raze/source/etcpak/src/ProcessRGB.cpp
hendricks266 417b047cf3 Bring the previous commit into effect.
git-svn-id: https://svn.eduke32.com/eduke32@6056 1a8010ca-5511-0410-912e-c29ae57300e0
2017-02-01 10:20:54 +00:00

470 lines
12 KiB
C++

#include <math.h>
#include <string.h>
#include "Math.hpp"
#include "ProcessCommon.hpp"
#include "ProcessRGB.h"
#include "Tables.hpp"
#include "Types.hpp"
#include "Vector.hpp"
namespace
{
static inline uint32 byteswap(uint32 l)
{
return ((l >> 8u) & 0xff00u) | ((l & 0xff00u) << 8u) | (l << 24u) | (l >> 24u);
}
template<typename T, size_t size>
struct simple_array
{
simple_array()
{
memset(data, 0, sizeof(data));
}
T operator [](size_t i) const
{
return data[i];
}
T & operator [](size_t i)
{
return data[i];
}
protected:
T data[size];
};
typedef simple_array<uint16, 4> v4i;
void Average( const uint8* data, v4i* a )
{
uint32 r[4];
uint32 g[4];
uint32 b[4];
memset(r, 0, sizeof(r));
memset(g, 0, sizeof(g));
memset(b, 0, sizeof(b));
for( int j=0; j<4; j++ )
{
for( int i=0; i<4; i++ )
{
int index = (j & 2) + (i >> 1);
r[index] += *data++;
g[index] += *data++;
b[index] += *data++;
data++;
}
}
a[0][0] = uint16( (r[2] + r[3] + 4) / 8 );
a[0][1] = uint16( (g[2] + g[3] + 4) / 8 );
a[0][2] = uint16( (b[2] + b[3] + 4) / 8 );
a[0][3] = 0;
a[1][0] = uint16( (r[0] + r[1] + 4) / 8 );
a[1][1] = uint16( (g[0] + g[1] + 4) / 8 );
a[1][2] = uint16( (b[0] + b[1] + 4) / 8 );
a[1][3] = 0;
a[2][0] = uint16( (r[1] + r[3] + 4) / 8 );
a[2][1] = uint16( (g[1] + g[3] + 4) / 8 );
a[2][2] = uint16( (b[1] + b[3] + 4) / 8 );
a[2][3] = 0;
a[3][0] = uint16( (r[0] + r[2] + 4) / 8 );
a[3][1] = uint16( (g[0] + g[2] + 4) / 8 );
a[3][2] = uint16( (b[0] + b[2] + 4) / 8 );
a[3][3] = 0;
}
void CalcErrorBlock( const uint8* data, uint err[4][4] )
{
uint terr[4][4];
memset(terr, 0, 16 * sizeof(uint));
for( int j=0; j<4; j++ )
{
for( int i=0; i<4; i++ )
{
int index = (j & 2) + (i >> 1);
uint d = *data++;
terr[index][0] += d;
d = *data++;
terr[index][1] += d;
d = *data++;
terr[index][2] += d;
data++;
}
}
for( int i=0; i<3; i++ )
{
err[0][i] = terr[2][i] + terr[3][i];
err[1][i] = terr[0][i] + terr[1][i];
err[2][i] = terr[1][i] + terr[3][i];
err[3][i] = terr[0][i] + terr[2][i];
}
for( int i=0; i<4; i++ )
{
err[i][3] = 0;
}
}
uint CalcError( const uint block[4], const v4i& average )
{
uint err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow
err -= block[0] * 2 * average[0];
err -= block[1] * 2 * average[1];
err -= block[2] * 2 * average[2];
err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) );
return err;
}
void ProcessAverages( v4i* a )
{
for( int i=0; i<2; i++ )
{
for( int j=0; j<3; j++ )
{
int32 c1 = mul8bit( a[i*2+1][j], 31 );
int32 c2 = mul8bit( a[i*2][j], 31 );
int32 diff = c2 - c1;
if( diff > 3 ) diff = 3;
else if( diff < -4 ) diff = -4;
int32 co = c1 + diff;
a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 );
a[4+i*2][j] = ( co << 3 ) | ( co >> 2 );
}
}
for( int i=0; i<4; i++ )
{
a[i][0] = g_avg2[mul8bit( a[i][0], 15 )];
a[i][1] = g_avg2[mul8bit( a[i][1], 15 )];
a[i][2] = g_avg2[mul8bit( a[i][2], 15 )];
}
}
void EncodeAverages( uint64& _d, const v4i* a, size_t idx )
{
auto d = _d;
d |= ( idx << 24 );
size_t base = idx << 1;
if( ( idx & 0x2 ) == 0 )
{
for( int i=0; i<3; i++ )
{
d |= uint64( a[base+0][i] >> 4 ) << ( i*8 );
d |= uint64( a[base+1][i] >> 4 ) << ( i*8 + 4 );
}
}
else
{
for( int i=0; i<3; i++ )
{
d |= uint64( a[base+1][i] & 0xF8 ) << ( i*8 );
int32 c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3;
c &= ~0xFFFFFFF8;
d |= ((uint64)c) << ( i*8 );
}
}
_d = d;
}
uint64 CheckSolid( const uint8* src )
{
const uint8* ptr = src + 4;
for( int i=1; i<16; i++ )
{
if( memcmp( src, ptr, 4 ) != 0 )
{
return 0;
}
ptr += 4;
}
return 0x02000000 |
( uint( src[0] & 0xF8 ) ) |
( uint( src[1] & 0xF8 ) << 8 ) |
( uint( src[2] & 0xF8 ) << 16 );
}
void PrepareAverages( v4i a[8], const uint8* src, uint err[4] )
{
Average( src, a );
ProcessAverages( a );
uint errblock[4][4];
CalcErrorBlock( src, errblock );
for( int i=0; i<4; i++ )
{
err[i/2] += CalcError( errblock[i], a[i] );
err[2+i/2] += CalcError( errblock[i], a[i+4] );
}
}
void FindBestFit( uint64 terr[2][8], uint16 tsel[16][8], v4i a[8], const uint32* id, const uint8* data )
{
for( size_t i=0; i<16; i++ )
{
uint16* sel = tsel[i];
uint bid = id[i];
uint64* ter = terr[bid%2];
uint8 r = *data++;
uint8 g = *data++;
uint8 b = *data++;
data++;
int dr = a[bid][0] - r;
int dg = a[bid][1] - g;
int db = a[bid][2] - b;
int pix = dr * 77 + dg * 151 + db * 28;
for( int t=0; t<8; t++ )
{
const int64* tab = g_table256[t];
uint idx = 0;
uint64 err = sq( tab[0] + pix );
for( int j=1; j<4; j++ )
{
uint64 local = sq( tab[j] + pix );
if( local < err )
{
err = local;
idx = j;
}
}
*sel++ = idx;
*ter++ += err;
}
}
}
uint8_t convert6(float f)
{
int i = (std::min(std::max(static_cast<int>(f), 0), 1023) - 15) >> 1;
return (i + 11 - ((i + 11) >> 7) - ((i + 4) >> 7)) >> 3;
}
uint8_t convert7(float f)
{
int i = (std::min(std::max(static_cast<int>(f), 0), 1023) - 15) >> 1;
return (i + 9 - ((i + 9) >> 8) - ((i + 6) >> 8)) >> 2;
}
std::pair<uint64, uint64> Planar(const uint8* src)
{
int32 r = 0;
int32 g = 0;
int32 b = 0;
for (int i = 0; i < 16; ++i)
{
r += src[i * 4 + 0];
g += src[i * 4 + 1];
b += src[i * 4 + 2];
}
int32 difRyz = 0;
int32 difGyz = 0;
int32 difByz = 0;
int32 difRxz = 0;
int32 difGxz = 0;
int32 difBxz = 0;
const int32 scaling[] = { -255, -85, 85, 255 };
for (int i = 0; i < 16; ++i)
{
int32 difR = (static_cast<int>(src[i * 4 + 0]) << 4) - r;
int32 difG = (static_cast<int>(src[i * 4 + 1]) << 4) - g;
int32 difB = (static_cast<int>(src[i * 4 + 2]) << 4) - b;
difRyz += difR * scaling[i % 4];
difGyz += difG * scaling[i % 4];
difByz += difB * scaling[i % 4];
difRxz += difR * scaling[i / 4];
difGxz += difG * scaling[i / 4];
difBxz += difB * scaling[i / 4];
}
const float scale = -4.0f / ((255 * 255 * 8.0f + 85 * 85 * 8.0f) * 16.0f);
float aR = difRxz * scale;
float aG = difGxz * scale;
float aB = difBxz * scale;
float bR = difRyz * scale;
float bG = difGyz * scale;
float bB = difByz * scale;
float dR = r * (4.0f / 16.0f);
float dG = g * (4.0f / 16.0f);
float dB = b * (4.0f / 16.0f);
// calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y;
float cofR = fma(aR, 255.0f, fma(bR, 255.0f, dR));
float cofG = fma(aG, 255.0f, fma(bG, 255.0f, dG));
float cofB = fma(aB, 255.0f, fma(bB, 255.0f, dB));
float chfR = fma(aR, -425.0f, fma(bR, 255.0f, dR));
float chfG = fma(aG, -425.0f, fma(bG, 255.0f, dG));
float chfB = fma(aB, -425.0f, fma(bB, 255.0f, dB));
float cvfR = fma(aR, 255.0f, fma(bR, -425.0f, dR));
float cvfG = fma(aG, 255.0f, fma(bG, -425.0f, dG));
float cvfB = fma(aB, 255.0f, fma(bB, -425.0f, dB));
// convert to r6g7b6
int32 coR = convert6(cofR);
int32 coG = convert7(cofG);
int32 coB = convert6(cofB);
int32 chR = convert6(chfR);
int32 chG = convert7(chfG);
int32 chB = convert6(chfB);
int32 cvR = convert6(cvfR);
int32 cvG = convert7(cvfG);
int32 cvB = convert6(cvfB);
// Error calculation
auto ro0 = coR;
auto go0 = coG;
auto bo0 = coB;
auto ro1 = (ro0 >> 4) | (ro0 << 2);
auto go1 = (go0 >> 6) | (go0 << 1);
auto bo1 = (bo0 >> 4) | (bo0 << 2);
auto ro2 = (ro1 << 2) + 2;
auto go2 = (go1 << 2) + 2;
auto bo2 = (bo1 << 2) + 2;
auto rh0 = chR;
auto gh0 = chG;
auto bh0 = chB;
auto rh1 = (rh0 >> 4) | (rh0 << 2);
auto gh1 = (gh0 >> 6) | (gh0 << 1);
auto bh1 = (bh0 >> 4) | (bh0 << 2);
auto rh2 = rh1 - ro1;
auto gh2 = gh1 - go1;
auto bh2 = bh1 - bo1;
auto rv0 = cvR;
auto gv0 = cvG;
auto bv0 = cvB;
auto rv1 = (rv0 >> 4) | (rv0 << 2);
auto gv1 = (gv0 >> 6) | (gv0 << 1);
auto bv1 = (bv0 >> 4) | (bv0 << 2);
auto rv2 = rv1 - ro1;
auto gv2 = gv1 - go1;
auto bv2 = bv1 - bo1;
uint64 error = 0;
for (int i = 0; i < 16; ++i)
{
int32 cR = clampu8((rh2 * (i / 4) + rv2 * (i % 4) + ro2) >> 2);
int32 cG = clampu8((gh2 * (i / 4) + gv2 * (i % 4) + go2) >> 2);
int32 cB = clampu8((bh2 * (i / 4) + bv2 * (i % 4) + bo2) >> 2);
int32 difR = static_cast<int>(src[i * 4 + 0]) - cR;
int32 difG = static_cast<int>(src[i * 4 + 1]) - cG;
int32 difB = static_cast<int>(src[i * 4 + 2]) - cB;
int32 dif = difR * 38 + difG * 76 + difB * 14;
error += dif * dif;
}
/**/
uint32 rgbv = cvB | (cvG << 6) | (cvR << 13);
uint32 rgbh = chB | (chG << 6) | (chR << 13);
uint32 hi = rgbv | ((rgbh & 0x1FFF) << 19);
uint32 lo = (chR & 0x1) | 0x2 | ((chR << 1) & 0x7C);
lo |= ((coB & 0x07) << 7) | ((coB & 0x18) << 8) | ((coB & 0x20) << 11);
lo |= ((coG & 0x3F) << 17) | ((coG & 0x40) << 18);
lo |= coR << 25;
const auto idx = (coR & 0x20) | ((coG & 0x20) >> 1) | ((coB & 0x1E) >> 1);
lo |= g_flags[idx];
uint64 result = static_cast<uint32>(byteswap(lo));
result |= static_cast<uint64>(static_cast<uint32>(byteswap(hi))) << 32;
return std::make_pair(result, error);
}
template<class T, class S>
uint64 EncodeSelectors( uint64 d, const T terr[2][8], const S tsel[16][8], const uint32* id, const uint64 value, const uint64 error)
{
size_t tidx[2];
tidx[0] = GetLeastError( terr[0], 8 );
tidx[1] = GetLeastError( terr[1], 8 );
if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error)
{
return value;
}
d |= tidx[0] << 26;
d |= tidx[1] << 29;
for( int i=0; i<16; i++ )
{
uint64 t = tsel[i][tidx[id[i]%2]];
d |= ( t & 0x1 ) << ( i + 32 );
d |= ( t & 0x2 ) << ( i + 47 );
}
return FixByteOrder(d);
}
}
uint64 ProcessRGB( const uint8* src )
{
uint64 d = CheckSolid( src );
if( d != 0 ) return d;
v4i a[8];
uint err[4] = {};
PrepareAverages( a, src, err );
size_t idx = GetLeastError( err, 4 );
EncodeAverages( d, a, idx );
uint64 terr[2][8] = {};
uint16 tsel[16][8];
auto id = g_id[idx];
FindBestFit( terr, tsel, a, id, src );
return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) );
}
uint64 ProcessRGB_ETC2( const uint8* src )
{
auto result = Planar( src );
uint64 d = 0;
v4i a[8];
uint err[4] = {};
PrepareAverages( a, src, err );
size_t idx = GetLeastError( err, 4 );
EncodeAverages( d, a, idx );
uint64 terr[2][8] = {};
uint16 tsel[16][8];
auto id = g_id[idx];
FindBestFit( terr, tsel, a, id, src );
return EncodeSelectors( d, terr, tsel, id, result.first, result.second );
}