/* Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ // mathlib.c -- math primitives #include "mathlib.h" // we use memcpy and memset #include vec3_t vec3_origin = {0.0f,0.0f,0.0f}; /* ================ VectorIsOnAxis ================ */ qboolean VectorIsOnAxis(vec3_t v) { int i, zeroComponentCount; zeroComponentCount = 0; for (i = 0; i < 3; i++) { if (v[i] == 0.0) { zeroComponentCount++; } } if (zeroComponentCount > 1) { // The zero vector will be on axis. return qtrue; } return qfalse; } /* ================ VectorIsOnAxialPlane ================ */ qboolean VectorIsOnAxialPlane(vec3_t v) { int i; for (i = 0; i < 3; i++) { if (v[i] == 0.0) { // The zero vector will be on axial plane. return qtrue; } } return qfalse; } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct (right, forward); VectorMA (right, -d, forward, right); VectorNormalize (right, right); CrossProduct (right, forward, up); } vec_t VectorLength(vec3_t v) { int i; float length; length = 0.0f; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = (float)sqrt (length); return length; } qboolean VectorCompare (vec3_t v1, vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON) return qfalse; return qtrue; } /* // FIXME TTimo this implementation has to be particular to radiant // through another name I'd say vec_t Q_rint (vec_t in) { if (g_PrefsDlg.m_bNoClamp) return in; else return (float)floor (in + 0.5); } */ void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc ) { vc[0] = va[0] + scale*vb[0]; vc[1] = va[1] + scale*vb[1]; vc[2] = va[2] + scale*vb[2]; } void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]-vb[0]; out[1] = va[1]-vb[1]; out[2] = va[2]-vb[2]; } void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } vec_t VectorNormalize( const vec3_t in, vec3_t out ) { #if MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX // The sqrt() function takes double as an input and returns double as an // output according the the man pages on Debian and on FreeBSD. Therefore, // I don't see a reason why using a double outright (instead of using the // vec_accu_t alias for example) could possibly be frowned upon. double x, y, z, length; x = (double) in[0]; y = (double) in[1]; z = (double) in[2]; length = sqrt((x * x) + (y * y) + (z * z)); if (length == 0) { VectorClear (out); return 0; } out[0] = (vec_t) (x / length); out[1] = (vec_t) (y / length); out[2] = (vec_t) (z / length); return (vec_t) length; #else vec_t length, ilength; length = (vec_t)sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]); if (length == 0) { VectorClear (out); return 0; } ilength = 1.0f/length; out[0] = in[0]*ilength; out[1] = in[1]*ilength; out[2] = in[2]*ilength; return length; #endif } vec_t ColorNormalize( const vec3_t in, vec3_t out ) { float max, scale; max = in[0]; if (in[1] > max) max = in[1]; if (in[2] > max) max = in[2]; if (max == 0) { out[0] = out[1] = out[2] = 1.0; return 0; } scale = 1.0f / max; VectorScale (in, scale, out); return max; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } /* void VectorScale (vec3_t v, vec_t scale, vec3_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; } */ void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out) { vec3_t vWork, va; int nIndex[3][2]; int i; VectorCopy(vIn, va); VectorCopy(va, vWork); nIndex[0][0] = 1; nIndex[0][1] = 2; nIndex[1][0] = 2; nIndex[1][1] = 0; nIndex[2][0] = 0; nIndex[2][1] = 1; for (i = 0; i < 3; i++) { if (vRotation[i] != 0) { float dAngle = vRotation[i] * Q_PI / 180.0f; float c = (vec_t)cos(dAngle); float s = (vec_t)sin(dAngle); vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s; vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c; } VectorCopy(vWork, va); } VectorCopy(vWork, out); } void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out) { vec3_t vTemp, vTemp2; VectorSubtract(vIn, vOrigin, vTemp); VectorRotate(vTemp, vRotation, vTemp2); VectorAdd(vTemp2, vOrigin, out); } void VectorPolar(vec3_t v, float radius, float theta, float phi) { v[0]=(float)(radius * cos(theta) * cos(phi)); v[1]=(float)(radius * sin(theta) * cos(phi)); v[2]=(float)(radius * sin(phi)); } void VectorSnap(vec3_t v) { int i; for (i = 0; i < 3; i++) { v[i] = (vec_t)floor (v[i] + 0.5); } } void VectorISnap(vec3_t point, int snap) { int i; for (i = 0 ;i < 3 ; i++) { point[i] = (vec_t)floor (point[i] / snap + 0.5) * snap; } } void VectorFSnap(vec3_t point, float snap) { int i; for (i = 0 ;i < 3 ; i++) { point[i] = (vec_t)floor (point[i] / snap + 0.5) * snap; } } void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; out[3] = va[3]+vb[3]; out[4] = va[4]+vb[4]; } void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; out[3] = v[3] * scale; out[4] = v[4] * scale; } void _Vector53Copy (vec5_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } // NOTE: added these from Ritual's Q3Radiant void ClearBounds (vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs) { int i; vec_t val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } } #define PITCH 0 // up / down #define YAW 1 // left / right #define ROLL 2 // fall over #ifndef M_PI #define M_PI 3.14159265358979323846f // matches value in gcc v2 math.h #endif void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2.0f / 360.0f); sy = (vec_t)sin(angle); cy = (vec_t)cos(angle); angle = angles[PITCH] * (M_PI*2.0f / 360.0f); sp = (vec_t)sin(angle); cp = (vec_t)cos(angle); angle = angles[ROLL] * (M_PI*2.0f / 360.0f); sr = (vec_t)sin(angle); cr = (vec_t)cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = -sr*sp*cy+cr*sy; right[1] = -sr*sp*sy-cr*cy; right[2] = -sr*cp; } if (up) { up[0] = cr*sp*cy+sr*sy; up[1] = cr*sp*sy-sr*cy; up[2] = cr*cp; } } void VectorToAngles( vec3_t vec, vec3_t angles ) { float forward; float yaw, pitch; if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) ) { yaw = 0; if ( vec[ 2 ] > 0 ) { pitch = 90; } else { pitch = 270; } } else { yaw = (vec_t)atan2( vec[ 1 ], vec[ 0 ] ) * 180 / M_PI; if ( yaw < 0 ) { yaw += 360; } forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] ); pitch = (vec_t)atan2( vec[ 2 ], forward ) * 180 / M_PI; if ( pitch < 0 ) { pitch += 360; } } angles[ 0 ] = pitch; angles[ 1 ] = yaw; angles[ 2 ] = 0; } /* ===================== PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane, plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } /* ** NormalToLatLong ** ** We use two byte encoded normals in some space critical applications. ** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format ** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format ** */ void NormalToLatLong( const vec3_t normal, byte bytes[2] ) { // check for singularities if ( normal[0] == 0 && normal[1] == 0 ) { if ( normal[2] > 0 ) { bytes[0] = 0; bytes[1] = 0; // lat = 0, long = 0 } else { bytes[0] = 128; bytes[1] = 0; // lat = 0, long = 128 } } else { int a, b; a = (int)( RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ) ); a &= 0xff; b = (int)( RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ) ); b &= 0xff; bytes[0] = b; // longitude bytes[1] = a; // lattitude } } /* ================= PlaneTypeForNormal ================= */ int PlaneTypeForNormal (vec3_t normal) { if (normal[0] == 1.0 || normal[0] == -1.0) return PLANE_X; if (normal[1] == 1.0 || normal[1] == -1.0) return PLANE_Y; if (normal[2] == 1.0 || normal[2] == -1.0) return PLANE_Z; return PLANE_NON_AXIAL; } /* ================ MatrixMultiply ================ */ void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; vec_t minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = (vec_t)fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst, dst ); } /* =============== RotatePointAroundVector This is not implemented very well... =============== */ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; float rad; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; rad = DEG2RAD( degrees ); zrot[0][0] = (vec_t)cos( rad ); zrot[0][1] = (vec_t)sin( rad ); zrot[1][0] = (vec_t)-sin( rad ); zrot[1][1] = (vec_t)cos( rad ); MatrixMultiply( m, zrot, tmpmat ); MatrixMultiply( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } //////////////////////////////////////////////////////////////////////////////// // Below is double-precision math stuff. This was initially needed by the new // "base winding" code in q3map2 brush processing in order to fix the famous // "disappearing triangles" issue. These definitions can be used wherever extra // precision is needed. //////////////////////////////////////////////////////////////////////////////// /* ================= VectorLengthAccu ================= */ vec_accu_t VectorLengthAccu(const vec3_accu_t v) { return (vec_accu_t) sqrt((v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2])); } /* ================= DotProductAccu ================= */ vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b) { return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]); } /* ================= VectorSubtractAccu ================= */ void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; } /* ================= VectorAddAccu ================= */ void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; } /* ================= VectorCopyAccu ================= */ void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } /* ================= VectorScaleAccu ================= */ void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out) { out[0] = in[0] * scaleFactor; out[1] = in[1] * scaleFactor; out[2] = in[2] * scaleFactor; } /* ================= CrossProductAccu ================= */ void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out) { out[0] = (a[1] * b[2]) - (a[2] * b[1]); out[1] = (a[2] * b[0]) - (a[0] * b[2]); out[2] = (a[0] * b[1]) - (a[1] * b[0]); } /* ================= Q_rintAccu ================= */ vec_accu_t Q_rintAccu(vec_accu_t val) { return (vec_accu_t) floor(val + 0.5); } /* ================= VectorCopyAccuToRegular ================= */ void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out) { out[0] = (vec_t) in[0]; out[1] = (vec_t) in[1]; out[2] = (vec_t) in[2]; } /* ================= VectorCopyRegularToAccu ================= */ void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out) { out[0] = (vec_accu_t) in[0]; out[1] = (vec_accu_t) in[1]; out[2] = (vec_accu_t) in[2]; } /* ================= VectorNormalizeAccu ================= */ vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out) { // The sqrt() function takes double as an input and returns double as an // output according the the man pages on Debian and on FreeBSD. Therefore, // I don't see a reason why using a double outright (instead of using the // vec_accu_t alias for example) could possibly be frowned upon. vec_accu_t length; length = (vec_accu_t) sqrt((in[0] * in[0]) + (in[1] * in[1]) + (in[2] * in[2])); if (length == 0) { VectorClear(out); return 0; } out[0] = in[0] / length; out[1] = in[1] / length; out[2] = in[2] / length; return length; }