SPACE
vboSurf->vbo->ofs_tangent = ofs_tangent;
#endif
vboSurf->vbo->ofs_st = ofs_st;
vboSurf->vbo->stride_xyz = sizeof(*verts);
vboSurf->vbo->stride_normal = sizeof(*normals) * 4;
#ifdef USE_VERT_TANGENT_SPACE
vboSurf->vbo->stride_tangent = sizeof(*tangents) * 4;
#endif
vboSurf->vbo->stride_st = sizeof(*st);
vboSurf->vbo->size_xyz = sizeof(*verts) * surf->numVerts;
vboSurf->vbo->size_normal = sizeof(*normals) * surf->numVerts * 4;
ri.Free(data);
vboSurf->ibo = R_CreateIBO2(va("staticMD3Mesh_IBO %s", surf->name), surf->numIndexes, surf->indexes, VBO_USAGE_STATIC);
}
}
return qtrue;
}
/*
=================
R_LoadMDR
=================
*/
static qboolean R_LoadMDR( model_t *mod, void *buffer, int filesize, const char *mod_name )
{
int i, j, k, l;
mdrHeader_t *pinmodel, *mdr;
mdrFrame_t *frame;
mdrLOD_t *lod, *curlod;
mdrSurface_t *surf, *cursurf;
mdrTriangle_t *tri, *curtri;
mdrVertex_t *v, *curv;
mdrWeight_t *weight, *curweight;
mdrTag_t *tag, *curtag;
int size;
shader_t *sh;
pinmodel = (mdrHeader_t *)buffer;
pinmodel->version = LittleLong(pinmodel->version);
if (pinmodel->version != MDR_VERSION)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has wrong version (%i should be %i)\n", mod_name, pinmodel->version, MDR_VERSION);
return qfalse;
}
size = LittleLong(pinmodel->ofsEnd);
if(size > filesize)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: Header of %s is broken. Wrong filesize declared!\n", mod_name);
return qfalse;
}
mod->type = MOD_MDR;
LL(pinmodel->numFrames);
LL(pinmodel->numBones);
LL(pinmodel->ofsFrames);
// This is a model that uses some type of compressed Bones. We don't want to uncompress every bone for each rendered frame
2013-11-30 00:13:47 +00:00
// over and over again, we'll uncompress it in this function already, so we must adjust the size of the target mdr.
if(pinmodel->ofsFrames < 0)
{
// mdrFrame_t is larger than mdrCompFrame_t:
size += pinmodel->numFrames * sizeof(frame->name);
// now add enough space for the uncompressed bones.
size += pinmodel->numFrames * pinmodel->numBones * ((sizeof(mdrBone_t) - sizeof(mdrCompBone_t)));
}
// simple bounds check
if(pinmodel->numBones < 0 ||
sizeof(*mdr) + pinmodel->numFrames * (sizeof(*frame) + (pinmodel->numBones - 1) * sizeof(*frame->bones)) > size)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name);
return qfalse;
}
mod->dataSize += size;
mod->modelData = mdr = ri.Hunk_Alloc( size, h_low );
// Copy all the values over from the file and fix endian issues in the process, if necessary.
mdr->ident = LittleLong(pinmodel->ident);
mdr->version = pinmodel->version; // Don't need to swap byte order on this one, we already did above.
Q_strncpyz(mdr->name, pinmodel->name, sizeof(mdr->name));
mdr->numFrames = pinmodel->numFrames;
mdr->numBones = pinmodel->numBones;
mdr->numLODs = LittleLong(pinmodel->numLODs);
mdr->numTags = LittleLong(pinmodel->numTags);
// We don't care about the other offset values, we'll generate them ourselves while loading.
mod->numLods = mdr->numLODs;
if ( mdr->numFrames < 1 )
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has no frames\n", mod_name);
return qfalse;
}
/* The first frame will be put into the first free space after the header */
frame = (mdrFrame_t *)(mdr + 1);
mdr->ofsFrames = (int)((byte *) frame - (byte *) mdr);
if (pinmodel->ofsFrames < 0)
{
mdrCompFrame_t *cframe;
// compressed model...
cframe = (mdrCompFrame_t *)((byte *) pinmodel - pinmodel->ofsFrames);
for(i = 0; i < mdr->numFrames; i++)
{
for(j = 0; j < 3; j++)
{
frame->bounds[0][j] = LittleFloat(cframe->bounds[0][j]);
frame->bounds[1][j] = LittleFloat(cframe->bounds[1][j]);
frame->localOrigin[j] = LittleFloat(cframe->localOrigin[j]);
}
frame->radius = LittleFloat(cframe->radius);
frame->name[0] = '\0'; // No name supplied in the compressed version.
for(j = 0; j < mdr->numBones; j++)
{
for(k = 0; k < (sizeof(cframe->bones[j].Comp) / 2); k++)
{
// Do swapping for the uncompressing functions. They seem to use shorts
// values only, so I assume this will work. Never tested it on other
// platforms, though.
((unsigned short *)(cframe->bones[j].Comp))[k] =
LittleShort( ((unsigned short *)(cframe->bones[j].Comp))[k] );
}
/* Now do the actual uncompressing */
MC_UnCompress(frame->bones[j].matrix, cframe->bones[j].Comp);
}
// Next Frame...
cframe = (mdrCompFrame_t *) &cframe->bones[j];
frame = (mdrFrame_t *) &frame->bones[j];
}
}
else
{
mdrFrame_t *curframe;
// uncompressed model...
//
curframe = (mdrFrame_t *)((byte *) pinmodel + pinmodel->ofsFrames);
// swap all the frames
for ( i = 0 ; i < mdr->numFrames ; i++)
{
for(j = 0; j < 3; j++)
{
frame->bounds[0][j] = LittleFloat(curframe->bounds[0][j]);
frame->bounds[1][j] = LittleFloat(curframe->bounds[1][j]);
frame->localOrigin[j] = LittleFloat(curframe->localOrigin[j]);
}
frame->radius = LittleFloat(curframe->radius);
Q_strncpyz(frame->name, curframe->name, sizeof(frame->name));
for (j = 0; j < (int) (mdr->numBones * sizeof(mdrBone_t) / 4); j++)
{
((float *)frame->bones)[j] = LittleFloat( ((float *)curframe->bones)[j] );
}
curframe = (mdrFrame_t *) &curframe->bones[mdr->numBones];
frame = (mdrFrame_t *) &frame->bones[mdr->numBones];
}
}
// frame should now point to the first free address after all frames.
lod = (mdrLOD_t *) frame;
mdr->ofsLODs = (int) ((byte *) lod - (byte *)mdr);
curlod = (mdrLOD_t *)((byte *) pinmodel + LittleLong(pinmodel->ofsLODs));
// swap all the LOD's
for ( l = 0 ; l < mdr->numLODs ; l++)
{
// simple bounds check
if((byte *) (lod + 1) > (byte *) mdr + size)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name);
return qfalse;
}
lod->numSurfaces = LittleLong(curlod->numSurfaces);
// swap all the surfaces
surf = (mdrSurface_t *) (lod + 1);
lod->ofsSurfaces = (int)((byte *) surf - (byte *) lod);
cursurf = (mdrSurface_t *) ((byte *)curlod + LittleLong(curlod->ofsSurfaces));
for ( i = 0 ; i < lod->numSurfaces ; i++)
{
// simple bounds check
if((byte *) (surf + 1) > (byte *) mdr + size)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name);
return qfalse;
}
// first do some copying stuff
surf->ident = SF_MDR;
Q_strncpyz(surf->name, cursurf->name, sizeof(surf->name));
Q_strncpyz(surf->shader, cursurf->shader, sizeof(surf->shader));
surf->ofsHeader = (byte *) mdr - (byte *) surf;
surf->numVerts = LittleLong(cursurf->numVerts);
surf->numTriangles = LittleLong(cursurf->numTriangles);
// numBoneReferences and BoneReferences generally seem to be unused
// now do the checks that may fail.
if ( surf->numVerts >= SHADER_MAX_VERTEXES )
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has more than %i verts on %s (%i).\n",
mod_name, SHADER_MAX_VERTEXES - 1, surf->name[0] ? surf->name : "a surface",
surf->numVerts );
return qfalse;
}
if ( surf->numTriangles*3 >= SHADER_MAX_INDEXES )
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has more than %i triangles on %s (%i).\n",
mod_name, ( SHADER_MAX_INDEXES / 3 ) - 1, surf->name[0] ? surf->name : "a surface",
surf->numTriangles );
return qfalse;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surf->name );
// register the shaders
sh = R_FindShader(surf->shader, LIGHTMAP_NONE, qtrue);
if ( sh->defaultShader ) {
surf->shaderIndex = 0;
} else {
surf->shaderIndex = sh->index;
}
// now copy the vertexes.
v = (mdrVertex_t *) (surf + 1);
surf->ofsVerts = (int)((byte *) v - (byte *) surf);
curv = (mdrVertex_t *) ((byte *)cursurf + LittleLong(cursurf->ofsVerts));
for(j = 0; j < surf->numVerts; j++)
{
LL(curv->numWeights);
// simple bounds check
if(curv->numWeights < 0 || (byte *) (v + 1) + (curv->numWeights - 1) * sizeof(*weight) > (byte *) mdr + size)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name);
return qfalse;
}
v->normal[0] = LittleFloat(curv->normal[0]);
v->normal[1] = LittleFloat(curv->normal[1]);
v->normal[2] = LittleFloat(curv->normal[2]);
v->texCoords[0] = LittleFloat(curv->texCoords[0]);
v->texCoords[1] = LittleFloat(curv->texCoords[1]);
v->numWeights = curv->numWeights;
weight = &v->weights[0];
curweight = &curv->weights[0];
// Now copy all the weights
for(k = 0; k < v->numWeights; k++)
{
weight->boneIndex = LittleLong(curweight->boneIndex);
weight->boneWeight = LittleFloat(curweight->boneWeight);
weight->offset[0] = LittleFloat(curweight->offset[0]);
weight->offset[1] = LittleFloat(curweight->offset[1]);
weight->offset[2] = LittleFloat(curweight->offset[2]);
weight++;
curweight++;
}
v = (mdrVertex_t *) weight;
curv = (mdrVertex_t *) curweight;
}
// we know the offset to the triangles now:
tri = (mdrTriangle_t *) v;
surf->ofsTriangles = (int)((byte *) tri - (byte *) surf);
curtri = (mdrTriangle_t *)((byte *) cursurf + LittleLong(cursurf->ofsTriangles));
// simple bounds check
if(surf->numTriangles < 0 || (byte *) (tri + surf->numTriangles) > (byte *) mdr + size)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name);
return qfalse;
}
for(j = 0; j < surf->numTriangles; j++)
{
tri->indexes[0] = LittleLong(curtri->indexes[0]);
tri->indexes[1] = LittleLong(curtri->indexes[1]);
tri->indexes[2] = LittleLong(curtri->indexes[2]);
tri++;
curtri++;
}
// tri now points to the end of the surface.
surf->ofsEnd = (byte *) tri - (byte *) surf;
surf = (mdrSurface_t *) tri;
// find the next surface.
cursurf = (mdrSurface_t *) ((byte *) cursurf + LittleLong(cursurf->ofsEnd));
}
// surf points to the next lod now.
lod->ofsEnd = (int)((byte *) surf - (byte *) lod);
lod = (mdrLOD_t *) surf;
// find the next LOD.
curlod = (mdrLOD_t *)((byte *) curlod + LittleLong(curlod->ofsEnd));
}
// lod points to the first tag now, so update the offset too.
tag = (mdrTag_t *) lod;
mdr->ofsTags = (int)((byte *) tag - (byte *) mdr);
curtag = (mdrTag_t *) ((byte *)pinmodel + LittleLong(pinmodel->ofsTags));
// simple bounds check
if(mdr->numTags < 0 || (byte *) (tag + mdr->numTags) > (byte *) mdr + size)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name);
return qfalse;
}
for (i = 0 ; i < mdr->numTags ; i++)
{
tag->boneIndex = LittleLong(curtag->boneIndex);
Q_strncpyz(tag->name, curtag->name, sizeof(tag->name));
tag++;
curtag++;
}
// And finally we know the real offset to the end.
mdr->ofsEnd = (int)((byte *) tag - (byte *) mdr);
// phew! we're done.
return qtrue;
}
//=============================================================================
/*
** RE_BeginRegistration
*/
void RE_BeginRegistration( glconfig_t *glconfigOut ) {
R_Init();
*glconfigOut = glConfig;
2013-01-24 22:53:08 +00:00
R_IssuePendingRenderCommands();
tr.visIndex = 0;
memset(tr.visClusters, -2, sizeof(tr.visClusters)); // force markleafs to regenerate
R_ClearFlares();
RE_ClearScene();
tr.registered = qtrue;
}
//=============================================================================
/*
===============
R_ModelInit
===============
*/
void R_ModelInit( void ) {
model_t *mod;
// leave a space for NULL model
tr.numModels = 0;
mod = R_AllocModel();
mod->type = MOD_BAD;
}
/*
================
R_Modellist_f
================
*/
void R_Modellist_f( void ) {
int i, j;
model_t *mod;
int total;
int lods;
total = 0;
for ( i = 1 ; i < tr.numModels; i++ ) {
mod = tr.models[i];
lods = 1;
for ( j = 1 ; j < MD3_MAX_LODS ; j++ ) {
if ( mod->mdv[j] && mod->mdv[j] != mod->mdv[j-1] ) {
lods++;
}
}
ri.Printf( PRINT_ALL, "%8i : (%i) %s\n",mod->dataSize, lods, mod->name );
total += mod->dataSize;
}
ri.Printf( PRINT_ALL, "%8i : Total models\n", total );
#if 0 // not working right with new hunk
if ( tr.world ) {
ri.Printf( PRINT_ALL, "\n%8i : %s\n", tr.world->dataSize, tr.world->name );
}
#endif
}
//=============================================================================
/*
================
R_GetTag
================
*/
static mdvTag_t *R_GetTag( mdvModel_t *mod, int frame, const char *_tagName ) {
int i;
mdvTag_t *tag;
mdvTagName_t *tagName;
if ( frame >= mod->numFrames ) {
// it is possible to have a bad frame while changing models, so don't error
frame = mod->numFrames - 1;
}
tag = mod->tags + frame * mod->numTags;
tagName = mod->tagNames;
for(i = 0; i < mod->numTags; i++, tag++, tagName++)
{
if(!strcmp(tagName->name, _tagName))
{
return tag;
}
}
return NULL;
}
2013-03-06 23:52:06 +00:00
void R_GetAnimTag( mdrHeader_t *mod, int framenum, const char *tagName, mdvTag_t * dest)
{
int i, j, k;
int frameSize;
mdrFrame_t *frame;
mdrTag_t *tag;
if ( framenum >= mod->numFrames )
{
// it is possible to have a bad frame while changing models, so don't error
framenum = mod->numFrames - 1;
}
tag = (mdrTag_t *)((byte *)mod + mod->ofsTags);
for ( i = 0 ; i < mod->numTags ; i++, tag++ )
{
if ( !strcmp( tag->name, tagName ) )
{
// uncompressed model...
//
frameSize = (intptr_t)( &((mdrFrame_t *)0)->bones[ mod->numBones ] );
frame = (mdrFrame_t *)((byte *)mod + mod->ofsFrames + framenum * frameSize );
for (j = 0; j < 3; j++)
{
for (k = 0; k < 3; k++)
dest->axis[j][k]=frame->bones[tag->boneIndex].matrix[k][j];
}
dest->origin[0]=frame->bones[tag->boneIndex].matrix[0][3];
dest->origin[1]=frame->bones[tag->boneIndex].matrix[1][3];
dest->origin[2]=frame->bones[tag->boneIndex].matrix[2][3];
return;
}
}
AxisClear( dest->axis );
VectorClear( dest->origin );
}
/*
================
R_LerpTag
================
*/
int R_LerpTag( orientation_t *tag, qhandle_t handle, int startFrame, int endFrame,
float frac, const char *tagName ) {
mdvTag_t *start, *end;
2013-03-06 23:52:06 +00:00
mdvTag_t start_space, end_space;
int i;
float frontLerp, backLerp;
model_t *model;
model = R_GetModelByHandle( handle );
if ( !model->mdv[0] )
{
if(model->type == MOD_MDR)
{
start = &start_space;
end = &end_space;
R_GetAnimTag((mdrHeader_t *) model->modelData, startFrame, tagName, start);
R_GetAnimTag((mdrHeader_t *) model->modelData, endFrame, tagName, end);
}
2013-03-18 19:02:29 +00:00
else if( model->type == MOD_IQM ) {
return R_IQMLerpTag( tag, model->modelData,
startFrame, endFrame,
frac, tagName );
} else {
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
}
else
{
start = R_GetTag( model->mdv[0], startFrame, tagName );
end = R_GetTag( model->mdv[0], endFrame, tagName );
if ( !start || !end ) {
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
}
frontLerp = frac;
backLerp = 1.0f - frac;
for ( i = 0 ; i < 3 ; i++ ) {
tag->origin[i] = start->origin[i] * backLerp + end->origin[i] * frontLerp;
tag->axis[0][i] = start->axis[0][i] * backLerp + end->axis[0][i] * frontLerp;
tag->axis[1][i] = start->axis[1][i] * backLerp + end->axis[1][i] * frontLerp;
tag->axis[2][i] = start->axis[2][i] * backLerp + end->axis[2][i] * frontLerp;
}
VectorNormalize( tag->axis[0] );
VectorNormalize( tag->axis[1] );
VectorNormalize( tag->axis[2] );
return qtrue;
}
/*
====================
R_ModelBounds
====================
*/
void R_ModelBounds( qhandle_t handle, vec3_t mins, vec3_t maxs ) {
model_t *model;
model = R_GetModelByHandle( handle );
if(model->type == MOD_BRUSH) {
VectorCopy( model->bmodel->bounds[0], mins );
VectorCopy( model->bmodel->bounds[1], maxs );
return;
} else if (model->type == MOD_MESH) {
mdvModel_t *header;
mdvFrame_t *frame;
header = model->mdv[0];
frame = header->frames;
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
return;
} else if (model->type == MOD_MDR) {
mdrHeader_t *header;
mdrFrame_t *frame;
header = (mdrHeader_t *)model->modelData;
frame = (mdrFrame_t *) ((byte *)header + header->ofsFrames);
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
return;
} else if(model->type == MOD_IQM) {
iqmData_t *iqmData;
iqmData = model->modelData;
if(iqmData->bounds)
{
VectorCopy(iqmData->bounds, mins);
VectorCopy(iqmData->bounds + 3, maxs);
return;
}
}
VectorClear( mins );
VectorClear( maxs );
}