gtkradiant/libs/mathlib/mathlib.c
rambetter 3326472fee Adding MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX in mathlib to control which
version of code in VectorNormalize() is used.  Yes, I put the old code back
in there, and it's active if MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX is 0.
Right now it's 1, so the fixed code is active.  I need this quick way to
test regression tests.


git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/trunk@424 8a3a26a2-13c4-0310-b231-cf6edde360e5
2011-01-12 03:35:57 +00:00

823 lines
16 KiB
C

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
// mathlib.c -- math primitives
#include "mathlib.h"
// we use memcpy and memset
#include <memory.h>
vec3_t vec3_origin = {0.0f,0.0f,0.0f};
/*
================
VectorIsOnAxis
================
*/
qboolean VectorIsOnAxis(vec3_t v)
{
int i, zeroComponentCount;
zeroComponentCount = 0;
for (i = 0; i < 3; i++)
{
if (v[i] == 0.0)
{
zeroComponentCount++;
}
}
if (zeroComponentCount > 1)
{
// The zero vector will be on axis.
return qtrue;
}
return qfalse;
}
/*
================
VectorIsOnAxialPlane
================
*/
qboolean VectorIsOnAxialPlane(vec3_t v)
{
int i;
for (i = 0; i < 3; i++)
{
if (v[i] == 0.0)
{
// The zero vector will be on axial plane.
return qtrue;
}
}
return qfalse;
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
{
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right, right);
CrossProduct (right, forward, up);
}
vec_t VectorLength(vec3_t v)
{
int i;
float length;
length = 0.0f;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = (float)sqrt (length);
return length;
}
qboolean VectorCompare (vec3_t v1, vec3_t v2)
{
int i;
for (i=0 ; i<3 ; i++)
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
return qfalse;
return qtrue;
}
/*
// FIXME TTimo this implementation has to be particular to radiant
// through another name I'd say
vec_t Q_rint (vec_t in)
{
if (g_PrefsDlg.m_bNoClamp)
return in;
else
return (float)floor (in + 0.5);
}
*/
void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc )
{
vc[0] = va[0] + scale*vb[0];
vc[1] = va[1] + scale*vb[1];
vc[2] = va[2] + scale*vb[2];
}
void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]-vb[0];
out[1] = va[1]-vb[1];
out[2] = va[2]-vb[2];
}
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
#if MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX
// The sqrt() function takes double as an input and returns double as an
// output according the the man pages on Debian and on FreeBSD. Therefore,
// I don't see a reason why using a double outright (instead of using the
// vec_accu_t alias for example) could possibly be frowned upon.
double x, y, z, length;
x = (double) in[0];
y = (double) in[1];
z = (double) in[2];
length = sqrt((x * x) + (y * y) + (z * z));
if (length == 0)
{
VectorClear (out);
return 0;
}
out[0] = (vec_t) (x / length);
out[1] = (vec_t) (y / length);
out[2] = (vec_t) (z / length);
return (vec_t) length;
#else
vec_t length, ilength;
length = (vec_t)sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
if (length == 0)
{
VectorClear (out);
return 0;
}
ilength = 1.0f/length;
out[0] = in[0]*ilength;
out[1] = in[1]*ilength;
out[2] = in[2]*ilength;
return length;
#endif
}
vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
float max, scale;
max = in[0];
if (in[1] > max)
max = in[1];
if (in[2] > max)
max = in[2];
if (max == 0) {
out[0] = out[1] = out[2] = 1.0;
return 0;
}
scale = 1.0f / max;
VectorScale (in, scale, out);
return max;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
/*
void VectorScale (vec3_t v, vec_t scale, vec3_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
}
*/
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
{
vec3_t vWork, va;
int nIndex[3][2];
int i;
VectorCopy(vIn, va);
VectorCopy(va, vWork);
nIndex[0][0] = 1; nIndex[0][1] = 2;
nIndex[1][0] = 2; nIndex[1][1] = 0;
nIndex[2][0] = 0; nIndex[2][1] = 1;
for (i = 0; i < 3; i++)
{
if (vRotation[i] != 0)
{
float dAngle = vRotation[i] * Q_PI / 180.0f;
float c = (vec_t)cos(dAngle);
float s = (vec_t)sin(dAngle);
vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
}
VectorCopy(vWork, va);
}
VectorCopy(vWork, out);
}
void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out)
{
vec3_t vTemp, vTemp2;
VectorSubtract(vIn, vOrigin, vTemp);
VectorRotate(vTemp, vRotation, vTemp2);
VectorAdd(vTemp2, vOrigin, out);
}
void VectorPolar(vec3_t v, float radius, float theta, float phi)
{
v[0]=(float)(radius * cos(theta) * cos(phi));
v[1]=(float)(radius * sin(theta) * cos(phi));
v[2]=(float)(radius * sin(phi));
}
void VectorSnap(vec3_t v)
{
int i;
for (i = 0; i < 3; i++)
{
v[i] = (vec_t)floor (v[i] + 0.5);
}
}
void VectorISnap(vec3_t point, int snap)
{
int i;
for (i = 0 ;i < 3 ; i++)
{
point[i] = (vec_t)floor (point[i] / snap + 0.5) * snap;
}
}
void VectorFSnap(vec3_t point, float snap)
{
int i;
for (i = 0 ;i < 3 ; i++)
{
point[i] = (vec_t)floor (point[i] / snap + 0.5) * snap;
}
}
void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
out[3] = va[3]+vb[3];
out[4] = va[4]+vb[4];
}
void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
out[3] = v[3] * scale;
out[4] = v[4] * scale;
}
void _Vector53Copy (vec5_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
// NOTE: added these from Ritual's Q3Radiant
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
{
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
#define PITCH 0 // up / down
#define YAW 1 // left / right
#define ROLL 2 // fall over
#ifndef M_PI
#define M_PI 3.14159265358979323846f // matches value in gcc v2 math.h
#endif
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI*2.0f / 360.0f);
sy = (vec_t)sin(angle);
cy = (vec_t)cos(angle);
angle = angles[PITCH] * (M_PI*2.0f / 360.0f);
sp = (vec_t)sin(angle);
cp = (vec_t)cos(angle);
angle = angles[ROLL] * (M_PI*2.0f / 360.0f);
sr = (vec_t)sin(angle);
cr = (vec_t)cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = -sr*sp*cy+cr*sy;
right[1] = -sr*sp*sy-cr*cy;
right[2] = -sr*cp;
}
if (up)
{
up[0] = cr*sp*cy+sr*sy;
up[1] = cr*sp*sy-sr*cy;
up[2] = cr*cp;
}
}
void VectorToAngles( vec3_t vec, vec3_t angles )
{
float forward;
float yaw, pitch;
if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
{
yaw = 0;
if ( vec[ 2 ] > 0 )
{
pitch = 90;
}
else
{
pitch = 270;
}
}
else
{
yaw = (vec_t)atan2( vec[ 1 ], vec[ 0 ] ) * 180 / M_PI;
if ( yaw < 0 )
{
yaw += 360;
}
forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
pitch = (vec_t)atan2( vec[ 2 ], forward ) * 180 / M_PI;
if ( pitch < 0 )
{
pitch += 360;
}
}
angles[ 0 ] = pitch;
angles[ 1 ] = yaw;
angles[ 2 ] = 0;
}
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane, plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
** NormalToLatLong
**
** We use two byte encoded normals in some space critical applications.
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
**
*/
void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
// check for singularities
if ( normal[0] == 0 && normal[1] == 0 ) {
if ( normal[2] > 0 ) {
bytes[0] = 0;
bytes[1] = 0; // lat = 0, long = 0
} else {
bytes[0] = 128;
bytes[1] = 0; // lat = 0, long = 128
}
} else {
int a, b;
a = (int)( RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ) );
a &= 0xff;
b = (int)( RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ) );
b &= 0xff;
bytes[0] = b; // longitude
bytes[1] = a; // lattitude
}
}
/*
=================
PlaneTypeForNormal
=================
*/
int PlaneTypeForNormal (vec3_t normal) {
if (normal[0] == 1.0 || normal[0] == -1.0)
return PLANE_X;
if (normal[1] == 1.0 || normal[1] == -1.0)
return PLANE_Y;
if (normal[2] == 1.0 || normal[2] == -1.0)
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
vec_t minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = (vec_t)fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst, dst );
}
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees ) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD( degrees );
zrot[0][0] = (vec_t)cos( rad );
zrot[0][1] = (vec_t)sin( rad );
zrot[1][0] = (vec_t)-sin( rad );
zrot[1][1] = (vec_t)cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ ) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
////////////////////////////////////////////////////////////////////////////////
// Below is double-precision math stuff. This was initially needed by the new
// "base winding" code in q3map2 brush processing in order to fix the famous
// "disappearing triangles" issue. These definitions can be used wherever extra
// precision is needed.
////////////////////////////////////////////////////////////////////////////////
/*
=================
VectorLengthAccu
=================
*/
vec_accu_t VectorLengthAccu(const vec3_accu_t v)
{
return (vec_accu_t) sqrt((v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]));
}
/*
=================
DotProductAccu
=================
*/
vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b)
{
return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
}
/*
=================
VectorSubtractAccu
=================
*/
void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
{
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
}
/*
=================
VectorAddAccu
=================
*/
void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
{
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
}
/*
=================
VectorCopyAccu
=================
*/
void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
/*
=================
VectorScaleAccu
=================
*/
void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out)
{
out[0] = in[0] * scaleFactor;
out[1] = in[1] * scaleFactor;
out[2] = in[2] * scaleFactor;
}
/*
=================
CrossProductAccu
=================
*/
void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
{
out[0] = (a[1] * b[2]) - (a[2] * b[1]);
out[1] = (a[2] * b[0]) - (a[0] * b[2]);
out[2] = (a[0] * b[1]) - (a[1] * b[0]);
}
/*
=================
Q_rintAccu
=================
*/
vec_accu_t Q_rintAccu(vec_accu_t val)
{
return (vec_accu_t) floor(val + 0.5);
}
/*
=================
VectorCopyAccuToRegular
=================
*/
void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out)
{
out[0] = (vec_t) in[0];
out[1] = (vec_t) in[1];
out[2] = (vec_t) in[2];
}
/*
=================
VectorCopyRegularToAccu
=================
*/
void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out)
{
out[0] = (vec_accu_t) in[0];
out[1] = (vec_accu_t) in[1];
out[2] = (vec_accu_t) in[2];
}
/*
=================
VectorNormalizeAccu
=================
*/
vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out)
{
// The sqrt() function takes double as an input and returns double as an
// output according the the man pages on Debian and on FreeBSD. Therefore,
// I don't see a reason why using a double outright (instead of using the
// vec_accu_t alias for example) could possibly be frowned upon.
vec_accu_t length;
length = (vec_accu_t) sqrt((in[0] * in[0]) + (in[1] * in[1]) + (in[2] * in[2]));
if (length == 0)
{
VectorClear(out);
return 0;
}
out[0] = in[0] / length;
out[1] = in[1] / length;
out[2] = in[2] / length;
return length;
}