lilium-voyager/code/renderergl2/tr_sky.c

913 lines
22 KiB
C
Raw Normal View History

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_sky.c
#include "tr_local.h"
#define SKY_SUBDIVISIONS 8
#define HALF_SKY_SUBDIVISIONS (SKY_SUBDIVISIONS/2)
static float s_cloudTexCoords[6][SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2];
static float s_cloudTexP[6][SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1];
/*
===================================================================================
POLYGON TO BOX SIDE PROJECTION
===================================================================================
*/
static vec3_t sky_clip[6] =
{
{1,1,0},
{1,-1,0},
{0,-1,1},
{0,1,1},
{1,0,1},
{-1,0,1}
};
static float sky_mins[2][6], sky_maxs[2][6];
static float sky_min, sky_max;
/*
================
AddSkyPolygon
================
*/
static void AddSkyPolygon (int nump, vec3_t vecs)
{
int i,j;
vec3_t v, av;
float s, t, dv;
int axis;
float *vp;
// s = [0]/[2], t = [1]/[2]
static int vec_to_st[6][3] =
{
{-2,3,1},
{2,3,-1},
{1,3,2},
{-1,3,-2},
{-2,-1,3},
{-2,1,-3}
// {-1,2,3},
// {1,2,-3}
};
// decide which face it maps to
VectorCopy (vec3_origin, v);
for (i=0, vp=vecs ; i<nump ; i++, vp+=3)
{
VectorAdd (vp, v, v);
}
av[0] = fabs(v[0]);
av[1] = fabs(v[1]);
av[2] = fabs(v[2]);
if (av[0] > av[1] && av[0] > av[2])
{
if (v[0] < 0)
axis = 1;
else
axis = 0;
}
else if (av[1] > av[2] && av[1] > av[0])
{
if (v[1] < 0)
axis = 3;
else
axis = 2;
}
else
{
if (v[2] < 0)
axis = 5;
else
axis = 4;
}
// project new texture coords
for (i=0 ; i<nump ; i++, vecs+=3)
{
j = vec_to_st[axis][2];
if (j > 0)
dv = vecs[j - 1];
else
dv = -vecs[-j - 1];
if (dv < 0.001)
continue; // don't divide by zero
j = vec_to_st[axis][0];
if (j < 0)
s = -vecs[-j -1] / dv;
else
s = vecs[j-1] / dv;
j = vec_to_st[axis][1];
if (j < 0)
t = -vecs[-j -1] / dv;
else
t = vecs[j-1] / dv;
if (s < sky_mins[0][axis])
sky_mins[0][axis] = s;
if (t < sky_mins[1][axis])
sky_mins[1][axis] = t;
if (s > sky_maxs[0][axis])
sky_maxs[0][axis] = s;
if (t > sky_maxs[1][axis])
sky_maxs[1][axis] = t;
}
}
#define ON_EPSILON 0.1f // point on plane side epsilon
#define MAX_CLIP_VERTS 64
/*
================
ClipSkyPolygon
================
*/
static void ClipSkyPolygon (int nump, vec3_t vecs, int stage)
{
float *norm;
float *v;
qboolean front, back;
float d, e;
float dists[MAX_CLIP_VERTS];
int sides[MAX_CLIP_VERTS];
vec3_t newv[2][MAX_CLIP_VERTS];
int newc[2];
int i, j;
if (nump > MAX_CLIP_VERTS-2)
ri.Error (ERR_DROP, "ClipSkyPolygon: MAX_CLIP_VERTS");
if (stage == 6)
{ // fully clipped, so draw it
AddSkyPolygon (nump, vecs);
return;
}
front = back = qfalse;
norm = sky_clip[stage];
for (i=0, v = vecs ; i<nump ; i++, v+=3)
{
d = DotProduct (v, norm);
if (d > ON_EPSILON)
{
front = qtrue;
sides[i] = SIDE_FRONT;
}
else if (d < -ON_EPSILON)
{
back = qtrue;
sides[i] = SIDE_BACK;
}
else
sides[i] = SIDE_ON;
dists[i] = d;
}
if (!front || !back)
{ // not clipped
ClipSkyPolygon (nump, vecs, stage+1);
return;
}
// clip it
sides[i] = sides[0];
dists[i] = dists[0];
VectorCopy (vecs, (vecs+(i*3)) );
newc[0] = newc[1] = 0;
for (i=0, v = vecs ; i<nump ; i++, v+=3)
{
switch (sides[i])
{
case SIDE_FRONT:
VectorCopy (v, newv[0][newc[0]]);
newc[0]++;
break;
case SIDE_BACK:
VectorCopy (v, newv[1][newc[1]]);
newc[1]++;
break;
case SIDE_ON:
VectorCopy (v, newv[0][newc[0]]);
newc[0]++;
VectorCopy (v, newv[1][newc[1]]);
newc[1]++;
break;
}
if (sides[i] == SIDE_ON || sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
continue;
d = dists[i] / (dists[i] - dists[i+1]);
for (j=0 ; j<3 ; j++)
{
e = v[j] + d*(v[j+3] - v[j]);
newv[0][newc[0]][j] = e;
newv[1][newc[1]][j] = e;
}
newc[0]++;
newc[1]++;
}
// continue
ClipSkyPolygon (newc[0], newv[0][0], stage+1);
ClipSkyPolygon (newc[1], newv[1][0], stage+1);
}
/*
==============
ClearSkyBox
==============
*/
static void ClearSkyBox (void) {
int i;
for (i=0 ; i<6 ; i++) {
sky_mins[0][i] = sky_mins[1][i] = 9999;
sky_maxs[0][i] = sky_maxs[1][i] = -9999;
}
}
/*
================
RB_ClipSkyPolygons
================
*/
void RB_ClipSkyPolygons( shaderCommands_t *input )
{
vec3_t p[5]; // need one extra point for clipping
int i, j;
ClearSkyBox();
for ( i = 0; i < input->numIndexes; i += 3 )
{
for (j = 0 ; j < 3 ; j++)
{
VectorSubtract( input->xyz[input->indexes[i+j]],
backEnd.viewParms.or.origin,
p[j] );
}
ClipSkyPolygon( 3, p[0], 0 );
}
}
/*
===================================================================================
CLOUD VERTEX GENERATION
===================================================================================
*/
/*
** MakeSkyVec
**
** Parms: s, t range from -1 to 1
*/
static void MakeSkyVec( float s, float t, int axis, float outSt[2], vec3_t outXYZ )
{
// 1 = s, 2 = t, 3 = 2048
static int st_to_vec[6][3] =
{
{3,-1,2},
{-3,1,2},
{1,3,2},
{-1,-3,2},
{-2,-1,3}, // 0 degrees yaw, look straight up
{2,-1,-3} // look straight down
};
vec3_t b;
int j, k;
float boxSize;
boxSize = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
b[0] = s*boxSize;
b[1] = t*boxSize;
b[2] = boxSize;
for (j=0 ; j<3 ; j++)
{
k = st_to_vec[axis][j];
if (k < 0)
{
outXYZ[j] = -b[-k - 1];
}
else
{
outXYZ[j] = b[k - 1];
}
}
// avoid bilerp seam
s = (s+1)*0.5;
t = (t+1)*0.5;
if (s < sky_min)
{
s = sky_min;
}
else if (s > sky_max)
{
s = sky_max;
}
if (t < sky_min)
{
t = sky_min;
}
else if (t > sky_max)
{
t = sky_max;
}
t = 1.0 - t;
if ( outSt )
{
outSt[0] = s;
outSt[1] = t;
}
}
static int sky_texorder[6] = {0,2,1,3,4,5};
static vec3_t s_skyPoints[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1];
static float s_skyTexCoords[SKY_SUBDIVISIONS+1][SKY_SUBDIVISIONS+1][2];
static void DrawSkySide( struct image_s *image, const int mins[2], const int maxs[2] )
{
int s, t;
int firstVertex = tess.numVertexes;
//int firstIndex = tess.numIndexes;
int minIndex = tess.minIndex;
int maxIndex = tess.maxIndex;
vec4_t color;
//tess.numVertexes = 0;
//tess.numIndexes = 0;
tess.firstIndex = tess.numIndexes;
GL_Bind( image );
GL_Cull( CT_TWO_SIDED );
for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t <= maxs[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
tess.xyz[tess.numVertexes][0] = s_skyPoints[t][s][0];
tess.xyz[tess.numVertexes][1] = s_skyPoints[t][s][1];
tess.xyz[tess.numVertexes][2] = s_skyPoints[t][s][2];
tess.xyz[tess.numVertexes][3] = 1.0;
tess.texCoords[tess.numVertexes][0][0] = s_skyTexCoords[t][s][0];
tess.texCoords[tess.numVertexes][0][1] = s_skyTexCoords[t][s][1];
tess.numVertexes++;
if(tess.numVertexes >= SHADER_MAX_VERTEXES)
{
ri.Error(ERR_DROP, "SHADER_MAX_VERTEXES hit in DrawSkySideVBO()");
}
}
}
for ( t = 0; t < maxs[1] - mins[1]; t++ )
{
for ( s = 0; s < maxs[0] - mins[0]; s++ )
{
if (tess.numIndexes + 6 >= SHADER_MAX_INDEXES)
{
ri.Error(ERR_DROP, "SHADER_MAX_INDEXES hit in DrawSkySideVBO()");
}
tess.indexes[tess.numIndexes++] = s + t * (maxs[0] - mins[0] + 1) + firstVertex;
tess.indexes[tess.numIndexes++] = s + (t + 1) * (maxs[0] - mins[0] + 1) + firstVertex;
tess.indexes[tess.numIndexes++] = (s + 1) + t * (maxs[0] - mins[0] + 1) + firstVertex;
tess.indexes[tess.numIndexes++] = (s + 1) + t * (maxs[0] - mins[0] + 1) + firstVertex;
tess.indexes[tess.numIndexes++] = s + (t + 1) * (maxs[0] - mins[0] + 1) + firstVertex;
tess.indexes[tess.numIndexes++] = (s + 1) + (t + 1) * (maxs[0] - mins[0] + 1) + firstVertex;
}
}
tess.minIndex = firstVertex;
tess.maxIndex = tess.numVertexes;
// FIXME: A lot of this can probably be removed for speed, and refactored into a more convenient function
RB_UpdateVBOs(ATTR_POSITION | ATTR_TEXCOORD);
/*
{
shaderProgram_t *sp = &tr.textureColorShader;
GLSL_VertexAttribsState(ATTR_POSITION | ATTR_TEXCOORD);
GLSL_BindProgram(sp);
GLSL_SetUniformMatrix16(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
color[0] =
color[1] =
color[2] = tr.identityLight;
color[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_COLOR, color);
}
*/
{
shaderProgram_t *sp = &tr.lightallShader[0];
vec4_t vector;
GLSL_VertexAttribsState(ATTR_POSITION | ATTR_TEXCOORD);
GLSL_BindProgram(sp);
GLSL_SetUniformMatrix16(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
color[0] =
color[1] =
color[2] = (r_softOverbright->integer ? 1.0 : tr.identityLight) * backEnd.refdef.colorScale;
color[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_BASECOLOR, color);
color[0] =
color[1] =
color[2] =
color[3] = 0.0f;
GLSL_SetUniformVec4(sp, UNIFORM_VERTCOLOR, color);
VectorSet4(vector, 1.0, 0.0, 0.0, 1.0);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, vector);
VectorSet4(vector, 0.0, 0.0, 0.0, 0.0);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, vector);
}
R_DrawElementsVBO(tess.numIndexes - tess.firstIndex, tess.firstIndex, tess.minIndex, tess.maxIndex);
//qglDrawElements(GL_TRIANGLES, tess.numIndexes - tess.firstIndex, GL_INDEX_TYPE, BUFFER_OFFSET(tess.firstIndex * sizeof(GL_INDEX_TYPE)));
//R_BindNullVBO();
//R_BindNullIBO();
tess.numIndexes = tess.firstIndex;
tess.numVertexes = firstVertex;
tess.firstIndex = 0;
tess.minIndex = minIndex;
tess.maxIndex = maxIndex;
}
static void DrawSkyBox( shader_t *shader )
{
int i;
sky_min = 0;
sky_max = 1;
Com_Memset( s_skyTexCoords, 0, sizeof( s_skyTexCoords ) );
for (i=0 ; i<6 ; i++)
{
int sky_mins_subd[2], sky_maxs_subd[2];
int s, t;
sky_mins[0][i] = floor( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_mins[1][i] = floor( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[0][i] = ceil( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[1][i] = ceil( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
if ( ( sky_mins[0][i] >= sky_maxs[0][i] ) ||
( sky_mins[1][i] >= sky_maxs[1][i] ) )
{
continue;
}
sky_mins_subd[0] = sky_mins[0][i] * HALF_SKY_SUBDIVISIONS;
sky_mins_subd[1] = sky_mins[1][i] * HALF_SKY_SUBDIVISIONS;
sky_maxs_subd[0] = sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS;
sky_maxs_subd[1] = sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS;
if ( sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_mins_subd[1] < -HALF_SKY_SUBDIVISIONS )
sky_mins_subd[1] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[1] < -HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[1] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
//
// iterate through the subdivisions
//
for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
i,
s_skyTexCoords[t][s],
s_skyPoints[t][s] );
}
}
DrawSkySide( shader->sky.outerbox[sky_texorder[i]],
sky_mins_subd,
sky_maxs_subd );
}
}
static void FillCloudySkySide( const int mins[2], const int maxs[2], qboolean addIndexes )
{
int s, t;
int vertexStart = tess.numVertexes;
int tHeight, sWidth;
tHeight = maxs[1] - mins[1] + 1;
sWidth = maxs[0] - mins[0] + 1;
for ( t = mins[1]+HALF_SKY_SUBDIVISIONS; t <= maxs[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = mins[0]+HALF_SKY_SUBDIVISIONS; s <= maxs[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
VectorAdd( s_skyPoints[t][s], backEnd.viewParms.or.origin, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = s_skyTexCoords[t][s][0];
tess.texCoords[tess.numVertexes][0][1] = s_skyTexCoords[t][s][1];
tess.numVertexes++;
if ( tess.numVertexes >= SHADER_MAX_VERTEXES )
{
ri.Error( ERR_DROP, "SHADER_MAX_VERTEXES hit in FillCloudySkySide()" );
}
}
}
// only add indexes for one pass, otherwise it would draw multiple times for each pass
if ( addIndexes ) {
for ( t = 0; t < tHeight-1; t++ )
{
for ( s = 0; s < sWidth-1; s++ )
{
tess.indexes[tess.numIndexes] = vertexStart + s + t * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + ( t + 1 ) * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + ( t + 1 ) * ( sWidth );
tess.numIndexes++;
tess.indexes[tess.numIndexes] = vertexStart + s + 1 + t * ( sWidth );
tess.numIndexes++;
}
}
}
}
static void FillCloudBox( const shader_t *shader, int stage )
{
int i;
for ( i =0; i < 6; i++ )
{
int sky_mins_subd[2], sky_maxs_subd[2];
int s, t;
float MIN_T;
if ( 1 ) // FIXME? shader->sky.fullClouds )
{
MIN_T = -HALF_SKY_SUBDIVISIONS;
// still don't want to draw the bottom, even if fullClouds
if ( i == 5 )
continue;
}
else
{
switch( i )
{
case 0:
case 1:
case 2:
case 3:
MIN_T = -1;
break;
case 5:
// don't draw clouds beneath you
continue;
case 4: // top
default:
MIN_T = -HALF_SKY_SUBDIVISIONS;
break;
}
}
sky_mins[0][i] = floor( sky_mins[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_mins[1][i] = floor( sky_mins[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[0][i] = ceil( sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
sky_maxs[1][i] = ceil( sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS ) / HALF_SKY_SUBDIVISIONS;
if ( ( sky_mins[0][i] >= sky_maxs[0][i] ) ||
( sky_mins[1][i] >= sky_maxs[1][i] ) )
{
continue;
}
sky_mins_subd[0] = ri.ftol(sky_mins[0][i] * HALF_SKY_SUBDIVISIONS);
sky_mins_subd[1] = ri.ftol(sky_mins[1][i] * HALF_SKY_SUBDIVISIONS);
sky_maxs_subd[0] = ri.ftol(sky_maxs[0][i] * HALF_SKY_SUBDIVISIONS);
sky_maxs_subd[1] = ri.ftol(sky_maxs[1][i] * HALF_SKY_SUBDIVISIONS);
if ( sky_mins_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_mins_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_mins_subd[1] < MIN_T )
sky_mins_subd[1] = MIN_T;
else if ( sky_mins_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_mins_subd[1] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[0] < -HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = -HALF_SKY_SUBDIVISIONS;
else if ( sky_maxs_subd[0] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[0] = HALF_SKY_SUBDIVISIONS;
if ( sky_maxs_subd[1] < MIN_T )
sky_maxs_subd[1] = MIN_T;
else if ( sky_maxs_subd[1] > HALF_SKY_SUBDIVISIONS )
sky_maxs_subd[1] = HALF_SKY_SUBDIVISIONS;
//
// iterate through the subdivisions
//
for ( t = sky_mins_subd[1]+HALF_SKY_SUBDIVISIONS; t <= sky_maxs_subd[1]+HALF_SKY_SUBDIVISIONS; t++ )
{
for ( s = sky_mins_subd[0]+HALF_SKY_SUBDIVISIONS; s <= sky_maxs_subd[0]+HALF_SKY_SUBDIVISIONS; s++ )
{
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
i,
NULL,
s_skyPoints[t][s] );
s_skyTexCoords[t][s][0] = s_cloudTexCoords[i][t][s][0];
s_skyTexCoords[t][s][1] = s_cloudTexCoords[i][t][s][1];
}
}
// only add indexes for first stage
FillCloudySkySide( sky_mins_subd, sky_maxs_subd, ( stage == 0 ) );
}
}
/*
** R_BuildCloudData
*/
void R_BuildCloudData( shaderCommands_t *input )
{
int i;
shader_t *shader;
shader = input->shader;
assert( shader->isSky );
sky_min = 1.0 / 256.0f; // FIXME: not correct?
sky_max = 255.0 / 256.0f;
// set up for drawing
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.firstIndex = 0;
if ( shader->sky.cloudHeight )
{
for ( i = 0; i < MAX_SHADER_STAGES; i++ )
{
if ( !tess.xstages[i] ) {
break;
}
FillCloudBox( shader, i );
}
}
}
/*
** R_InitSkyTexCoords
** Called when a sky shader is parsed
*/
#define SQR( a ) ((a)*(a))
void R_InitSkyTexCoords( float heightCloud )
{
int i, s, t;
float radiusWorld = 4096;
float p;
float sRad, tRad;
vec3_t skyVec;
vec3_t v;
// init zfar so MakeSkyVec works even though
// a world hasn't been bounded
backEnd.viewParms.zFar = 1024;
for ( i = 0; i < 6; i++ )
{
for ( t = 0; t <= SKY_SUBDIVISIONS; t++ )
{
for ( s = 0; s <= SKY_SUBDIVISIONS; s++ )
{
// compute vector from view origin to sky side integral point
MakeSkyVec( ( s - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
( t - HALF_SKY_SUBDIVISIONS ) / ( float ) HALF_SKY_SUBDIVISIONS,
i,
NULL,
skyVec );
// compute parametric value 'p' that intersects with cloud layer
p = ( 1.0f / ( 2 * DotProduct( skyVec, skyVec ) ) ) *
( -2 * skyVec[2] * radiusWorld +
2 * sqrt( SQR( skyVec[2] ) * SQR( radiusWorld ) +
2 * SQR( skyVec[0] ) * radiusWorld * heightCloud +
SQR( skyVec[0] ) * SQR( heightCloud ) +
2 * SQR( skyVec[1] ) * radiusWorld * heightCloud +
SQR( skyVec[1] ) * SQR( heightCloud ) +
2 * SQR( skyVec[2] ) * radiusWorld * heightCloud +
SQR( skyVec[2] ) * SQR( heightCloud ) ) );
s_cloudTexP[i][t][s] = p;
// compute intersection point based on p
VectorScale( skyVec, p, v );
v[2] += radiusWorld;
// compute vector from world origin to intersection point 'v'
VectorNormalize( v );
sRad = Q_acos( v[0] );
tRad = Q_acos( v[1] );
s_cloudTexCoords[i][t][s][0] = sRad;
s_cloudTexCoords[i][t][s][1] = tRad;
}
}
}
}
//======================================================================================
/*
** RB_DrawSun
*/
void RB_DrawSun( float scale, shader_t *shader ) {
float size;
float dist;
vec3_t origin, vec1, vec2;
if ( !backEnd.skyRenderedThisView ) {
return;
}
//qglLoadMatrixf( backEnd.viewParms.world.modelMatrix );
//qglTranslatef (backEnd.viewParms.or.origin[0], backEnd.viewParms.or.origin[1], backEnd.viewParms.or.origin[2]);
{
// FIXME: this could be a lot cleaner
matrix_t translation, modelview;
Matrix16Translation( backEnd.viewParms.or.origin, translation );
Matrix16Multiply( backEnd.viewParms.world.modelMatrix, translation, modelview );
GL_SetModelviewMatrix( modelview );
}
dist = backEnd.viewParms.zFar / 1.75; // div sqrt(3)
size = dist * scale;
VectorScale( tr.sunDirection, dist, origin );
PerpendicularVector( vec1, tr.sunDirection );
CrossProduct( tr.sunDirection, vec1, vec2 );
VectorScale( vec1, size, vec1 );
VectorScale( vec2, size, vec2 );
// farthest depth range
qglDepthRange( 1.0, 1.0 );
2013-09-16 07:54:26 +00:00
RB_BeginSurface( shader, 0, 0 );
2013-03-06 10:02:01 +00:00
RB_AddQuadStamp(origin, vec1, vec2, colorWhite);
RB_EndSurface();
// back to normal depth range
qglDepthRange( 0.0, 1.0 );
}
/*
================
RB_StageIteratorSky
All of the visible sky triangles are in tess
Other things could be stuck in here, like birds in the sky, etc
================
*/
void RB_StageIteratorSky( void ) {
if ( r_fastsky->integer ) {
return;
}
// go through all the polygons and project them onto
// the sky box to see which blocks on each side need
// to be drawn
RB_ClipSkyPolygons( &tess );
// r_showsky will let all the sky blocks be drawn in
// front of everything to allow developers to see how
// much sky is getting sucked in
if ( r_showsky->integer ) {
qglDepthRange( 0.0, 0.0 );
} else {
qglDepthRange( 1.0, 1.0 );
}
// draw the outer skybox
if ( tess.shader->sky.outerbox[0] && tess.shader->sky.outerbox[0] != tr.defaultImage ) {
matrix_t oldmodelview;
GL_State( 0 );
//qglTranslatef (backEnd.viewParms.or.origin[0], backEnd.viewParms.or.origin[1], backEnd.viewParms.or.origin[2]);
{
// FIXME: this could be a lot cleaner
matrix_t trans, product;
Matrix16Copy( glState.modelview, oldmodelview );
Matrix16Translation( backEnd.viewParms.or.origin, trans );
Matrix16Multiply( glState.modelview, trans, product );
GL_SetModelviewMatrix( product );
}
DrawSkyBox( tess.shader );
GL_SetModelviewMatrix( oldmodelview );
}
// generate the vertexes for all the clouds, which will be drawn
// by the generic shader routine
R_BuildCloudData( &tess );
RB_StageIteratorGeneric();
// draw the inner skybox
// back to normal depth range
qglDepthRange( 0.0, 1.0 );
// note that sky was drawn so we will draw a sun later
backEnd.skyRenderedThisView = qtrue;
}