#5979: Cubemap support for opengl2.

This commit is contained in:
SmileTheory 2013-09-16 00:54:26 -07:00
parent 68a616c7f1
commit 7e875c6941
23 changed files with 1268 additions and 516 deletions

View File

@ -721,6 +721,11 @@ extern void (APIENTRY * qglDrawBuffersARB)(GLsizei n, const GLenum *bufs);
#define GL_DEPTH_CLAMP 0x864F
#endif
#ifndef GL_ARB_seamless_cube_map
#define GL_ARB_seamless_cube_map
#define GL_TEXTURE_CUBE_MAP_SEAMLESS 0x884F
#endif
#if defined(WIN32)
// WGL_ARB_create_context
#ifndef WGL_ARB_create_context

View File

@ -20,14 +20,11 @@ uniform sampler2D u_SpecularMap;
uniform sampler2D u_ShadowMap;
#endif
uniform vec3 u_ViewOrigin;
#if defined(USE_TCGEN)
uniform int u_TCGen0;
#if defined(USE_CUBEMAP)
uniform samplerCube u_CubeMap;
#endif
#if defined(USE_LIGHT_VECTOR)
uniform vec4 u_LightOrigin;
uniform vec3 u_DirectedLight;
uniform vec3 u_AmbientLight;
uniform float u_LightRadius;
@ -39,7 +36,6 @@ uniform vec3 u_PrimaryLightAmbient;
uniform float u_PrimaryLightRadius;
#endif
#if defined(USE_LIGHT)
uniform vec2 u_MaterialInfo;
#endif
@ -50,43 +46,35 @@ varying vec2 var_LightTex;
#endif
varying vec4 var_Color;
#if defined(USE_NORMALMAP) && !defined(USE_VERT_TANGENT_SPACE)
varying vec3 var_Position;
#endif
#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
varying vec3 var_SampleToView;
#endif
#if !defined(USE_FAST_LIGHT)
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
varying vec3 var_ViewDir;
varying vec3 var_Normal;
#endif
#if defined(USE_VERT_TANGENT_SPACE)
varying vec3 var_Tangent;
varying vec3 var_Bitangent;
#endif
varying vec3 var_VertLight;
#if defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
varying vec3 var_lightColor;
#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP)
varying vec3 var_LightDirection;
varying vec4 var_LightDir;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
varying vec3 var_PrimaryLightDirection;
varying vec3 var_PrimaryLightDir;
#endif
#define EPSILON 0.00000001
#if defined(USE_PARALLAXMAP)
float SampleHeight(sampler2D normalMap, vec2 t)
float SampleDepth(sampler2D normalMap, vec2 t)
{
#if defined(SWIZZLE_NORMALMAP)
return texture2D(normalMap, t).r;
return 1.0 - texture2D(normalMap, t).r;
#else
return texture2D(normalMap, t).a;
return 1.0 - texture2D(normalMap, t).a;
#endif
}
@ -95,10 +83,8 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
const int linearSearchSteps = 16;
const int binarySearchSteps = 6;
float depthStep = 1.0 / float(linearSearchSteps);
// current size of search window
float size = depthStep;
float size = 1.0 / float(linearSearchSteps);
// current depth position
float depth = 0.0;
@ -111,7 +97,7 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
depth += size;
float t = 1.0 - SampleHeight(normalMap, dp + ds * depth);
float t = SampleDepth(normalMap, dp + ds * depth);
if(bestDepth > 0.996) // if no depth found yet
if(depth >= t)
@ -125,7 +111,7 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
size *= 0.5;
float t = 1.0 - SampleHeight(normalMap, dp + ds * depth);
float t = SampleDepth(normalMap, dp + ds * depth);
if(depth >= t)
{
@ -157,7 +143,7 @@ vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL,
if (gamma >= 0.0)
#endif
{
B *= max(max(NL, NE), EPSILON);
B = max(B * max(NL, NE), EPSILON);
}
return diffuseAlbedo * (A + gamma / B);
@ -166,60 +152,135 @@ vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL,
#endif
}
#if defined(USE_SPECULARMAP)
vec3 CalcSpecular(vec3 specularReflectance, float NH, float NL, float NE, float EH, float shininess)
vec3 EnvironmentBRDF(float gloss, float NE, vec3 specular)
{
#if defined(USE_BLINN) || defined(USE_TRIACE) || defined(USE_TORRANCE_SPARROW)
float blinn = pow(NH, shininess);
#endif
#if defined(USE_BLINN)
return specularReflectance * blinn;
#endif
#if defined(USE_COOK_TORRANCE) || defined (USE_TRIACE) || defined (USE_TORRANCE_SPARROW)
vec3 fresnel = specularReflectance + (vec3(1.0) - specularReflectance) * pow(1.0 - EH, 5);
#endif
#if defined(USE_COOK_TORRANCE) || defined(USE_TORRANCE_SPARROW)
float geo = 2.0 * NH * min(NE, NL);
geo /= max(EH, geo);
#endif
#if defined(USE_COOK_TORRANCE)
float m_sq = 2.0 / max(shininess, EPSILON);
float NH_sq = NH * NH;
float m_NH_sq = m_sq * NH_sq;
float beckmann = exp((NH_sq - 1.0) / max(m_NH_sq, EPSILON)) / max(4.0 * m_NH_sq * NH_sq, EPSILON);
return fresnel * geo * beckmann / max(NE, EPSILON);
#endif
#if defined(USE_TRIACE)
float scale = 0.1248582 * shininess + 0.2691817;
return fresnel * scale * blinn / max(max(NL, NE), EPSILON);
#endif
#if defined(USE_TORRANCE_SPARROW)
float scale = 0.125 * shininess + 1.0;
return fresnel * geo * scale * blinn / max(NE, EPSILON);
#if 1
// from http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
vec4 t = vec4( 1/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96,0.25 ) * gloss;
t += vec4( 0.0, 0.0, (0.015 - 0.75 * 0.04)/0.96,0.75 );
float a0 = t.x * min( t.y, exp2( -9.28 * NE ) ) + t.z;
float a1 = t.w;
return clamp( a0 + specular * ( a1 - a0 ), 0.0, 1.0 );
#elif 0
// from http://seblagarde.wordpress.com/2011/08/17/hello-world/
return mix(specular.rgb, max(specular.rgb, vec3(gloss)), CalcFresnel(NE));
#else
// from http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20%28Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course%29.pptx
return mix(specular.rgb, vec3(1.0), CalcFresnel(NE) / (4.0 - 3.0 * gloss));
#endif
}
float CalcBlinn(float NH, float shininess)
{
#if 0
// from http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
float a = shininess + 0.775;
return exp(a * NH - a);
#else
return pow(NH, shininess);
#endif
}
float CalcGGX(float NH, float shininess)
{
// from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes.pdf
float m_sq = 2.0 / shininess;
float d = ((NH * NH) * (m_sq - 1.0) + 1.0);
return m_sq / (d * d);
}
float CalcFresnel(float EH)
{
#if 1
// From http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
return exp2((-5.55473 * EH - 6.98316) * EH);
#elif 0
float blend = 1.0 - EH;
float blend2 = blend * blend;
blend *= blend2 * blend2;
return blend;
#else
return pow(1.0 - NH, 5.0);
#endif
}
float CalcVisibility(float NH, float NL, float NE, float EH, float shininess)
{
#if 0
float geo = 2.0 * NH * min(NE, NL);
geo /= max(EH, geo);
return geo;
#else
// Modified from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes.pdf
// NL, NE in numerator factored out from cook-torrance
#if defined(USE_GGX)
float roughness = sqrt(2.0 / (shininess + 2.0));
float k = (roughness + 1.0);
k *= k * 0.125;
#else
float k = 2.0 / sqrt(3.1415926535 * (shininess + 2.0));
#endif
float k2 = 1.0 - k;
float invGeo1 = NL * k2 + k;
float invGeo2 = NE * k2 + k;
return 1.0 / (invGeo1 * invGeo2);
#endif
}
vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float shininess)
{
float blinn = CalcBlinn(NH, shininess);
vec3 fSpecular = mix(specular, vec3(1.0), CalcFresnel(EH));
float vis = CalcVisibility(NH, NL, NE, EH, shininess);
#if defined(USE_BLINN)
// Normalized Blinn-Phong
return specular * blinn * (shininess * 0.125 + 1.0);
#elif defined(USE_BLINN_FRESNEL)
// Normalized Blinn-Phong with Fresnel
return fSpecular * blinn * (shininess * 0.125 + 1.0);
#elif defined(USE_MCAULEY)
// Cook-Torrance as done by Stephen McAuley
// http://blog.selfshadow.com/publications/s2012-shading-course/mcauley/s2012_pbs_farcry3_notes_v2.pdf
return fSpecular * blinn * (shininess * 0.25 + 0.125);
#elif defined(USE_GOTANDA)
// Neumann-Neumann as done by Yoshiharu Gotanda
// http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
return fSpecular * blinn * (shininess * 0.124858 + 0.269182) / max(max(NL, NE), EPSILON);
#elif defined(USE_LAZAROV)
// Cook-Torrance as done by Dimitar Lazarov
// http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
return fSpecular * blinn * (shininess * 0.125 + 0.25) * vis;
#endif
return vec3(0.0);
}
void main()
{
#if !defined(USE_FAST_LIGHT) && (defined(USE_LIGHT) || defined(USE_NORMALMAP))
vec3 surfN = normalize(var_Normal);
vec3 L, N, E, H;
float NL, NH, NE, EH;
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
mat3 tangentToWorld = mat3(var_Tangent, var_Bitangent, var_Normal);
#endif
#if defined(USE_DELUXEMAP)
vec3 L = 2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0);
//L += var_LightDirection * 0.0001;
#elif defined(USE_LIGHT)
vec3 L = var_LightDirection;
L = (2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0));
#if defined(USE_TANGENT_SPACE_LIGHT)
L = L * tangentToWorld;
#endif
#elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
L = var_LightDir.xyz;
#endif
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
E = normalize(var_ViewDir);
#endif
#if defined(USE_LIGHTMAP)
@ -229,94 +290,80 @@ void main()
#endif
vec3 lightColor = lightSample.rgb;
#elif defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
#if defined(USE_INVSQRLIGHT)
float intensity = 1.0 / dot(L, L);
#else
float intensity = clamp((1.0 - dot(L, L) / (u_LightRadius * u_LightRadius)) * 1.07, 0.0, 1.0);
#endif
// inverse square light
float attenuation = u_LightRadius * u_LightRadius / dot(L, L);
// zero light at radius, approximating q3 style
attenuation = 0.5 * attenuation - 0.5;
//attenuation = 0.0697168 * attenuation;
//attenuation *= step(0.294117, attenuation);
// clamp attenuation
#if defined(NO_LIGHT_CLAMP)
attenuation *= step(0.0, attenuation);
#else
attenuation = clamp(attenuation, 0.0, 1.0);
#endif
// don't attenuate directional light
attenuation = (attenuation - 1.0) * var_LightDir.w + 1.0;
vec3 lightColor = u_DirectedLight * intensity;
vec3 ambientColor = u_AmbientLight;
vec3 lightColor = u_DirectedLight * attenuation;
vec3 ambientColor = u_AmbientLight;
#elif defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
vec3 lightColor = var_VertLight;
vec3 lightColor = var_lightColor;
#endif
#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
vec3 E = normalize(var_SampleToView);
#endif
vec2 texCoords = var_DiffuseTex;
float ambientDiff = 1.0;
#if defined(USE_NORMALMAP)
#if defined(USE_VERT_TANGENT_SPACE)
mat3 tangentToWorld = mat3(var_Tangent, var_Bitangent, var_Normal);
#if defined(USE_PARALLAXMAP)
#if defined(USE_TANGENT_SPACE_LIGHT)
vec3 offsetDir = E;
#else
vec3 q0 = dFdx(var_Position);
vec3 q1 = dFdy(var_Position);
vec2 st0 = dFdx(texCoords);
vec2 st1 = dFdy(texCoords);
float dir = sign(st1.t * st0.s - st0.t * st1.s);
vec3 tangent = normalize(q0 * st1.t - q1 * st0.t) * dir;
vec3 bitangent = -normalize(q0 * st1.s - q1 * st0.s) * dir;
mat3 tangentToWorld = mat3(tangent, bitangent, var_Normal);
vec3 offsetDir = E * tangentToWorld;
#endif
#if defined(USE_PARALLAXMAP)
vec3 offsetDir = normalize(E * tangentToWorld);
offsetDir.xy *= -0.05 / offsetDir.z;
texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
#endif
vec4 diffuse = texture2D(u_DiffuseMap, texCoords);
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_LINEAR_LIGHT)
diffuse.rgb *= diffuse.rgb;
#endif
vec3 texN;
#if defined(SWIZZLE_NORMALMAP)
texN.xy = 2.0 * texture2D(u_NormalMap, texCoords).ag - 1.0;
#if defined(USE_NORMALMAP)
#if defined(SWIZZLE_NORMALMAP)
N.xy = 2.0 * texture2D(u_NormalMap, texCoords).ag - vec2(1.0);
#else
N.xy = 2.0 * texture2D(u_NormalMap, texCoords).rg - vec2(1.0);
#endif
N.z = sqrt(1.0 - clamp(dot(N.xy, N.xy), 0.0, 1.0));
#if !defined(USE_TANGENT_SPACE_LIGHT)
N = normalize(tangentToWorld * N);
#endif
#elif defined(USE_TANGENT_SPACE_LIGHT)
N = vec3(0.0, 0.0, 1.0);
#else
texN.xy = 2.0 * texture2D(u_NormalMap, texCoords).rg - 1.0;
N = normalize(var_Normal);
#endif
texN.z = sqrt(clamp(1.0 - dot(texN.xy, texN.xy), 0.0, 1.0));
vec3 N = tangentToWorld * texN;
#if defined(r_normalAmbient)
ambientDiff = 0.781341 * texN.z + 0.218659;
#endif
#elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
vec3 N = surfN;
#endif
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || (defined(USE_TCGEN) && defined(USE_NORMALMAP))
N = normalize(N);
#endif
#if defined(USE_TCGEN) && defined(USE_NORMALMAP)
if (u_TCGen0 == TCGEN_ENVIRONMENT_MAPPED)
{
texCoords = -reflect(E, N).yz * vec2(0.5, -0.5) + 0.5;
}
#endif
vec4 diffuseAlbedo = texture2D(u_DiffuseMap, texCoords);
#if defined(USE_LIGHT) && defined(USE_GAMMA2_TEXTURES)
diffuseAlbedo.rgb *= diffuseAlbedo.rgb;
#endif
#if defined(USE_LIGHT) && defined(USE_FAST_LIGHT)
gl_FragColor = diffuse.rgb;
#if defined(USE_LIGHTMAP)
gl_FragColor *= lightColor;
#endif
#elif defined(USE_LIGHT)
L = normalize(L);
float surfNL = clamp(dot(surfN, L), 0.0, 1.0);
#if defined(USE_SHADOWMAP)
vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
float shadowValue = texture2D(u_ShadowMap, shadowTex).r;
// surfaces not facing the light are always shadowed
shadowValue *= step(0.0, dot(surfN, var_PrimaryLightDirection));
#if defined(USE_TANGENT_SPACE_LIGHT)
shadowValue *= step(0.0, var_PrimaryLightDir.z);
#else
shadowValue *= step(0.0, dot(var_Normal, var_PrimaryLightDir));
#endif
#if defined(SHADOWMAP_MODULATE)
//vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor);
@ -324,106 +371,141 @@ void main()
#if 0
// Only shadow when the world light is parallel to the primary light
shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDirection), 0.0, 1.0);
shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDir), 0.0, 1.0);
#endif
lightColor = mix(shadowColor, lightColor, shadowValue);
#endif
#endif
#if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
#if defined(USE_STANDARD_DELUXEMAP)
// Standard deluxe mapping treats the light sample as fully directed
// and doesn't compensate for light angle attenuation.
vec3 ambientColor = vec3(0.0);
#else
// Separate the light sample into directed and ambient parts.
//
// ambientMax - if the cosine of the angle between the surface
// normal and the light is below this value, the light
// is fully ambient.
// directedMax - if the cosine of the angle between the surface
// normal and the light is above this value, the light
// is fully directed.
const float ambientMax = 0.25;
const float directedMax = 0.5;
float directedScale = clamp((surfNL - ambientMax) / (directedMax - ambientMax), 0.0, 1.0);
// Scale the directed portion to compensate for the baked-in
// light angle attenuation.
directedScale /= max(surfNL, ambientMax);
#if defined(r_normalAmbient)
directedScale *= 1.0 - r_normalAmbient;
#endif
// Recover any unused light as ambient
vec3 ambientColor = lightColor;
lightColor *= directedScale;
#if defined(USE_TANGENT_SPACE_LIGHT)
float surfNL = L.z;
#else
float surfNL = clamp(dot(var_Normal, L), 0.0, 1.0);
#endif
// Scale the incoming light to compensate for the baked-in light angle
// attenuation.
lightColor /= max(surfNL, 0.25);
// Recover any unused light as ambient, in case attenuation is over 4x or
// light is below the surface
ambientColor -= lightColor * surfNL;
#endif
#endif
vec3 reflectance;
float NL = clamp(dot(N, L), 0.0, 1.0);
float NE = clamp(dot(N, E), 0.0, 1.0);
float maxReflectance = u_MaterialInfo.x;
float shininess = u_MaterialInfo.y;
NL = clamp(dot(N, L), 0.0, 1.0);
NE = clamp(dot(N, E), 0.0, 1.0);
#if defined(USE_SPECULARMAP)
vec4 specularReflectance = texture2D(u_SpecularMap, texCoords);
specularReflectance.rgb *= maxReflectance;
shininess *= specularReflectance.a;
// adjust diffuse by specular reflectance, to maintain energy conservation
diffuseAlbedo.rgb *= vec3(1.0) - specularReflectance.rgb;
vec4 specular = texture2D(u_SpecularMap, texCoords);
#if defined(USE_LINEAR_LIGHT)
specular.rgb *= specular.rgb;
#endif
#else
vec4 specular = vec4(1.0);
#endif
specular *= u_MaterialInfo.xxxy;
float gloss = specular.a;
float shininess = exp2(gloss * 13.0);
float localOcclusion = clamp((diffuse.r + diffuse.g + diffuse.b) * 16.0f, 0.0, 1.0);
#if defined(SPECULAR_IS_METALLIC)
// diffuse is actually base color, and red of specular is metallicness
float metallic = specular.r;
specular.rgb = vec3(0.04) + 0.96 * diffuse.rgb * metallic;
diffuse.rgb *= 1.0 - metallic;
#else
// adjust diffuse by specular reflectance, to maintain energy conservation
diffuse.rgb *= vec3(1.0) - specular.rgb;
#endif
reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
#if defined(r_deluxeSpecular) || defined(USE_LIGHT_VECTOR)
float adjShininess = shininess;
#if !defined(USE_LIGHT_VECTOR)
adjShininess = exp2(gloss * r_deluxeSpecular * 13.0);
#endif
H = normalize(L + E);
EH = clamp(dot(E, H), 0.0, 1.0);
NH = clamp(dot(N, H), 0.0, 1.0);
#if !defined(USE_LIGHT_VECTOR)
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjShininess) * r_deluxeSpecular * localOcclusion;
#else
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjShininess) * localOcclusion;
#endif
#endif
gl_FragColor.rgb = lightColor * reflectance * NL;
gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb);
#if defined(USE_CUBEMAP)
reflectance = EnvironmentBRDF(gloss, NE, specular.rgb);
vec3 R = reflect(E, N);
#if defined(USE_TANGENT_SPACE_LIGHT)
R = tangentToWorld * R;
#endif
vec3 cubeLightColor = textureCubeLod(u_CubeMap, R, 7.0 - gloss * 7.0).rgb;
#if defined(USE_LINEAR_LIGHT)
cubeLightColor *= cubeLightColor;
#endif
#if defined(USE_LIGHTMAP)
cubeLightColor *= lightSample.rgb;
#elif defined (USE_LIGHT_VERTEX)
cubeLightColor *= var_lightColor;
#else
cubeLightColor *= lightColor * NL + ambientColor;
#endif
//gl_FragColor.rgb += diffuse.rgb * textureCubeLod(u_CubeMap, N, 7.0).rgb;
gl_FragColor.rgb += cubeLightColor * reflectance * localOcclusion;
#endif
gl_FragColor.rgb = lightColor * NL * CalcDiffuse(diffuseAlbedo.rgb, N, L, E, NE, NL, shininess);
gl_FragColor.rgb += ambientDiff * ambientColor * diffuseAlbedo.rgb;
#if defined(USE_PRIMARY_LIGHT)
vec3 L2 = var_PrimaryLightDirection;
float NL2 = clamp(dot(N, L2), 0.0, 1.0);
L = normalize(var_PrimaryLightDir);
NL = clamp(dot(N, L), 0.0, 1.0);
H = normalize(L + E);
EH = clamp(dot(E, H), 0.0, 1.0);
NH = clamp(dot(N, H), 0.0, 1.0);
reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, shininess);
#if defined(USE_SHADOWMAP)
gl_FragColor.rgb += u_PrimaryLightColor * shadowValue * NL2 * CalcDiffuse(diffuseAlbedo.rgb, N, L2, E, NE, NL2, shininess);
#else
gl_FragColor.rgb += u_PrimaryLightColor * NL2 * CalcDiffuse(diffuseAlbedo.rgb, N, L2, E, NE, NL2, shininess);
reflectance *= shadowValue;
#endif
gl_FragColor.rgb += u_PrimaryLightColor * reflectance * NL;
#endif
#if defined(USE_SPECULARMAP)
vec3 H = normalize(L + E);
#if defined(USE_LINEAR_LIGHT)
gl_FragColor.rgb = sqrt(gl_FragColor.rgb);
#endif
float EH = clamp(dot(E, H), 0.0, 1.0);
float NH = clamp(dot(N, H), 0.0, 1.0);
gl_FragColor.rgb += lightColor * NL * CalcSpecular(specularReflectance.rgb, NH, NL, NE, EH, shininess);
#if defined(r_normalAmbient)
vec3 ambientHalf = normalize(surfN + E);
float ambientSpec = max(dot(ambientHalf, N) + 0.5, 0.0);
ambientSpec *= ambientSpec * 0.44;
gl_FragColor.rgb += specularReflectance.rgb * ambientSpec * ambientColor;
#endif
#if defined(USE_PRIMARY_LIGHT)
vec3 H2 = normalize(L2 + E);
float EH2 = clamp(dot(E, H2), 0.0, 1.0);
float NH2 = clamp(dot(N, H2), 0.0, 1.0);
#if defined(USE_SHADOWMAP)
gl_FragColor.rgb += u_PrimaryLightColor * shadowValue * NL2 * CalcSpecular(specularReflectance.rgb, NH2, NL2, NE, EH2, shininess);
#else
gl_FragColor.rgb += u_PrimaryLightColor * NL2 * CalcSpecular(specularReflectance.rgb, NH2, NL2, NE, EH2, shininess);
#endif
#endif
#endif
gl_FragColor.a = diffuse.a;
#else
gl_FragColor.rgb = diffuseAlbedo.rgb;
gl_FragColor = diffuse;
#if defined(USE_LIGHTMAP)
gl_FragColor.rgb *= lightColor;
#endif
#endif
gl_FragColor.a = diffuseAlbedo.a;
gl_FragColor *= var_Color;
}

View File

@ -4,21 +4,16 @@ attribute vec4 attr_TexCoord1;
#endif
attribute vec4 attr_Color;
attribute vec4 attr_Position;
attribute vec3 attr_Position;
attribute vec3 attr_Normal;
#if defined(USE_VERT_TANGENT_SPACE)
attribute vec3 attr_Tangent;
attribute vec3 attr_Bitangent;
#endif
#if defined(USE_VERTEX_ANIMATION)
attribute vec4 attr_Position2;
attribute vec3 attr_Position2;
attribute vec3 attr_Normal2;
#if defined(USE_VERT_TANGENT_SPACE)
attribute vec3 attr_Tangent2;
attribute vec3 attr_Bitangent2;
#endif
#endif
#if defined(USE_LIGHT) && !defined(USE_LIGHT_VECTOR)
@ -71,35 +66,28 @@ varying vec2 var_DiffuseTex;
varying vec2 var_LightTex;
#endif
#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
varying vec3 var_SampleToView;
#if defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
varying vec3 var_ViewDir;
#endif
varying vec4 var_Color;
#if defined(USE_NORMALMAP) && !defined(USE_VERT_TANGENT_SPACE)
varying vec3 var_Position;
#endif
#if !defined(USE_FAST_LIGHT)
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
varying vec3 var_Normal;
#if defined(USE_VERT_TANGENT_SPACE)
varying vec3 var_Tangent;
varying vec3 var_Bitangent;
#endif
#endif
#if defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
varying vec3 var_VertLight;
varying vec3 var_lightColor;
#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP) && !defined(USE_FAST_LIGHT)
varying vec3 var_LightDirection;
varying vec4 var_LightDir;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
varying vec3 var_PrimaryLightDirection;
varying vec3 var_PrimaryLightDir;
#endif
#if defined(USE_TCGEN)
@ -132,7 +120,7 @@ vec2 ModTexCoords(vec2 st, vec3 position, vec4 texMatrix, vec4 offTurb)
float phase = offTurb.w;
vec2 st2 = vec2(dot(st, texMatrix.xz), dot(st, texMatrix.yw)) + offTurb.xy;
vec3 offsetPos = vec3(0); //position / 1024.0;
vec3 offsetPos = position * 0.0009765625;
offsetPos.x += offsetPos.z;
vec2 texOffset = sin((offsetPos.xy + vec2(phase)) * 2.0 * M_PI);
@ -145,83 +133,53 @@ vec2 ModTexCoords(vec2 st, vec3 position, vec4 texMatrix, vec4 offTurb)
void main()
{
#if defined(USE_VERTEX_ANIMATION)
vec4 position = mix(attr_Position, attr_Position2, u_VertexLerp);
vec3 position = mix(attr_Position, attr_Position2, u_VertexLerp);
vec3 normal = normalize(mix(attr_Normal, attr_Normal2, u_VertexLerp));
#if defined(USE_VERT_TANGENT_SPACE)
vec3 tangent = normalize(mix(attr_Tangent, attr_Tangent2, u_VertexLerp));
vec3 bitangent = normalize(mix(attr_Bitangent, attr_Bitangent2, u_VertexLerp));
#endif
#else
vec4 position = attr_Position;
vec3 position = attr_Position;
vec3 normal = attr_Normal;
#if defined(USE_VERT_TANGENT_SPACE)
vec3 tangent = attr_Tangent;
vec3 bitangent = attr_Bitangent;
#endif
#endif
gl_Position = u_ModelViewProjectionMatrix * position;
#if (defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)) && !defined(USE_DELUXEMAP) && !defined(USE_FAST_LIGHT)
vec3 L = attr_LightDirection;
#endif
#if defined(USE_MODELMATRIX)
position = u_ModelMatrix * position;
normal = (u_ModelMatrix * vec4(normal, 0.0)).xyz;
#if defined(USE_VERT_TANGENT_SPACE)
tangent = (u_ModelMatrix * vec4(tangent, 0.0)).xyz;
bitangent = (u_ModelMatrix * vec4(bitangent, 0.0)).xyz;
#endif
#if defined(USE_LIGHTMAP) && !defined(USE_DELUXEMAP) && !defined(USE_FAST_LIGHT)
L = (u_ModelMatrix * vec4(L, 0.0)).xyz;
#endif
#endif
#if defined(USE_NORMALMAP) && !defined(USE_VERT_TANGENT_SPACE)
var_Position = position.xyz;
#endif
#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
var_SampleToView = u_ViewOrigin - position.xyz;
#endif
#if defined(USE_TCGEN)
vec2 texCoords = GenTexCoords(u_TCGen0, position.xyz, normal, u_TCGen0Vector0, u_TCGen0Vector1);
vec2 texCoords = GenTexCoords(u_TCGen0, position, normal, u_TCGen0Vector0, u_TCGen0Vector1);
#else
vec2 texCoords = attr_TexCoord0.st;
#endif
#if defined(USE_TCMOD)
var_DiffuseTex = ModTexCoords(texCoords, position.xyz, u_DiffuseTexMatrix, u_DiffuseTexOffTurb);
var_DiffuseTex = ModTexCoords(texCoords, position, u_DiffuseTexMatrix, u_DiffuseTexOffTurb);
#else
var_DiffuseTex = texCoords;
#endif
gl_Position = u_ModelViewProjectionMatrix * vec4(position, 1.0);
#if defined(USE_MODELMATRIX)
position = (u_ModelMatrix * vec4(position, 1.0)).xyz;
normal = (u_ModelMatrix * vec4(normal, 0.0)).xyz;
tangent = (u_ModelMatrix * vec4(tangent, 0.0)).xyz;
bitangent = (u_ModelMatrix * vec4(bitangent, 0.0)).xyz;
#endif
#if defined(USE_LIGHT_VECTOR)
vec3 L = u_LightOrigin.xyz - (position * u_LightOrigin.w);
#elif defined(USE_LIGHT) && !defined(USE_LIGHT_VECTOR)
vec3 L = attr_LightDirection;
#if defined(USE_MODELMATRIX)
L = (u_ModelMatrix * vec4(L, 0.0)).xyz;
#endif
#endif
#if defined(USE_LIGHTMAP)
var_LightTex = attr_TexCoord1.st;
#endif
#if !defined(USE_FAST_LIGHT)
var_Normal = normal;
#if defined(USE_VERT_TANGENT_SPACE)
var_Tangent = tangent;
var_Bitangent = bitangent;
#endif
#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP)
#if defined(USE_LIGHT_VECTOR)
vec3 L = u_LightOrigin.xyz - (position.xyz * u_LightOrigin.w);
#endif
#if !defined(USE_FAST_LIGHT)
var_LightDirection = L;
#endif
#endif
#if defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
var_VertLight = u_VertColor.rgb * attr_Color.rgb;
var_lightColor = u_VertColor.rgb * attr_Color.rgb;
var_Color.rgb = vec3(1.0);
var_Color.a = u_VertColor.a * attr_Color.a + u_BaseColor.a;
#else
@ -229,17 +187,64 @@ void main()
#endif
#if defined(USE_LIGHT_VECTOR) && defined(USE_FAST_LIGHT)
#if defined(USE_INVSQRLIGHT)
float intensity = 1.0 / dot(L, L);
#else
float intensity = clamp((1.0 - dot(L, L) / (u_LightRadius * u_LightRadius)) * 1.07, 0.0, 1.0);
#endif
// inverse square light
float attenuation = u_LightRadius * u_LightRadius / dot(L, L);
// zero light at radius, approximating q3 style
attenuation = 0.5 * attenuation - 0.5;
//attenuation = 0.0697168 * attenuation;
//attenuation *= step(0.294117, attenuation);
// clamp attenuation
#if defined(NO_LIGHT_CLAMP)
attenuation *= step(0.0, attenuation);
#else
attenuation = clamp(attenuation, 0.0, 1.0);
#endif
// don't attenuate directional light
attenuation = (attenuation - 1.0) * u_LightOrigin.w + 1.0;
float NL = clamp(dot(normal, normalize(L)), 0.0, 1.0);
var_Color.rgb *= u_DirectedLight * intensity * NL + u_AmbientLight;
var_Color.rgb *= u_DirectedLight * attenuation * NL + u_AmbientLight;
#endif
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || defined(USE_PARALLAXMAP)
var_Normal = normal;
var_Tangent = tangent;
var_Bitangent = bitangent;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
var_PrimaryLightDirection = u_PrimaryLightOrigin.xyz - (position.xyz * u_PrimaryLightOrigin.w);
#endif
var_PrimaryLightDir = (u_PrimaryLightOrigin.xyz - (position * u_PrimaryLightOrigin.w));
#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP) && !defined(USE_FAST_LIGHT)
#if defined(USE_LIGHT_VECTOR)
var_LightDir = vec4(L, u_LightOrigin.w);
#else
var_LightDir = vec4(L, 0.0);
#endif
#endif
#if defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
var_ViewDir = (u_ViewOrigin - position);
#endif
#if defined(USE_TANGENT_SPACE_LIGHT)
mat3 tangentToWorld = mat3(tangent, bitangent, normal);
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
var_PrimaryLightDir = var_PrimaryLightDir * tangentToWorld;
#endif
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP) && !defined(USE_FAST_LIGHT)
var_LightDir.xyz = var_LightDir.xyz * tangentToWorld;
#endif
#if defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
var_ViewDir = var_ViewDir * tangentToWorld;
#endif
#endif
}

View File

@ -43,15 +43,17 @@ void R_AddAnimSurfaces( trRefEntity_t *ent ) {
md4Surface_t *surface;
md4LOD_t *lod;
shader_t *shader;
int cubemapIndex;
int i;
header = (md4Header_t *) tr.currentModel->modelData;
lod = (md4LOD_t *)( (byte *)header + header->ofsLODs );
cubemapIndex = R_CubemapForPoint(ent->e.origin);
surface = (md4Surface_t *)( (byte *)lod + lod->ofsSurfaces );
for ( i = 0 ; i < lod->numSurfaces ; i++ ) {
shader = R_GetShaderByHandle( surface->shaderIndex );
R_AddDrawSurf( (void *)surface, shader, 0 /*fogNum*/, qfalse, qfalse );
R_AddDrawSurf( (void *)surface, shader, 0 /*fogNum*/, qfalse, qfalse, cubemapIndex );
surface = (md4Surface_t *)( (byte *)surface + surface->ofsEnd );
}
}
@ -323,6 +325,7 @@ void R_MDRAddAnimSurfaces( trRefEntity_t *ent ) {
int lodnum = 0;
int fogNum = 0;
int cull;
int cubemapIndex;
qboolean personalModel;
header = (mdrHeader_t *) tr.currentModel->modelData;
@ -384,6 +387,8 @@ void R_MDRAddAnimSurfaces( trRefEntity_t *ent ) {
// fogNum?
fogNum = R_MDRComputeFogNum( header, ent );
cubemapIndex = R_CubemapForPoint(ent->e.origin);
surface = (mdrSurface_t *)( (byte *)lod + lod->ofsSurfaces );
for ( i = 0 ; i < lod->numSurfaces ; i++ )
@ -419,7 +424,7 @@ void R_MDRAddAnimSurfaces( trRefEntity_t *ent ) {
&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
&& shader->sort == SS_OPAQUE )
{
R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, qfalse, qfalse );
R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, qfalse, qfalse, 0 );
}
// projection shadows work fine with personal models
@ -428,11 +433,11 @@ void R_MDRAddAnimSurfaces( trRefEntity_t *ent ) {
&& (ent->e.renderfx & RF_SHADOW_PLANE )
&& shader->sort == SS_OPAQUE )
{
R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, qfalse, qfalse );
R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, qfalse, qfalse, 0 );
}
if (!personalModel)
R_AddDrawSurf( (void *)surface, shader, fogNum, qfalse, qfalse );
R_AddDrawSurf( (void *)surface, shader, fogNum, qfalse, qfalse, cubemapIndex );
surface = (mdrSurface_t *)( (byte *)surface + surface->ofsEnd );
}

View File

@ -36,13 +36,13 @@ static float s_flipMatrix[16] = {
/*
** GL_Bind2
** GL_Bind
*/
void GL_Bind2( image_t *image, GLenum type ) {
void GL_Bind( image_t *image ) {
int texnum;
if ( !image ) {
ri.Printf( PRINT_WARNING, "GL_Bind2: NULL image\n" );
ri.Printf( PRINT_WARNING, "GL_Bind: NULL image\n" );
texnum = tr.defaultImage->texnum;
} else {
texnum = image->texnum;
@ -57,26 +57,13 @@ void GL_Bind2( image_t *image, GLenum type ) {
image->frameUsed = tr.frameCount;
}
glState.currenttextures[glState.currenttmu] = texnum;
qglBindTexture (type, texnum);
if (image && image->flags & IMGFLAG_CUBEMAP)
qglBindTexture( GL_TEXTURE_CUBE_MAP, texnum );
else
qglBindTexture( GL_TEXTURE_2D, texnum );
}
}
/*
** GL_Bind2
*/
void GL_Bind( image_t *image )
{
GL_Bind2( image, GL_TEXTURE_2D );
}
/*
** GL_BindCubemap
*/
void GL_BindCubemap( image_t *image )
{
GL_Bind2( image, GL_TEXTURE_CUBE_MAP );
}
/*
** GL_SelectTexture
*/
@ -95,34 +82,6 @@ void GL_SelectTexture( int unit )
glState.currenttmu = unit;
}
/*
** GL_BindMultitexture
*/
void GL_BindMultitexture( image_t *image0, GLuint env0, image_t *image1, GLuint env1 ) {
int texnum0, texnum1;
texnum0 = image0->texnum;
texnum1 = image1->texnum;
if ( r_nobind->integer && tr.dlightImage ) { // performance evaluation option
texnum0 = texnum1 = tr.dlightImage->texnum;
}
if ( glState.currenttextures[1] != texnum1 ) {
GL_SelectTexture( 1 );
image1->frameUsed = tr.frameCount;
glState.currenttextures[1] = texnum1;
qglBindTexture( GL_TEXTURE_2D, texnum1 );
}
if ( glState.currenttextures[0] != texnum0 ) {
GL_SelectTexture( 0 );
image0->frameUsed = tr.frameCount;
glState.currenttextures[0] = texnum0;
qglBindTexture( GL_TEXTURE_2D, texnum0 );
}
}
/*
** GL_BindToTMU
*/
@ -141,7 +100,11 @@ void GL_BindToTMU( image_t *image, int tmu )
if (image)
image->frameUsed = tr.frameCount;
glState.currenttextures[tmu] = texnum;
qglBindTexture( GL_TEXTURE_2D, texnum );
if (image && (image->flags & IMGFLAG_CUBEMAP))
qglBindTexture( GL_TEXTURE_CUBE_MAP, texnum );
else
qglBindTexture( GL_TEXTURE_2D, texnum );
GL_SelectTexture( oldtmu );
}
}
@ -496,6 +459,13 @@ void RB_BeginDrawingView (void) {
else
{
FBO_Bind(backEnd.viewParms.targetFbo);
// FIXME: hack for cubemap testing
if (backEnd.viewParms.targetFbo == tr.renderCubeFbo)
{
//qglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + backEnd.viewParms.targetFboLayer, backEnd.viewParms.targetFbo->colorImage[0]->texnum, 0);
qglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + backEnd.viewParms.targetFboLayer, tr.cubemaps[backEnd.viewParms.targetFboCubemapIndex]->texnum, 0);
}
}
}
@ -530,6 +500,13 @@ void RB_BeginDrawingView (void) {
qglClearColor( 1.0f, 1.0f, 1.0f, 1.0f );
}
// clear to black for cube maps
if (backEnd.viewParms.targetFbo == tr.renderCubeFbo)
{
clearBits |= GL_COLOR_BUFFER_BIT;
qglClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
}
qglClear( clearBits );
if ( ( backEnd.refdef.rdflags & RDF_HYPERSPACE ) )
@ -581,6 +558,7 @@ void RB_RenderDrawSurfList( drawSurf_t *drawSurfs, int numDrawSurfs ) {
int entityNum, oldEntityNum;
int dlighted, oldDlighted;
int pshadowed, oldPshadowed;
int cubemapIndex, oldCubemapIndex;
qboolean depthRange, oldDepthRange, isCrosshair, wasCrosshair;
int i;
drawSurf_t *drawSurf;
@ -606,6 +584,7 @@ void RB_RenderDrawSurfList( drawSurf_t *drawSurfs, int numDrawSurfs ) {
wasCrosshair = qfalse;
oldDlighted = qfalse;
oldPshadowed = qfalse;
oldCubemapIndex = -1;
oldSort = -1;
depth[0] = 0.f;
@ -614,7 +593,7 @@ void RB_RenderDrawSurfList( drawSurf_t *drawSurfs, int numDrawSurfs ) {
backEnd.pc.c_surfaces += numDrawSurfs;
for (i = 0, drawSurf = drawSurfs ; i < numDrawSurfs ; i++, drawSurf++) {
if ( drawSurf->sort == oldSort ) {
if ( drawSurf->sort == oldSort && drawSurf->cubemapIndex == oldCubemapIndex) {
if (backEnd.depthFill && shader && shader->sort != SS_OPAQUE)
continue;
@ -624,22 +603,24 @@ void RB_RenderDrawSurfList( drawSurf_t *drawSurfs, int numDrawSurfs ) {
}
oldSort = drawSurf->sort;
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
cubemapIndex = drawSurf->cubemapIndex;
//
// change the tess parameters if needed
// a "entityMergable" shader is a shader that can have surfaces from seperate
// entities merged into a single batch, like smoke and blood puff sprites
if ( shader != NULL && ( shader != oldShader || fogNum != oldFogNum || dlighted != oldDlighted || pshadowed != oldPshadowed
if ( shader != NULL && ( shader != oldShader || fogNum != oldFogNum || dlighted != oldDlighted || pshadowed != oldPshadowed || cubemapIndex != oldCubemapIndex
|| ( entityNum != oldEntityNum && !shader->entityMergable ) ) ) {
if (oldShader != NULL) {
RB_EndSurface();
}
RB_BeginSurface( shader, fogNum );
RB_BeginSurface( shader, fogNum, cubemapIndex );
backEnd.pc.c_surfBatches++;
oldShader = shader;
oldFogNum = fogNum;
oldDlighted = dlighted;
oldPshadowed = pshadowed;
oldCubemapIndex = cubemapIndex;
}
if (backEnd.depthFill && shader && shader->sort != SS_OPAQUE)
@ -981,7 +962,7 @@ const void *RB_StretchPic ( const void *data ) {
RB_EndSurface();
}
backEnd.currentEntity = &backEnd.entity2D;
RB_BeginSurface( shader, 0 );
RB_BeginSurface( shader, 0, 0 );
}
RB_CHECKOVERFLOW( 4, 6 );
@ -1311,8 +1292,14 @@ const void *RB_DrawSurfs( const void *data ) {
RB_RenderFlares();
}
//if (glRefConfig.framebufferObject)
//FBO_Bind(NULL);
if (glRefConfig.framebufferObject && backEnd.viewParms.targetFbo == tr.renderCubeFbo)
{
FBO_Bind(NULL);
GL_SelectTexture(TB_CUBEMAP);
GL_BindToTMU(tr.cubemaps[backEnd.viewParms.targetFboCubemapIndex], TB_CUBEMAP);
qglGenerateMipmapEXT(GL_TEXTURE_CUBE_MAP);
GL_SelectTexture(0);
}
return (const void *)(cmd + 1);
}
@ -1586,7 +1573,7 @@ const void *RB_CapShadowMap(const void *data)
GL_SelectTexture(0);
if (cmd->cubeSide != -1)
{
GL_BindCubemap(tr.shadowCubemaps[cmd->map]);
GL_Bind(tr.shadowCubemaps[cmd->map]);
qglCopyTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cmd->cubeSide, 0, GL_RGBA8, backEnd.refdef.x, glConfig.vidHeight - ( backEnd.refdef.y + PSHADOW_MAP_SIZE ), PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, 0);
}
else
@ -1682,7 +1669,7 @@ const void *RB_PostProcess(const void *data)
color[2] = pow(2, r_cameraExposure->value); //exp2(r_cameraExposure->value);
color[3] = 1.0f;
FBO_Blit(srcFbo, NULL, NULL, tr.screenScratchFbo, dstBox, NULL, color, 0);
FBO_Blit(srcFbo, srcBox, NULL, tr.screenScratchFbo, dstBox, NULL, color, 0);
}
}
@ -1721,6 +1708,21 @@ const void *RB_PostProcess(const void *data)
FBO_BlitFromTexture(tr.sunRaysImage, NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
}
#if 0
if (r_cubeMapping->integer && tr.numCubemaps)
{
vec4i_t dstBox;
int cubemapIndex = R_CubemapForPoint( backEnd.viewParms.or.origin );
if (cubemapIndex)
{
VectorSet4(dstBox, 0, glConfig.vidHeight - 256, 256, 256);
//FBO_BlitFromTexture(tr.renderCubeImage, NULL, NULL, tr.screenScratchFbo, dstBox, &tr.testcubeShader, NULL, 0);
FBO_BlitFromTexture(tr.cubemaps[cubemapIndex - 1], NULL, NULL, tr.screenScratchFbo, dstBox, &tr.testcubeShader, NULL, 0);
}
}
#endif
backEnd.framePostProcessed = qtrue;
return (const void *)(cmd + 1);

View File

@ -1805,6 +1805,14 @@ static int BSPSurfaceCompare(const void *a, const void *b)
else if(aa->fogIndex > bb->fogIndex)
return 1;
// by cubemapIndex
if(aa->cubemapIndex < bb->cubemapIndex)
return -1;
else if(aa->cubemapIndex > bb->cubemapIndex)
return 1;
return 0;
}
@ -2814,6 +2822,191 @@ qboolean R_GetEntityToken( char *buffer, int size ) {
}
}
#ifndef MAX_SPAWN_VARS
#define MAX_SPAWN_VARS 64
#endif
// derived from G_ParseSpawnVars() in g_spawn.c
qboolean R_ParseSpawnVars( char *spawnVarChars, int maxSpawnVarChars, int *numSpawnVars, char *spawnVars[MAX_SPAWN_VARS][2] )
{
char keyname[MAX_TOKEN_CHARS];
char com_token[MAX_TOKEN_CHARS];
int numSpawnVarChars = 0;
*numSpawnVars = 0;
// parse the opening brace
if ( !R_GetEntityToken( com_token, sizeof( com_token ) ) ) {
// end of spawn string
return qfalse;
}
if ( com_token[0] != '{' ) {
ri.Printf( PRINT_ALL, "R_ParseSpawnVars: found %s when expecting {",com_token );
}
// go through all the key / value pairs
while ( 1 ) {
int keyLength, tokenLength;
// parse key
if ( !R_GetEntityToken( keyname, sizeof( keyname ) ) ) {
ri.Printf( PRINT_ALL, "R_ParseSpawnVars: EOF without closing brace" );
}
if ( keyname[0] == '}' ) {
break;
}
// parse value
if ( !R_GetEntityToken( com_token, sizeof( com_token ) ) ) {
ri.Printf( PRINT_ALL, "R_ParseSpawnVars: EOF without closing brace" );
break;
}
if ( com_token[0] == '}' ) {
ri.Printf( PRINT_ALL, "R_ParseSpawnVars: closing brace without data" );
break;
}
if ( *numSpawnVars == MAX_SPAWN_VARS ) {
ri.Printf( PRINT_ALL, "R_ParseSpawnVars: MAX_SPAWN_VARS" );
break;
}
keyLength = strlen(keyname) + 1;
tokenLength = strlen(com_token) + 1;
if (numSpawnVarChars + keyLength + tokenLength > maxSpawnVarChars)
{
ri.Printf( PRINT_ALL, "R_ParseSpawnVars: MAX_SPAWN_VAR_CHARS" );
break;
}
strcpy(spawnVarChars + numSpawnVarChars, keyname);
spawnVars[ *numSpawnVars ][0] = spawnVarChars + numSpawnVarChars;
numSpawnVarChars += keyLength;
strcpy(spawnVarChars + numSpawnVarChars, com_token);
spawnVars[ *numSpawnVars ][1] = spawnVarChars + numSpawnVarChars;
numSpawnVarChars += tokenLength;
(*numSpawnVars)++;
}
return qtrue;
}
void R_LoadCubemapEntities(char *cubemapEntityName)
{
char spawnVarChars[2048];
int numSpawnVars;
char *spawnVars[MAX_SPAWN_VARS][2];
int numCubemaps = 0;
// count cubemaps
numCubemaps = 0;
while(R_ParseSpawnVars(spawnVarChars, sizeof(spawnVarChars), &numSpawnVars, spawnVars))
{
int i;
for (i = 0; i < numSpawnVars; i++)
{
if (!Q_stricmp(spawnVars[i][0], "classname") && !Q_stricmp(spawnVars[i][1], cubemapEntityName))
numCubemaps++;
}
}
if (!numCubemaps)
return;
tr.numCubemaps = numCubemaps;
tr.cubemapOrigins = ri.Hunk_Alloc( tr.numCubemaps * sizeof(*tr.cubemapOrigins), h_low);
tr.cubemaps = ri.Hunk_Alloc( tr.numCubemaps * sizeof(*tr.cubemaps), h_low);
numCubemaps = 0;
while(R_ParseSpawnVars(spawnVarChars, sizeof(spawnVarChars), &numSpawnVars, spawnVars))
{
int i;
qboolean isCubemap = qfalse;
qboolean positionSet = qfalse;
vec3_t origin;
for (i = 0; i < numSpawnVars; i++)
{
if (!Q_stricmp(spawnVars[i][0], "classname") && !Q_stricmp(spawnVars[i][1], cubemapEntityName))
isCubemap = qtrue;
if (!Q_stricmp(spawnVars[i][0], "origin"))
{
sscanf(spawnVars[i][1], "%f %f %f", &origin[0], &origin[1], &origin[2]);
positionSet = qtrue;
}
}
if (isCubemap && positionSet)
{
//ri.Printf(PRINT_ALL, "cubemap at %f %f %f\n", origin[0], origin[1], origin[2]);
VectorCopy(origin, tr.cubemapOrigins[numCubemaps]);
numCubemaps++;
}
}
}
void R_AssignCubemapsToWorldSurfaces(void)
{
world_t *w;
int i;
w = &s_worldData;
for (i = 0; i < w->numsurfaces; i++)
{
msurface_t *surf = &w->surfaces[i];
vec3_t surfOrigin;
if (surf->cullinfo.type & CULLINFO_SPHERE)
{
VectorCopy(surf->cullinfo.localOrigin, surfOrigin);
}
else if (surf->cullinfo.type & CULLINFO_BOX)
{
surfOrigin[0] = (surf->cullinfo.bounds[0][0] + surf->cullinfo.bounds[1][0]) * 0.5f;
surfOrigin[1] = (surf->cullinfo.bounds[0][1] + surf->cullinfo.bounds[1][1]) * 0.5f;
surfOrigin[2] = (surf->cullinfo.bounds[0][2] + surf->cullinfo.bounds[1][2]) * 0.5f;
}
else
{
//ri.Printf(PRINT_ALL, "surface %d has no cubemap\n", i);
continue;
}
surf->cubemapIndex = R_CubemapForPoint(surfOrigin);
//ri.Printf(PRINT_ALL, "surface %d has cubemap %d\n", i, surf->cubemapIndex);
}
}
void R_RenderAllCubemaps(void)
{
int i, j;
for (i = 0; i < tr.numCubemaps; i++)
{
tr.cubemaps[i] = R_CreateImage(va("*cubeMap%d", i), NULL, CUBE_MAP_SIZE, CUBE_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE | IMGFLAG_MIPMAP | IMGFLAG_CUBEMAP, GL_RGBA8);
}
for (i = 0; i < tr.numCubemaps; i++)
{
for (j = 0; j < 6; j++)
{
RE_ClearScene();
R_RenderCubemapSide(i, j, qfalse);
R_IssuePendingRenderCommands();
R_InitNextFrame();
}
}
}
/*
=================
@ -2866,6 +3059,7 @@ void R_MergeLeafSurfaces(void)
msurface_t *surf1;
shader_t *shader1;
int fogIndex1;
int cubemapIndex1;
int surfNum1;
surfNum1 = *(s_worldData.marksurfaces + leaf->firstmarksurface + j);
@ -2890,6 +3084,7 @@ void R_MergeLeafSurfaces(void)
continue;
fogIndex1 = surf1->fogIndex;
cubemapIndex1 = surf1->cubemapIndex;
s_worldData.surfacesViewCount[surfNum1] = surfNum1;
@ -2898,6 +3093,7 @@ void R_MergeLeafSurfaces(void)
msurface_t *surf2;
shader_t *shader2;
int fogIndex2;
int cubemapIndex2;
int surfNum2;
surfNum2 = *(s_worldData.marksurfaces + leaf->firstmarksurface + k);
@ -2920,6 +3116,11 @@ void R_MergeLeafSurfaces(void)
if (fogIndex1 != fogIndex2)
continue;
cubemapIndex2 = surf2->cubemapIndex;
if (cubemapIndex1 != cubemapIndex2)
continue;
s_worldData.surfacesViewCount[surfNum2] = surfNum1;
}
}
@ -3153,6 +3354,7 @@ void R_MergeLeafSurfaces(void)
vboSurf->shader = surf1->shader;
vboSurf->fogIndex = surf1->fogIndex;
vboSurf->cubemapIndex = surf1->cubemapIndex;
VectorCopy(bounds[0], vboSurf->bounds[0]);
VectorCopy(bounds[1], vboSurf->bounds[1]);
@ -3163,6 +3365,7 @@ void R_MergeLeafSurfaces(void)
mergedSurf->cullinfo.type = CULLINFO_BOX;
mergedSurf->data = (surfaceType_t *)vboSurf;
mergedSurf->fogIndex = surf1->fogIndex;
mergedSurf->cubemapIndex = surf1->cubemapIndex;
mergedSurf->shader = surf1->shader;
// redirect view surfaces to this surf
@ -3539,6 +3742,22 @@ void RE_LoadWorldMap( const char *name ) {
ri.Free(primaryLightGrid);
}
// load cubemaps
if (r_cubeMapping->integer)
{
R_LoadCubemapEntities("misc_cubemap");
if (!tr.numCubemaps)
{
// use deathmatch spawn points as cubemaps
R_LoadCubemapEntities("info_player_deathmatch");
}
if (tr.numCubemaps)
{
R_AssignCubemapsToWorldSurfaces();
}
}
// create static VBOS from the world
R_CreateWorldVBO();
if (r_mergeLeafSurfaces->integer)
@ -3555,5 +3774,11 @@ void RE_LoadWorldMap( const char *name ) {
R_BindNullVBO();
R_BindNullIBO();
// Render all cubemaps
if (r_cubeMapping->integer && tr.numCubemaps)
{
R_RenderAllCubemaps();
}
ri.FS_FreeFile( buffer.v );
}

View File

@ -595,19 +595,50 @@ void GLimp_InitExtraExtensions()
// GL_EXT_texture_sRGB
extension = "GL_EXT_texture_sRGB";
glRefConfig.texture_srgb = qfalse;
glRefConfig.textureSrgb = qfalse;
if (GLimp_HaveExtension(extension))
{
if (r_srgb->integer)
glRefConfig.texture_srgb = qtrue;
glRefConfig.textureSrgb = qtrue;
ri.Printf(PRINT_ALL, result[glRefConfig.texture_srgb], extension);
ri.Printf(PRINT_ALL, result[glRefConfig.textureSrgb], extension);
}
else
{
ri.Printf(PRINT_ALL, result[2], extension);
}
// GL_EXT_framebuffer_sRGB
extension = "GL_EXT_framebuffer_sRGB";
glRefConfig.framebufferSrgb = qfalse;
if (GLimp_HaveExtension(extension))
{
if (r_srgb->integer)
glRefConfig.framebufferSrgb = qtrue;
ri.Printf(PRINT_ALL, result[glRefConfig.framebufferSrgb], extension);
}
else
{
ri.Printf(PRINT_ALL, result[2], extension);
}
// GL_EXT_texture_sRGB_decode
extension = "GL_EXT_texture_sRGB_decode";
glRefConfig.textureSrgbDecode = qfalse;
if (GLimp_HaveExtension(extension))
{
if (r_srgb->integer)
glRefConfig.textureSrgbDecode = qtrue;
ri.Printf(PRINT_ALL, result[glRefConfig.textureSrgbDecode], extension);
}
else
{
ri.Printf(PRINT_ALL, result[2], extension);
}
glRefConfig.textureCompression = TCR_NONE;
// GL_EXT_texture_compression_latc
@ -664,4 +695,17 @@ void GLimp_InitExtraExtensions()
{
ri.Printf(PRINT_ALL, result[2], extension);
}
// GL_ARB_seamless_cube_map
extension = "GL_ARB_seamless_cube_map";
glRefConfig.seamlessCubeMap = qfalse;
if( GLimp_HaveExtension( extension ) )
{
glRefConfig.seamlessCubeMap = qtrue;
ri.Printf(PRINT_ALL, result[1], extension);
}
else
{
ri.Printf(PRINT_ALL, result[2], extension);
}
}

View File

@ -579,6 +579,19 @@ void FBO_Init(void)
R_CheckFBO(tr.screenSsaoFbo);
}
{
tr.renderCubeFbo = FBO_Create("_renderCubeFbo", tr.renderCubeImage->width, tr.renderCubeImage->height);
FBO_Bind(tr.renderCubeFbo);
//FBO_AttachTextureImage(tr.renderCubeImage, 0);
R_AttachFBOTexture2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, tr.renderCubeImage->texnum, 0);
glState.currentFBO->colorImage[0] = tr.renderCubeImage;
FBO_CreateBuffer(tr.renderCubeFbo, GL_DEPTH_COMPONENT24_ARB, 0, 0);
R_CheckFBO(tr.renderCubeFbo);
}
GL_CheckErrors();
FBO_Bind(NULL);
@ -783,7 +796,10 @@ void FBO_Blit(FBO_t *src, vec4i_t inSrcBox, vec2_t srcTexScale, FBO_t *dst, vec4
vec4i_t srcBox;
if (!src)
{
ri.Printf(PRINT_WARNING, "Tried to blit from a NULL FBO!\n");
return;
}
// framebuffers are 0 bottom, Y up.
if (inSrcBox)

View File

@ -370,7 +370,7 @@ void RB_RenderFlare( flare_t *f ) {
iColor[1] = color[1] * fogFactors[1];
iColor[2] = color[2] * fogFactors[2];
RB_BeginSurface( tr.flareShader, f->fogNum );
RB_BeginSurface( tr.flareShader, f->fogNum, 0 );
// FIXME: use quadstamp?
tess.xyz[tess.numVertexes][0] = f->windowX - size;

View File

@ -71,6 +71,7 @@ static uniformInfo_t uniformsInfo[] =
{ "u_TextureMap", GLSL_INT },
{ "u_LevelsMap", GLSL_INT },
{ "u_CubeMap", GLSL_INT },
{ "u_ScreenImageMap", GLSL_INT },
{ "u_ScreenDepthMap", GLSL_INT },
@ -997,37 +998,35 @@ void GLSL_InitGPUShaders(void)
for (i = 0; i < LIGHTDEF_COUNT; i++)
{
// skip impossible combos
if ((i & LIGHTDEF_USE_NORMALMAP) && !r_normalMapping->integer)
continue;
if ((i & LIGHTDEF_USE_PARALLAXMAP) && !r_parallaxMapping->integer)
continue;
if ((i & LIGHTDEF_USE_SPECULARMAP) && !r_specularMapping->integer)
continue;
if ((i & LIGHTDEF_USE_DELUXEMAP) && !r_deluxeMapping->integer)
continue;
if ((i & LIGHTDEF_USE_CUBEMAP) && !r_cubeMapping->integer)
continue;
if (!((i & LIGHTDEF_LIGHTTYPE_MASK) == LIGHTDEF_USE_LIGHTMAP) && (i & LIGHTDEF_USE_DELUXEMAP))
continue;
if (!(i & LIGHTDEF_USE_NORMALMAP) && (i & LIGHTDEF_USE_PARALLAXMAP))
continue;
//if (!((i & LIGHTDEF_LIGHTTYPE_MASK) == LIGHTDEF_USE_LIGHT_VECTOR))
if (!(i & LIGHTDEF_LIGHTTYPE_MASK))
{
if (i & LIGHTDEF_USE_SHADOWMAP)
continue;
if (i & LIGHTDEF_USE_CUBEMAP)
continue;
}
attribs = ATTR_POSITION | ATTR_TEXCOORD | ATTR_COLOR | ATTR_NORMAL;
extradefines[0] = '\0';
if (r_normalAmbient->value > 0.003f)
Q_strcat(extradefines, 1024, va("#define r_normalAmbient %f\n", r_normalAmbient->value));
if (r_deluxeSpecular->value > 0.000001f)
Q_strcat(extradefines, 1024, va("#define r_deluxeSpecular %f\n", r_deluxeSpecular->value));
if (r_specularIsMetallic->value)
Q_strcat(extradefines, 1024, va("#define SPECULAR_IS_METALLIC\n"));
if (r_dlightMode->integer >= 2)
Q_strcat(extradefines, 1024, "#define USE_SHADOWMAP\n");
@ -1065,7 +1064,7 @@ void GLSL_InitGPUShaders(void)
}
}
if ((i & LIGHTDEF_USE_NORMALMAP) && r_normalMapping->integer)
if (r_normalMapping->integer)
{
Q_strcat(extradefines, 1024, "#define USE_NORMALMAP\n");
@ -1081,7 +1080,7 @@ void GLSL_InitGPUShaders(void)
#endif
}
if ((i & LIGHTDEF_USE_SPECULARMAP) && r_specularMapping->integer)
if (r_specularMapping->integer)
{
Q_strcat(extradefines, 1024, "#define USE_SPECULARMAP\n");
@ -1089,19 +1088,23 @@ void GLSL_InitGPUShaders(void)
{
case 1:
default:
Q_strcat(extradefines, 1024, "#define USE_TRIACE\n");
break;
case 2:
Q_strcat(extradefines, 1024, "#define USE_BLINN\n");
break;
case 2:
Q_strcat(extradefines, 1024, "#define USE_BLINN_FRESNEL\n");
break;
case 3:
Q_strcat(extradefines, 1024, "#define USE_COOK_TORRANCE\n");
Q_strcat(extradefines, 1024, "#define USE_MCAULEY\n");
break;
case 4:
Q_strcat(extradefines, 1024, "#define USE_TORRANCE_SPARROW\n");
Q_strcat(extradefines, 1024, "#define USE_GOTANDA\n");
break;
case 5:
Q_strcat(extradefines, 1024, "#define USE_LAZAROV\n");
break;
}
}
@ -1112,6 +1115,9 @@ void GLSL_InitGPUShaders(void)
if ((i & LIGHTDEF_USE_PARALLAXMAP) && !(i & LIGHTDEF_ENTITY) && r_parallaxMapping->integer)
Q_strcat(extradefines, 1024, "#define USE_PARALLAXMAP\n");
if ((i & LIGHTDEF_USE_CUBEMAP))
Q_strcat(extradefines, 1024, "#define USE_CUBEMAP\n");
if (i & LIGHTDEF_USE_SHADOWMAP)
{
Q_strcat(extradefines, 1024, "#define USE_SHADOWMAP\n");
@ -1134,7 +1140,7 @@ void GLSL_InitGPUShaders(void)
attribs |= ATTR_POSITION2 | ATTR_NORMAL2;
#ifdef USE_VERT_TANGENT_SPACE
if (i & LIGHTDEF_USE_NORMALMAP && r_normalMapping->integer)
if (r_normalMapping->integer)
{
attribs |= ATTR_TANGENT2 | ATTR_BITANGENT2;
}
@ -1155,6 +1161,7 @@ void GLSL_InitGPUShaders(void)
GLSL_SetUniformInt(&tr.lightallShader[i], UNIFORM_DELUXEMAP, TB_DELUXEMAP);
GLSL_SetUniformInt(&tr.lightallShader[i], UNIFORM_SPECULARMAP, TB_SPECULARMAP);
GLSL_SetUniformInt(&tr.lightallShader[i], UNIFORM_SHADOWMAP, TB_SHADOWMAP);
GLSL_SetUniformInt(&tr.lightallShader[i], UNIFORM_CUBEMAP, TB_CUBEMAP);
qglUseProgramObjectARB(0);
GLSL_FinishGPUShader(&tr.lightallShader[i]);
@ -1361,6 +1368,26 @@ void GLSL_InitGPUShaders(void)
numEtcShaders++;
}
#if 0
attribs = ATTR_POSITION | ATTR_TEXCOORD;
extradefines[0] = '\0';
if (!GLSL_InitGPUShader(&tr.testcubeShader, "testcube", attribs, qtrue, extradefines, qtrue, NULL, NULL))
{
ri.Error(ERR_FATAL, "Could not load testcube shader!");
}
GLSL_InitUniforms(&tr.testcubeShader);
qglUseProgramObjectARB(tr.testcubeShader.program);
GLSL_SetUniformInt(&tr.testcubeShader, UNIFORM_TEXTUREMAP, TB_COLORMAP);
qglUseProgramObjectARB(0);
GLSL_FinishGPUShader(&tr.testcubeShader);
numEtcShaders++;
#endif
endTime = ri.Milliseconds();

View File

@ -408,7 +408,9 @@ static void RGBAtoNormal(const byte *in, byte *out, int width, int height, qbool
for (x = 0; x < width; x++)
{
*outbyte = (inbyte[0] >> 2) + (inbyte[1] >> 1) + (inbyte[2] >> 2);
byte result = (inbyte[0] >> 2) + (inbyte[1] >> 1) + (inbyte[2] >> 2);
result = result * result / 255; // Make linear
*outbyte = result;
max = MAX(max, *outbyte);
outbyte += 4;
inbyte += 4;
@ -1856,7 +1858,7 @@ static GLenum RawImage_GetFormat(const byte *data, int numPixels, qboolean light
}
}
if (glRefConfig.texture_srgb && (flags & IMGFLAG_SRGB))
if (glRefConfig.textureSrgb && (flags & IMGFLAG_SRGB))
{
switch(internalFormat)
{
@ -2049,7 +2051,7 @@ static void Upload32( byte *data, int width, int height, imgType_t type, imgFlag
}
// Convert to RGB if sRGB textures aren't supported in hardware
if (!glRefConfig.texture_srgb && (flags & IMGFLAG_SRGB))
if (!glRefConfig.textureSrgb && (flags & IMGFLAG_SRGB))
{
byte *in = data;
int c = width * height;
@ -2278,12 +2280,21 @@ image_t *R_CreateImage( const char *name, byte *pic, int width, int height, imgT
if (image->flags & IMGFLAG_CUBEMAP)
{
GL_BindCubemap(image);
GL_Bind(image);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
if (image->flags & IMGFLAG_MIPMAP)
{
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_LINEAR);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
}
else
{
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
@ -2599,6 +2610,7 @@ image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
normalPic = ri.Malloc(width * height * 4);
RGBAtoNormal(pic, normalPic, width, height, flags & IMGFLAG_CLAMPTOEDGE);
#if 1
// Brighten up the original image to work with the normal map
RGBAtoYCoCgA(pic, pic, width, height);
for (y = 0; y < height; y++)
@ -2614,6 +2626,61 @@ image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
}
}
YCoCgAtoRGBA(pic, pic, width, height);
#else
// Blur original image's luma to work with the normal map
{
byte *blurPic;
RGBAtoYCoCgA(pic, pic, width, height);
blurPic = ri.Malloc(width * height);
for (y = 1; y < height - 1; y++)
{
byte *picbyte = pic + y * width * 4;
byte *blurbyte = blurPic + y * width;
picbyte += 4;
blurbyte += 1;
for (x = 1; x < width - 1; x++)
{
int result;
result = *(picbyte - (width + 1) * 4) + *(picbyte - width * 4) + *(picbyte - (width - 1) * 4) +
*(picbyte - 1 * 4) + *(picbyte ) + *(picbyte + 1 * 4) +
*(picbyte + (width - 1) * 4) + *(picbyte + width * 4) + *(picbyte + (width + 1) * 4);
result /= 9;
*blurbyte = result;
picbyte += 4;
blurbyte += 1;
}
}
// FIXME: do borders
for (y = 1; y < height - 1; y++)
{
byte *picbyte = pic + y * width * 4;
byte *blurbyte = blurPic + y * width;
picbyte += 4;
blurbyte += 1;
for (x = 1; x < width - 1; x++)
{
picbyte[0] = *blurbyte;
picbyte += 4;
blurbyte += 1;
}
}
ri.Free(blurPic);
YCoCgAtoRGBA(pic, pic, width, height);
}
#endif
R_CreateImage( normalName, normalPic, normalWidth, normalHeight, IMGTYPE_NORMAL, normalFlags, 0 );
ri.Free( normalPic );
@ -2805,6 +2872,9 @@ void R_CreateBuiltinImages( void ) {
Com_Memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
Com_Memset( data, 128, sizeof( data ) );
tr.greyImage = R_CreateImage("*grey", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, GL_RGBA8);
if (r_dlightMode->integer >= 2)
{
for( x = 0; x < MAX_DLIGHTS; x++)
@ -2837,7 +2907,7 @@ void R_CreateBuiltinImages( void ) {
if (glRefConfig.framebufferObject)
{
int width, height, hdrFormat;
int width, height, hdrFormat, rgbFormat;
if(glRefConfig.textureNonPowerOfTwo)
{
@ -2854,19 +2924,15 @@ void R_CreateBuiltinImages( void ) {
if (r_hdr->integer && glRefConfig.framebufferObject && glRefConfig.textureFloat)
hdrFormat = GL_RGB16F_ARB;
rgbFormat = GL_RGBA8;
tr.renderImage = R_CreateImage("_render", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
if (r_drawSunRays->integer)
tr.sunRaysImage = R_CreateImage("*sunRays", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
tr.sunRaysImage = R_CreateImage("*sunRays", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, rgbFormat);
if (r_softOverbright->integer)
{
int format;
format = GL_RGBA8;
tr.screenScratchImage = R_CreateImage("*screenScratch", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, format);
}
tr.screenScratchImage = R_CreateImage("*screenScratch", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, rgbFormat);
if (glRefConfig.framebufferObject)
{
@ -2926,6 +2992,8 @@ void R_CreateBuiltinImages( void ) {
{
tr.sunShadowDepthImage[x] = R_CreateImage(va("*sunshadowdepth%i", x), NULL, r_shadowMapSize->integer, r_shadowMapSize->integer, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
}
tr.renderCubeImage = R_CreateImage("*renderCube", NULL, CUBE_MAP_SIZE, CUBE_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE | IMGFLAG_MIPMAP | IMGFLAG_CUBEMAP, rgbFormat);
}
}

View File

@ -131,7 +131,11 @@ cvar_t *r_normalMapping;
cvar_t *r_specularMapping;
cvar_t *r_deluxeMapping;
cvar_t *r_parallaxMapping;
cvar_t *r_normalAmbient;
cvar_t *r_cubeMapping;
cvar_t *r_deluxeSpecular;
cvar_t *r_specularIsMetallic;
cvar_t *r_baseSpecular;
cvar_t *r_baseGloss;
cvar_t *r_recalcMD3Normals;
cvar_t *r_mergeLightmaps;
cvar_t *r_dlightMode;
@ -955,6 +959,9 @@ void GL_SetDefaultState( void )
qglDrawBuffer( GL_BACK );
qglClear( GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_ACCUM_BUFFER_BIT|GL_STENCIL_BUFFER_BIT );
if (glRefConfig.seamlessCubeMap)
qglEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
}
/*
@ -1185,7 +1192,11 @@ void R_Register( void )
r_specularMapping = ri.Cvar_Get( "r_specularMapping", "1", CVAR_ARCHIVE | CVAR_LATCH );
r_deluxeMapping = ri.Cvar_Get( "r_deluxeMapping", "1", CVAR_ARCHIVE | CVAR_LATCH );
r_parallaxMapping = ri.Cvar_Get( "r_parallaxMapping", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_normalAmbient = ri.Cvar_Get( "r_normalAmbient", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_cubeMapping = ri.Cvar_Get( "r_cubeMapping", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_deluxeSpecular = ri.Cvar_Get( "r_deluxeSpecular", "0.3", CVAR_ARCHIVE | CVAR_LATCH );
r_specularIsMetallic = ri.Cvar_Get( "r_specularIsMetallic", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_baseSpecular = ri.Cvar_Get( "r_baseSpecular", "0.04", CVAR_ARCHIVE | CVAR_LATCH );
r_baseGloss = ri.Cvar_Get( "r_baseGloss", "0.3", CVAR_ARCHIVE | CVAR_LATCH );
r_dlightMode = ri.Cvar_Get( "r_dlightMode", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_pshadowDist = ri.Cvar_Get( "r_pshadowDist", "128", CVAR_ARCHIVE );
r_recalcMD3Normals = ri.Cvar_Get( "r_recalcMD3Normals", "0", CVAR_ARCHIVE | CVAR_LATCH );

View File

@ -449,3 +449,32 @@ int R_LightDirForPoint( vec3_t point, vec3_t lightDir, vec3_t normal, world_t *w
return qtrue;
}
int R_CubemapForPoint( vec3_t point )
{
int cubemapIndex = -1;
if (r_cubeMapping->integer && tr.numCubemaps)
{
int i;
vec_t shortest = (float)WORLD_SIZE * (float)WORLD_SIZE;
for (i = 0; i < tr.numCubemaps; i++)
{
vec3_t diff;
vec_t length;
VectorSubtract(point, tr.cubemapOrigins[i], diff);
length = DotProduct(diff, diff);
if (shortest > length)
{
shortest = length;
cubemapIndex = i;
}
}
}
return cubemapIndex + 1;
}

View File

@ -59,6 +59,8 @@ typedef unsigned int glIndex_t;
#define MAX_CALC_PSHADOWS 64
#define MAX_DRAWN_PSHADOWS 16 // do not increase past 32, because bit flags are used on surfaces
#define PSHADOW_MAP_SIZE 512
#define CUBE_MAP_MIPS 7
#define CUBE_MAP_SIZE (1 << CUBE_MAP_MIPS)
#define USE_VERT_TANGENT_SPACE
@ -368,7 +370,8 @@ enum
TB_SHADOWMAP2 = 3,
TB_SPECULARMAP = 4,
TB_SHADOWMAP = 5,
NUM_TEXTURE_BUNDLES = 6
TB_CUBEMAP = 6,
NUM_TEXTURE_BUNDLES = 7
};
typedef enum
@ -698,13 +701,12 @@ enum
LIGHTDEF_LIGHTTYPE_MASK = 0x0003,
LIGHTDEF_ENTITY = 0x0004,
LIGHTDEF_USE_TCGEN_AND_TCMOD = 0x0008,
LIGHTDEF_USE_NORMALMAP = 0x0010,
LIGHTDEF_USE_SPECULARMAP = 0x0020,
LIGHTDEF_USE_DELUXEMAP = 0x0040,
LIGHTDEF_USE_PARALLAXMAP = 0x0080,
LIGHTDEF_USE_SHADOWMAP = 0x0100,
LIGHTDEF_ALL = 0x01FF,
LIGHTDEF_COUNT = 0x0200
LIGHTDEF_USE_DELUXEMAP = 0x0010,
LIGHTDEF_USE_PARALLAXMAP = 0x0020,
LIGHTDEF_USE_SHADOWMAP = 0x0040,
LIGHTDEF_USE_CUBEMAP = 0x0080,
LIGHTDEF_ALL = 0x00FF,
LIGHTDEF_COUNT = 0x0100
};
enum
@ -728,6 +730,7 @@ typedef enum
UNIFORM_TEXTUREMAP,
UNIFORM_LEVELSMAP,
UNIFORM_CUBEMAP,
UNIFORM_SCREENIMAGEMAP,
UNIFORM_SCREENDEPTHMAP,
@ -896,12 +899,14 @@ typedef struct {
typedef enum {
VPF_NONE = 0x00,
VPF_SHADOWMAP = 0x01,
VPF_DEPTHSHADOW = 0x02,
VPF_DEPTHCLAMP = 0x04,
VPF_ORTHOGRAPHIC = 0x08,
VPF_USESUNLIGHT = 0x10,
VPF_FARPLANEFRUSTUM = 0x20
VPF_NOVIEWMODEL = 0x01,
VPF_SHADOWMAP = 0x02,
VPF_DEPTHSHADOW = 0x04,
VPF_DEPTHCLAMP = 0x08,
VPF_ORTHOGRAPHIC = 0x10,
VPF_USESUNLIGHT = 0x20,
VPF_FARPLANEFRUSTUM = 0x40,
VPF_NOCUBEMAPS = 0x80
} viewParmFlags_t;
typedef struct {
@ -916,6 +921,8 @@ typedef struct {
cplane_t portalPlane; // clip anything behind this if mirroring
int viewportX, viewportY, viewportWidth, viewportHeight;
FBO_t *targetFbo;
int targetFboLayer;
int targetFboCubemapIndex;
float fovX, fovY;
float projectionMatrix[16];
cplane_t frustum[5];
@ -958,7 +965,8 @@ typedef enum {
} surfaceType_t;
typedef struct drawSurf_s {
unsigned sort; // bit combination for fast compares
unsigned int sort; // bit combination for fast compares
int cubemapIndex;
surfaceType_t *surface; // any of surface*_t
} drawSurf_t;
@ -1170,6 +1178,7 @@ typedef struct srfVBOMesh_s
struct shader_s *shader; // FIXME move this to somewhere else
int fogIndex;
int cubemapIndex;
// dynamic lighting information
int dlightBits;
@ -1271,6 +1280,7 @@ typedef struct msurface_s {
//int viewCount; // if == tr.viewCount, already added
struct shader_s *shader;
int fogIndex;
int cubemapIndex;
cullinfo_t cullinfo;
surfaceType_t *data; // any of srf*_t
@ -1600,9 +1610,12 @@ typedef struct {
qboolean framebufferMultisample;
qboolean framebufferBlit;
qboolean texture_srgb;
qboolean textureSrgb;
qboolean framebufferSrgb;
qboolean textureSrgbDecode;
qboolean depthClamp;
qboolean seamlessCubeMap;
} glRefConfig_t;
@ -1695,6 +1708,7 @@ typedef struct {
image_t *fogImage;
image_t *dlightImage; // inverse-quare highlight for projective adding
image_t *flareImage;
image_t *greyImage; // full of 0x80
image_t *whiteImage; // full of 0xff
image_t *identityLightImage; // full of tr.identityLightByte
@ -1715,6 +1729,7 @@ typedef struct {
image_t *screenShadowImage;
image_t *screenSsaoImage;
image_t *hdrDepthImage;
image_t *renderCubeImage;
image_t *textureDepthImage;
@ -1732,6 +1747,7 @@ typedef struct {
FBO_t *screenShadowFbo;
FBO_t *screenSsaoFbo;
FBO_t *hdrDepthFbo;
FBO_t *renderCubeFbo;
shader_t *defaultShader;
shader_t *shadowShader;
@ -1749,6 +1765,10 @@ typedef struct {
int fatLightmapSize;
int fatLightmapStep;
int numCubemaps;
vec3_t *cubemapOrigins;
image_t **cubemaps;
trRefEntity_t *currentEntity;
trRefEntity_t worldEntity; // point currentEntity at this when rendering world
int currentEntityNum;
@ -1772,6 +1792,7 @@ typedef struct {
shaderProgram_t shadowmaskShader;
shaderProgram_t ssaoShader;
shaderProgram_t depthBlurShader[2];
shaderProgram_t testcubeShader;
// -----------------------------------------
@ -1961,7 +1982,11 @@ extern cvar_t *r_normalMapping;
extern cvar_t *r_specularMapping;
extern cvar_t *r_deluxeMapping;
extern cvar_t *r_parallaxMapping;
extern cvar_t *r_normalAmbient;
extern cvar_t *r_cubeMapping;
extern cvar_t *r_deluxeSpecular;
extern cvar_t *r_specularIsMetallic;
extern cvar_t *r_baseSpecular;
extern cvar_t *r_baseGloss;
extern cvar_t *r_dlightMode;
extern cvar_t *r_pshadowDist;
extern cvar_t *r_recalcMD3Normals;
@ -2008,6 +2033,7 @@ void R_RenderView( viewParms_t *parms );
void R_RenderDlightCubemaps(const refdef_t *fd);
void R_RenderPshadowMaps(const refdef_t *fd);
void R_RenderSunShadowMaps(const refdef_t *fd, int level);
void R_RenderCubemapSide( int cubemapIndex, int cubemapSide, qboolean subscene );
void R_AddMD3Surfaces( trRefEntity_t *e );
void R_AddNullModelSurfaces( trRefEntity_t *e );
@ -2021,7 +2047,7 @@ void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader,
int *fogNum, int *dlightMap, int *pshadowMap );
void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
int fogIndex, int dlightMap, int pshadowMap );
int fogIndex, int dlightMap, int pshadowMap, int cubemap );
void R_CalcTangentSpace(vec3_t tangent, vec3_t bitangent, vec3_t normal,
const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2);
@ -2047,7 +2073,6 @@ void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
** GL wrapper/helper functions
*/
void GL_Bind( image_t *image );
void GL_BindCubemap( image_t *image );
void GL_BindToTMU( image_t *image, int tmu );
void GL_SetDefaultState (void);
void GL_SelectTexture( int unit );
@ -2198,6 +2223,7 @@ typedef struct shaderCommands_s
shader_t *shader;
float shaderTime;
int fogNum;
int cubemapIndex;
int dlightBits; // or together of all vertexDlightBits
int pshadowBits;
@ -2223,7 +2249,7 @@ typedef struct shaderCommands_s
extern shaderCommands_t tess;
void RB_BeginSurface(shader_t *shader, int fogNum );
void RB_BeginSurface(shader_t *shader, int fogNum, int cubemapIndex );
void RB_EndSurface(void);
void RB_CheckOverflow( int verts, int indexes );
#define RB_CHECKOVERFLOW(v,i) if (tess.numVertexes + (v) >= SHADER_MAX_VERTEXES || tess.numIndexes + (i) >= SHADER_MAX_INDEXES ) {RB_CheckOverflow(v,i);}
@ -2283,6 +2309,7 @@ void R_SetupEntityLighting( const trRefdef_t *refdef, trRefEntity_t *ent );
void R_TransformDlights( int count, dlight_t *dl, orientationr_t *or );
int R_LightForPoint( vec3_t point, vec3_t ambientLight, vec3_t directedLight, vec3_t lightDir );
int R_LightDirForPoint( vec3_t point, vec3_t lightDir, vec3_t normal, world_t *world );
int R_CubemapForPoint( vec3_t point );
/*
@ -2405,7 +2432,9 @@ void RE_AddRefEntityToScene( const refEntity_t *ent );
void RE_AddPolyToScene( qhandle_t hShader , int numVerts, const polyVert_t *verts, int num );
void RE_AddLightToScene( const vec3_t org, float intensity, float r, float g, float b );
void RE_AddAdditiveLightToScene( const vec3_t org, float intensity, float r, float g, float b );
void RE_BeginScene( const refdef_t *fd );
void RE_RenderScene( const refdef_t *fd );
void RE_EndScene( void );
/*
=============================================================

View File

@ -1607,7 +1607,7 @@ static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128
R_RotateForViewer();
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
RB_BeginSurface( shader, fogNum );
RB_BeginSurface( shader, fogNum, drawSurf->cubemapIndex);
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
assert( tess.numVertexes < 128 );
@ -1725,6 +1725,9 @@ qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) {
return qfalse; // bad portal, no portalentity
}
if (newParms.isMirror)
newParms.flags |= VPF_NOVIEWMODEL;
R_MirrorPoint (oldParms.or.origin, &surface, &camera, newParms.or.origin );
VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
@ -1844,7 +1847,7 @@ R_AddDrawSurf
=================
*/
void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
int fogIndex, int dlightMap, int pshadowMap ) {
int fogIndex, int dlightMap, int pshadowMap, int cubemap ) {
int index;
// instead of checking for overflow, we just mask the index
@ -1855,6 +1858,7 @@ void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT )
| ((int)pshadowMap << QSORT_PSHADOW_SHIFT) | (int)dlightMap;
tr.refdef.drawSurfs[index].cubemapIndex = cubemap;
tr.refdef.drawSurfs[index].surface = surface;
tr.refdef.numDrawSurfs++;
}
@ -1958,8 +1962,7 @@ static void R_AddEntitySurface (int entityNum)
// we don't want the hacked weapon position showing in
// mirrors, because the true body position will already be drawn
//
if ( (ent->e.renderfx & RF_FIRST_PERSON) && (tr.viewParms.isPortal
|| (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW))) ) {
if ( (ent->e.renderfx & RF_FIRST_PERSON) && (tr.viewParms.flags & VPF_NOVIEWMODEL)) {
return;
}
@ -1979,7 +1982,7 @@ static void R_AddEntitySurface (int entityNum)
return;
}
shader = R_GetShaderByHandle( ent->e.customShader );
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0, 0 );
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0, 0, 0 /*cubeMap*/ );
break;
case RT_MODEL:
@ -1988,7 +1991,7 @@ static void R_AddEntitySurface (int entityNum)
tr.currentModel = R_GetModelByHandle( ent->e.hModel );
if (!tr.currentModel) {
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0 );
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0, 0 /*cubeMap*/ );
} else {
switch ( tr.currentModel->type ) {
case MOD_MESH:
@ -2010,7 +2013,7 @@ static void R_AddEntitySurface (int entityNum)
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
break;
}
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0 );
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0, 0 );
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
@ -2186,7 +2189,7 @@ void R_RenderDlightCubemaps(const refdef_t *fd)
shadowParms.fovX = 90;
shadowParms.fovY = 90;
shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW;
shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW | VPF_NOVIEWMODEL;
shadowParms.zFar = tr.refdef.dlights[i].radius;
VectorCopy( tr.refdef.dlights[i].origin, shadowParms.or.origin );
@ -2490,7 +2493,7 @@ void R_RenderPshadowMaps(const refdef_t *fd)
if (glRefConfig.framebufferObject)
shadowParms.targetFbo = tr.pshadowFbos[i];
shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW;
shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW | VPF_NOVIEWMODEL;
shadowParms.zFar = shadow->lightRadius;
VectorCopy(shadow->lightOrigin, shadowParms.or.origin);
@ -2835,7 +2838,7 @@ void R_RenderSunShadowMaps(const refdef_t *fd, int level)
if (glRefConfig.framebufferObject)
shadowParms.targetFbo = tr.sunShadowFbo[level];
shadowParms.flags = VPF_DEPTHSHADOW | VPF_DEPTHCLAMP | VPF_ORTHOGRAPHIC;
shadowParms.flags = VPF_DEPTHSHADOW | VPF_DEPTHCLAMP | VPF_ORTHOGRAPHIC | VPF_NOVIEWMODEL;
shadowParms.zFar = lightviewBounds[1][0];
VectorCopy(lightOrigin, shadowParms.or.origin);
@ -2874,3 +2877,130 @@ void R_RenderSunShadowMaps(const refdef_t *fd, int level)
Matrix16Multiply(tr.viewParms.projectionMatrix, tr.viewParms.world.modelMatrix, tr.refdef.sunShadowMvp[level]);
}
}
void R_RenderCubemapSide( int cubemapIndex, int cubemapSide, qboolean subscene )
{
refdef_t refdef;
viewParms_t parms;
float oldColorScale = tr.refdef.colorScale;
memset( &refdef, 0, sizeof( refdef ) );
refdef.rdflags = 0;
VectorCopy(tr.cubemapOrigins[cubemapIndex], refdef.vieworg);
switch(cubemapSide)
{
case 0:
// -X
VectorSet( refdef.viewaxis[0], -1, 0, 0);
VectorSet( refdef.viewaxis[1], 0, 0, -1);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
case 1:
// +X
VectorSet( refdef.viewaxis[0], 1, 0, 0);
VectorSet( refdef.viewaxis[1], 0, 0, 1);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
case 2:
// -Y
VectorSet( refdef.viewaxis[0], 0, -1, 0);
VectorSet( refdef.viewaxis[1], 1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 0, -1);
break;
case 3:
// +Y
VectorSet( refdef.viewaxis[0], 0, 1, 0);
VectorSet( refdef.viewaxis[1], 1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 0, 1);
break;
case 4:
// -Z
VectorSet( refdef.viewaxis[0], 0, 0, -1);
VectorSet( refdef.viewaxis[1], 1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
case 5:
// +Z
VectorSet( refdef.viewaxis[0], 0, 0, 1);
VectorSet( refdef.viewaxis[1], -1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
}
refdef.fov_x = 90;
refdef.fov_y = 90;
refdef.x = 0;
refdef.y = 0;
refdef.width = tr.renderCubeFbo->width;
refdef.height = tr.renderCubeFbo->height;
refdef.time = 0;
if (!subscene)
{
RE_BeginScene(&refdef);
// FIXME: sun shadows aren't rendered correctly in cubemaps
// fix involves changing r_FBufScale to fit smaller cubemap image size, or rendering cubemap to framebuffer first
if(0) //(glRefConfig.framebufferObject && (r_forceSun->integer || tr.sunShadows))
{
R_RenderSunShadowMaps(&refdef, 0);
R_RenderSunShadowMaps(&refdef, 1);
R_RenderSunShadowMaps(&refdef, 2);
}
}
{
vec3_t ambient, directed, lightDir;
R_LightForPoint(tr.refdef.vieworg, ambient, directed, lightDir);
tr.refdef.colorScale = 766.0f / (directed[0] + directed[1] + directed[2] + 1.0f);
if (directed[0] + directed[1] + directed[2] == 0)
{
ri.Printf(PRINT_ALL, "cubemap %d (%f, %f, %f) is outside the lightgrid!\n", cubemapIndex, tr.refdef.vieworg[0], tr.refdef.vieworg[1], tr.refdef.vieworg[2]);
}
}
Com_Memset( &parms, 0, sizeof( parms ) );
parms.viewportX = 0;
parms.viewportY = 0;
parms.viewportWidth = tr.renderCubeFbo->width;
parms.viewportHeight = tr.renderCubeFbo->height;
parms.isPortal = qfalse;
parms.isMirror = qtrue;
parms.flags = VPF_NOVIEWMODEL | VPF_NOCUBEMAPS;
parms.fovX = 90;
parms.fovY = 90;
VectorCopy( refdef.vieworg, parms.or.origin );
VectorCopy( refdef.viewaxis[0], parms.or.axis[0] );
VectorCopy( refdef.viewaxis[1], parms.or.axis[1] );
VectorCopy( refdef.viewaxis[2], parms.or.axis[2] );
VectorCopy( refdef.vieworg, parms.pvsOrigin );
// FIXME: sun shadows aren't rendered correctly in cubemaps
// fix involves changing r_FBufScale to fit smaller cubemap image size, or rendering cubemap to framebuffer first
if (0) //(r_depthPrepass->value && ((r_forceSun->integer) || tr.sunShadows))
{
parms.flags = VPF_USESUNLIGHT;
}
parms.targetFbo = tr.renderCubeFbo;
parms.targetFboLayer = cubemapSide;
parms.targetFboCubemapIndex = cubemapIndex;
R_RenderView(&parms);
if (subscene)
{
tr.refdef.colorScale = oldColorScale;
}
else
{
RE_EndScene();
}
}

View File

@ -288,6 +288,7 @@ void R_AddMD3Surfaces( trRefEntity_t *ent ) {
int cull;
int lod;
int fogNum;
int cubemapIndex;
qboolean personalModel;
// don't add third_person objects if not in a portal
@ -344,6 +345,8 @@ void R_AddMD3Surfaces( trRefEntity_t *ent ) {
//
fogNum = R_ComputeFogNum( model, ent );
cubemapIndex = R_CubemapForPoint(ent->e.origin);
//
// draw all surfaces
//
@ -387,7 +390,7 @@ void R_AddMD3Surfaces( trRefEntity_t *ent ) {
{
srfVBOMDVMesh_t *vboSurface = &model->vboSurfaces[i];
R_AddDrawSurf((void *)vboSurface, shader, fogNum, qfalse, qfalse );
R_AddDrawSurf((void *)vboSurface, shader, fogNum, qfalse, qfalse, cubemapIndex );
}
surface++;

View File

@ -786,6 +786,7 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
qboolean personalModel;
int cull;
int fogNum;
int cubemapIndex;
shader_t *shader;
skin_t *skin;
@ -838,6 +839,8 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
//
fogNum = R_ComputeIQMFogNum( data, ent );
cubemapIndex = R_CubemapForPoint(ent->e.origin);
for ( i = 0 ; i < data->num_surfaces ; i++ ) {
if(ent->e.customShader)
shader = R_GetShaderByHandle( ent->e.customShader );
@ -866,7 +869,7 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
&& fogNum == 0
&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
&& shader->sort == SS_OPAQUE ) {
R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, 0, 0 );
R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, 0, 0, 0 );
}
// projection shadows work fine with personal models
@ -874,11 +877,11 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
&& fogNum == 0
&& (ent->e.renderfx & RF_SHADOW_PLANE )
&& shader->sort == SS_OPAQUE ) {
R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, 0, 0 );
R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, 0, 0, 0 );
}
if( !personalModel ) {
R_AddDrawSurf( (void *)surface, shader, fogNum, 0, 0 );
R_AddDrawSurf( (void *)surface, shader, fogNum, 0, 0, cubemapIndex );
}
surface++;

View File

@ -99,7 +99,7 @@ void R_AddPolygonSurfaces( void ) {
for ( i = 0, poly = tr.refdef.polys; i < tr.refdef.numPolys ; i++, poly++ ) {
sh = R_GetShaderByHandle( poly->hShader );
R_AddDrawSurf( ( void * )poly, sh, poly->fogIndex & fogMask, qfalse, qfalse );
R_AddDrawSurf( ( void * )poly, sh, poly->fogIndex & fogMask, qfalse, qfalse, 0 /*cubeMap*/ );
}
}
@ -283,36 +283,9 @@ void RE_AddAdditiveLightToScene( const vec3_t org, float intensity, float r, flo
RE_AddDynamicLightToScene( org, intensity, r, g, b, qtrue );
}
/*
@@@@@@@@@@@@@@@@@@@@@
RE_RenderScene
Draw a 3D view into a part of the window, then return
to 2D drawing.
Rendering a scene may require multiple views to be rendered
to handle mirrors,
@@@@@@@@@@@@@@@@@@@@@
*/
void RE_RenderScene( const refdef_t *fd ) {
viewParms_t parms;
int startTime;
if ( !tr.registered ) {
return;
}
GLimp_LogComment( "====== RE_RenderScene =====\n" );
if ( r_norefresh->integer ) {
return;
}
startTime = ri.Milliseconds();
if (!tr.world && !( fd->rdflags & RDF_NOWORLDMODEL ) ) {
ri.Error (ERR_DROP, "R_RenderScene: NULL worldmodel");
}
void RE_BeginScene(const refdef_t *fd)
{
Com_Memcpy( tr.refdef.text, fd->text, sizeof( tr.refdef.text ) );
tr.refdef.x = fd->x;
@ -466,6 +439,49 @@ void RE_RenderScene( const refdef_t *fd ) {
// each scene / view.
tr.frameSceneNum++;
tr.sceneCount++;
}
void RE_EndScene()
{
// the next scene rendered in this frame will tack on after this one
r_firstSceneDrawSurf = tr.refdef.numDrawSurfs;
r_firstSceneEntity = r_numentities;
r_firstSceneDlight = r_numdlights;
r_firstScenePoly = r_numpolys;
}
/*
@@@@@@@@@@@@@@@@@@@@@
RE_RenderScene
Draw a 3D view into a part of the window, then return
to 2D drawing.
Rendering a scene may require multiple views to be rendered
to handle mirrors,
@@@@@@@@@@@@@@@@@@@@@
*/
void RE_RenderScene( const refdef_t *fd ) {
viewParms_t parms;
int startTime;
if ( !tr.registered ) {
return;
}
GLimp_LogComment( "====== RE_RenderScene =====\n" );
if ( r_norefresh->integer ) {
return;
}
startTime = ri.Milliseconds();
if (!tr.world && !( fd->rdflags & RDF_NOWORLDMODEL ) ) {
ri.Error (ERR_DROP, "R_RenderScene: NULL worldmodel");
}
RE_BeginScene(fd);
// SmileTheory: playing with shadow mapping
if (!( fd->rdflags & RDF_NOWORLDMODEL ) && tr.refdef.num_dlights && r_dlightMode->integer >= 2)
@ -487,6 +503,21 @@ void RE_RenderScene( const refdef_t *fd ) {
R_RenderSunShadowMaps(fd, 2);
}
// playing with cube maps
// this is where dynamic cubemaps would be rendered
if (0) //(glRefConfig.framebufferObject && !( fd->rdflags & RDF_NOWORLDMODEL ))
{
int i, j;
for (i = 0; i < tr.numCubemaps; i++)
{
for (j = 0; j < 6; j++)
{
R_RenderCubemapSide(i, j, qtrue);
}
}
}
// setup view parms for the initial view
//
// set up viewport
@ -522,11 +553,7 @@ void RE_RenderScene( const refdef_t *fd ) {
if(!( fd->rdflags & RDF_NOWORLDMODEL ))
R_AddPostProcessCmd();
// the next scene rendered in this frame will tack on after this one
r_firstSceneDrawSurf = tr.refdef.numDrawSurfs;
r_firstSceneEntity = r_numentities;
r_firstSceneDlight = r_numdlights;
r_firstScenePoly = r_numpolys;
RE_EndScene();
tr.frontEndMsec += ri.Milliseconds() - startTime;
}

View File

@ -186,7 +186,7 @@ because a surface may be forced to perform a RB_End due
to overflow.
==============
*/
void RB_BeginSurface( shader_t *shader, int fogNum ) {
void RB_BeginSurface( shader_t *shader, int fogNum, int cubemapIndex ) {
shader_t *state = (shader->remappedShader) ? shader->remappedShader : shader;
@ -196,6 +196,7 @@ void RB_BeginSurface( shader_t *shader, int fogNum ) {
tess.multiDrawPrimitives = 0;
tess.shader = state;
tess.fogNum = fogNum;
tess.cubemapIndex = cubemapIndex;
tess.dlightBits = 0; // will be OR'd in by surface functions
tess.pshadowBits = 0; // will be OR'd in by surface functions
tess.xstages = state->stages;
@ -846,7 +847,7 @@ static void ForwardDlight( void ) {
if (r_dlightMode->integer >= 2)
{
GL_SelectTexture(TB_SHADOWMAP);
GL_BindCubemap(tr.shadowCubemaps[l]);
GL_Bind(tr.shadowCubemaps[l]);
GL_SelectTexture(0);
}
@ -1133,6 +1134,11 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
index |= LIGHTDEF_USE_SHADOWMAP;
}
if (!(tr.viewParms.flags & VPF_NOCUBEMAPS) && (index & LIGHTDEF_LIGHTTYPE_MASK) && input->cubemapIndex)
{
index |= LIGHTDEF_USE_CUBEMAP;
}
if (r_lightmap->integer && index & LIGHTDEF_USE_LIGHTMAP)
{
index = LIGHTDEF_USE_LIGHTMAP;
@ -1177,39 +1183,10 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
{
vec4_t baseColor;
vec4_t vertColor;
qboolean tint = qtrue;
int stage2;
ComputeShaderColors(pStage, baseColor, vertColor);
for ( stage2 = stage + 1; stage2 < MAX_SHADER_STAGES; stage2++ )
{
shaderStage_t *pStage2 = input->xstages[stage2];
unsigned int srcBlendBits;
//unsigned int dstBlendBits;
if ( !pStage2 )
{
break;
}
srcBlendBits = pStage2->stateBits & GLS_SRCBLEND_BITS;
//dstBlendBits = pStage2->stateBits & GLS_DSTBLEND_BITS;
if (srcBlendBits == GLS_SRCBLEND_DST_COLOR)
{
tint = qfalse;
break;
}
}
if (!((tr.sunShadows || r_forceSun->integer) && tess.shader->sort <= SS_OPAQUE
&& !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) && tess.xstages[0]->glslShaderGroup == tr.lightallShader))
{
tint = qfalse;
}
if (tint)
if ((backEnd.refdef.colorScale != 1.0f) && !(backEnd.refdef.rdflags & RDF_NOWORLDMODEL))
{
// use VectorScale to only scale first three values, not alpha
VectorScale(baseColor, backEnd.refdef.colorScale, baseColor);
@ -1373,6 +1350,12 @@ static void RB_IterateStagesGeneric( shaderCommands_t *input )
GLSL_SetUniformInt(sp, UNIFORM_TEXTURE1ENV, 0);
}
//
// testing cube map
//
if (!(tr.viewParms.flags & VPF_NOCUBEMAPS) && input->cubemapIndex && r_cubeMapping->integer)
GL_BindToTMU( tr.cubemaps[input->cubemapIndex - 1], TB_CUBEMAP);
//
// draw
//

View File

@ -910,8 +910,8 @@ static qboolean ParseStage( shaderStage_t *stage, char **text )
else if(!Q_stricmp(token, "specularMap"))
{
stage->type = ST_SPECULARMAP;
stage->materialInfo[0] = 0.04f;
stage->materialInfo[1] = 256.0f;
stage->materialInfo[0] = 1.0f;
stage->materialInfo[1] = 1.0f;
}
else
{
@ -937,12 +937,35 @@ static qboolean ParseStage( shaderStage_t *stage, char **text )
//
else if (!Q_stricmp(token, "specularexponent"))
{
float exponent;
token = COM_ParseExt(text, qfalse);
if ( token[0] == 0 )
{
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for specular exponent in shader '%s'\n", shader.name );
continue;
}
exponent = atof( token );
// Change shininess to gloss
// FIXME: assumes max exponent of 8192 and min of 1, must change here if altered in lightall_fp.glsl
exponent = CLAMP(exponent, 1.0, 8192.0);
stage->materialInfo[1] = log(exponent) / log(8192.0);
}
//
// gloss <value>
//
else if (!Q_stricmp(token, "gloss"))
{
token = COM_ParseExt(text, qfalse);
if ( token[0] == 0 )
{
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for gloss in shader '%s'\n", shader.name );
continue;
}
stage->materialInfo[1] = atof( token );
}
//
@ -1926,7 +1949,7 @@ static void ComputeVertexAttribs(void)
shader.vertexAttribs |= ATTR_NORMAL;
#ifdef USE_VERT_TANGENT_SPACE
if (pStage->glslShaderIndex & LIGHTDEF_USE_NORMALMAP)
if ((pStage->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK) && !(r_normalMapping->integer == 0 && r_specularMapping->integer == 0))
{
shader.vertexAttribs |= ATTR_BITANGENT | ATTR_TANGENT;
}
@ -2200,7 +2223,6 @@ static void CollapseStagesToLightall(shaderStage_t *diffuse,
{
//ri.Printf(PRINT_ALL, ", normalmap %s", normal->bundle[0].image[0]->imgName);
diffuse->bundle[TB_NORMALMAP] = normal->bundle[0];
defs |= LIGHTDEF_USE_NORMALMAP;
if (parallax && r_parallaxMapping->integer)
defs |= LIGHTDEF_USE_PARALLAXMAP;
}
@ -2218,13 +2240,22 @@ static void CollapseStagesToLightall(shaderStage_t *diffuse,
if (normalImg)
{
diffuse->bundle[TB_NORMALMAP] = diffuse->bundle[0];
diffuse->bundle[TB_NORMALMAP].numImageAnimations = 0;
diffuse->bundle[TB_NORMALMAP].image[0] = normalImg;
defs |= LIGHTDEF_USE_NORMALMAP;
if (parallax && r_parallaxMapping->integer)
defs |= LIGHTDEF_USE_PARALLAXMAP;
}
}
if (!diffuse->bundle[TB_NORMALMAP].image[0])
{
// use 0x80 image, shader will interpret as (0,0,1)
diffuse->bundle[TB_NORMALMAP] = diffuse->bundle[0];
diffuse->bundle[TB_NORMALMAP].numImageAnimations = 0;
diffuse->bundle[TB_NORMALMAP].image[0] = tr.greyImage;
//ri.Printf(PRINT_ALL, ", normalmap %s", diffuse->bundle[TB_NORMALMAP].image[0]->imgName);
}
}
if (r_specularMapping->integer)
@ -2235,7 +2266,18 @@ static void CollapseStagesToLightall(shaderStage_t *diffuse,
diffuse->bundle[TB_SPECULARMAP] = specular->bundle[0];
diffuse->materialInfo[0] = specular->materialInfo[0];
diffuse->materialInfo[1] = specular->materialInfo[1];
defs |= LIGHTDEF_USE_SPECULARMAP;
}
else if (lightmap || useLightVector || useLightVertex)
{
// use a white image, materialinfo will do the rest
diffuse->bundle[TB_SPECULARMAP] = diffuse->bundle[0];
diffuse->bundle[TB_SPECULARMAP].numImageAnimations = 0;
diffuse->bundle[TB_SPECULARMAP].image[0] = tr.whiteImage;
if (!diffuse->materialInfo[0])
diffuse->materialInfo[0] = r_baseSpecular->value;
if (!diffuse->materialInfo[1])
diffuse->materialInfo[1] = r_baseGloss->value;
//ri.Printf(PRINT_ALL, ", specularmap %s", diffuse->bundle[TB_SPECULARMAP].image[0]->imgName);
}
}
@ -2539,6 +2581,22 @@ static qboolean CollapseStagesToGLSL(void)
}
}
// convert any remaining lightingdiffuse stages to a lighting pass
for (i = 0; i < MAX_SHADER_STAGES; i++)
{
shaderStage_t *pStage = &stages[i];
if (!pStage->active)
continue;
if (pStage->rgbGen == CGEN_LIGHTING_DIFFUSE)
{
pStage->glslShaderGroup = tr.lightallShader;
pStage->glslShaderIndex = LIGHTDEF_USE_LIGHT_VECTOR;
}
}
return numStages;
}

View File

@ -449,7 +449,7 @@ static void DrawSkySide( struct image_s *image, const int mins[2], const int max
color[0] =
color[1] =
color[2] = tr.identityLight;
color[2] = tr.identityLight * backEnd.refdef.colorScale;
color[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_BASECOLOR, color);
@ -826,7 +826,7 @@ void RB_DrawSun( float scale, shader_t *shader ) {
// farthest depth range
qglDepthRange( 1.0, 1.0 );
RB_BeginSurface( shader, 0 );
RB_BeginSurface( shader, 0, 0 );
RB_AddQuadStamp(origin, vec1, vec2, colorWhite);

View File

@ -63,7 +63,7 @@ void RB_CheckOverflow( int verts, int indexes ) {
ri.Error(ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES );
}
RB_BeginSurface(tess.shader, tess.fogNum );
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex );
}
void RB_CheckVBOandIBO(VBO_t *vbo, IBO_t *ibo)
@ -71,7 +71,7 @@ void RB_CheckVBOandIBO(VBO_t *vbo, IBO_t *ibo)
if (!(vbo == glState.currentVBO && ibo == glState.currentIBO) || tess.multiDrawPrimitives >= MAX_MULTIDRAW_PRIMITIVES)
{
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum);
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex);
R_BindVBO(vbo);
R_BindIBO(ibo);
@ -1370,7 +1370,7 @@ static void RB_SurfaceGrid( srfGridMesh_t *srf ) {
// if we don't have enough space for at least one strip, flush the buffer
if ( vrows < 2 || irows < 1 ) {
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum );
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex );
} else {
break;
}
@ -1593,7 +1593,7 @@ void RB_SurfaceVBOMDVMesh(srfVBOMDVMesh_t * surface)
//RB_CheckVBOandIBO(surface->vbo, surface->ibo);
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum);
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex);
R_BindVBO(surface->vbo);
R_BindIBO(surface->ibo);

View File

@ -337,7 +337,7 @@ static void R_AddWorldSurface( msurface_t *surf, int dlightBits, int pshadowBits
pshadowBits = ( pshadowBits != 0 );
}
R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, dlightBits, pshadowBits );
R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, dlightBits, pshadowBits, surf->cubemapIndex );
}
/*