#include #include #include "Math.hpp" #include "ProcessCommon.hpp" #include "ProcessRGB.h" #include "Tables.hpp" #include "Types.hpp" #include "Vector.hpp" namespace { static inline uint32 byteswap(uint32 l) { return ((l >> 8u) & 0xff00u) | ((l & 0xff00u) << 8u) | (l << 24u) | (l >> 24u); } template struct simple_array { simple_array() { memset(data, 0, sizeof(data)); } T operator [](size_t i) const { return data[i]; } T & operator [](size_t i) { return data[i]; } protected: T data[size]; }; typedef simple_array v4i; void Average( const uint8* data, v4i* a ) { uint32 r[4]; uint32 g[4]; uint32 b[4]; memset(r, 0, sizeof(r)); memset(g, 0, sizeof(g)); memset(b, 0, sizeof(b)); for( int j=0; j<4; j++ ) { for( int i=0; i<4; i++ ) { int index = (j & 2) + (i >> 1); r[index] += *data++; g[index] += *data++; b[index] += *data++; data++; } } a[0][0] = uint16( (r[2] + r[3] + 4) / 8 ); a[0][1] = uint16( (g[2] + g[3] + 4) / 8 ); a[0][2] = uint16( (b[2] + b[3] + 4) / 8 ); a[0][3] = 0; a[1][0] = uint16( (r[0] + r[1] + 4) / 8 ); a[1][1] = uint16( (g[0] + g[1] + 4) / 8 ); a[1][2] = uint16( (b[0] + b[1] + 4) / 8 ); a[1][3] = 0; a[2][0] = uint16( (r[1] + r[3] + 4) / 8 ); a[2][1] = uint16( (g[1] + g[3] + 4) / 8 ); a[2][2] = uint16( (b[1] + b[3] + 4) / 8 ); a[2][3] = 0; a[3][0] = uint16( (r[0] + r[2] + 4) / 8 ); a[3][1] = uint16( (g[0] + g[2] + 4) / 8 ); a[3][2] = uint16( (b[0] + b[2] + 4) / 8 ); a[3][3] = 0; } void CalcErrorBlock( const uint8* data, uint err[4][4] ) { uint terr[4][4]; memset(terr, 0, 16 * sizeof(uint)); for( int j=0; j<4; j++ ) { for( int i=0; i<4; i++ ) { int index = (j & 2) + (i >> 1); uint d = *data++; terr[index][0] += d; d = *data++; terr[index][1] += d; d = *data++; terr[index][2] += d; data++; } } for( int i=0; i<3; i++ ) { err[0][i] = terr[2][i] + terr[3][i]; err[1][i] = terr[0][i] + terr[1][i]; err[2][i] = terr[1][i] + terr[3][i]; err[3][i] = terr[0][i] + terr[2][i]; } for( int i=0; i<4; i++ ) { err[i][3] = 0; } } uint CalcError( const uint block[4], const v4i& average ) { uint err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow err -= block[0] * 2 * average[0]; err -= block[1] * 2 * average[1]; err -= block[2] * 2 * average[2]; err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); return err; } void ProcessAverages( v4i* a ) { for( int i=0; i<2; i++ ) { for( int j=0; j<3; j++ ) { int32 c1 = mul8bit( a[i*2+1][j], 31 ); int32 c2 = mul8bit( a[i*2][j], 31 ); int32 diff = c2 - c1; if( diff > 3 ) diff = 3; else if( diff < -4 ) diff = -4; int32 co = c1 + diff; a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 ); a[4+i*2][j] = ( co << 3 ) | ( co >> 2 ); } } for( int i=0; i<4; i++ ) { a[i][0] = g_avg2[mul8bit( a[i][0], 15 )]; a[i][1] = g_avg2[mul8bit( a[i][1], 15 )]; a[i][2] = g_avg2[mul8bit( a[i][2], 15 )]; } } void EncodeAverages( uint64& _d, const v4i* a, size_t idx ) { auto d = _d; d |= ( idx << 24 ); size_t base = idx << 1; if( ( idx & 0x2 ) == 0 ) { for( int i=0; i<3; i++ ) { d |= uint64( a[base+0][i] >> 4 ) << ( i*8 ); d |= uint64( a[base+1][i] >> 4 ) << ( i*8 + 4 ); } } else { for( int i=0; i<3; i++ ) { d |= uint64( a[base+1][i] & 0xF8 ) << ( i*8 ); int32 c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3; c &= ~0xFFFFFFF8; d |= ((uint64)c) << ( i*8 ); } } _d = d; } uint64 CheckSolid( const uint8* src ) { const uint8* ptr = src + 4; for( int i=1; i<16; i++ ) { if( memcmp( src, ptr, 4 ) != 0 ) { return 0; } ptr += 4; } return 0x02000000 | ( uint( src[0] & 0xF8 ) ) | ( uint( src[1] & 0xF8 ) << 8 ) | ( uint( src[2] & 0xF8 ) << 16 ); } void PrepareAverages( v4i a[8], const uint8* src, uint err[4] ) { Average( src, a ); ProcessAverages( a ); uint errblock[4][4]; CalcErrorBlock( src, errblock ); for( int i=0; i<4; i++ ) { err[i/2] += CalcError( errblock[i], a[i] ); err[2+i/2] += CalcError( errblock[i], a[i+4] ); } } void FindBestFit( uint64 terr[2][8], uint16 tsel[16][8], v4i a[8], const uint32* id, const uint8* data ) { for( size_t i=0; i<16; i++ ) { uint16* sel = tsel[i]; uint bid = id[i]; uint64* ter = terr[bid%2]; uint8 r = *data++; uint8 g = *data++; uint8 b = *data++; data++; int dr = a[bid][0] - r; int dg = a[bid][1] - g; int db = a[bid][2] - b; int pix = dr * 77 + dg * 151 + db * 28; for( int t=0; t<8; t++ ) { const int64* tab = g_table256[t]; uint idx = 0; uint64 err = sq( tab[0] + pix ); for( int j=1; j<4; j++ ) { uint64 local = sq( tab[j] + pix ); if( local < err ) { err = local; idx = j; } } *sel++ = idx; *ter++ += err; } } } uint8_t convert6(float f) { int i = (std::min(std::max(static_cast(f), 0), 1023) - 15) >> 1; return (i + 11 - ((i + 11) >> 7) - ((i + 4) >> 7)) >> 3; } uint8_t convert7(float f) { int i = (std::min(std::max(static_cast(f), 0), 1023) - 15) >> 1; return (i + 9 - ((i + 9) >> 8) - ((i + 6) >> 8)) >> 2; } std::pair Planar(const uint8* src) { int32 r = 0; int32 g = 0; int32 b = 0; for (int i = 0; i < 16; ++i) { r += src[i * 4 + 0]; g += src[i * 4 + 1]; b += src[i * 4 + 2]; } int32 difRyz = 0; int32 difGyz = 0; int32 difByz = 0; int32 difRxz = 0; int32 difGxz = 0; int32 difBxz = 0; const int32 scaling[] = { -255, -85, 85, 255 }; for (int i = 0; i < 16; ++i) { int32 difR = (static_cast(src[i * 4 + 0]) << 4) - r; int32 difG = (static_cast(src[i * 4 + 1]) << 4) - g; int32 difB = (static_cast(src[i * 4 + 2]) << 4) - b; difRyz += difR * scaling[i % 4]; difGyz += difG * scaling[i % 4]; difByz += difB * scaling[i % 4]; difRxz += difR * scaling[i / 4]; difGxz += difG * scaling[i / 4]; difBxz += difB * scaling[i / 4]; } const float scale = -4.0f / ((255 * 255 * 8.0f + 85 * 85 * 8.0f) * 16.0f); float aR = difRxz * scale; float aG = difGxz * scale; float aB = difBxz * scale; float bR = difRyz * scale; float bG = difGyz * scale; float bB = difByz * scale; float dR = r * (4.0f / 16.0f); float dG = g * (4.0f / 16.0f); float dB = b * (4.0f / 16.0f); // calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y; float cofR = fma(aR, 255.0f, fma(bR, 255.0f, dR)); float cofG = fma(aG, 255.0f, fma(bG, 255.0f, dG)); float cofB = fma(aB, 255.0f, fma(bB, 255.0f, dB)); float chfR = fma(aR, -425.0f, fma(bR, 255.0f, dR)); float chfG = fma(aG, -425.0f, fma(bG, 255.0f, dG)); float chfB = fma(aB, -425.0f, fma(bB, 255.0f, dB)); float cvfR = fma(aR, 255.0f, fma(bR, -425.0f, dR)); float cvfG = fma(aG, 255.0f, fma(bG, -425.0f, dG)); float cvfB = fma(aB, 255.0f, fma(bB, -425.0f, dB)); // convert to r6g7b6 int32 coR = convert6(cofR); int32 coG = convert7(cofG); int32 coB = convert6(cofB); int32 chR = convert6(chfR); int32 chG = convert7(chfG); int32 chB = convert6(chfB); int32 cvR = convert6(cvfR); int32 cvG = convert7(cvfG); int32 cvB = convert6(cvfB); // Error calculation auto ro0 = coR; auto go0 = coG; auto bo0 = coB; auto ro1 = (ro0 >> 4) | (ro0 << 2); auto go1 = (go0 >> 6) | (go0 << 1); auto bo1 = (bo0 >> 4) | (bo0 << 2); auto ro2 = (ro1 << 2) + 2; auto go2 = (go1 << 2) + 2; auto bo2 = (bo1 << 2) + 2; auto rh0 = chR; auto gh0 = chG; auto bh0 = chB; auto rh1 = (rh0 >> 4) | (rh0 << 2); auto gh1 = (gh0 >> 6) | (gh0 << 1); auto bh1 = (bh0 >> 4) | (bh0 << 2); auto rh2 = rh1 - ro1; auto gh2 = gh1 - go1; auto bh2 = bh1 - bo1; auto rv0 = cvR; auto gv0 = cvG; auto bv0 = cvB; auto rv1 = (rv0 >> 4) | (rv0 << 2); auto gv1 = (gv0 >> 6) | (gv0 << 1); auto bv1 = (bv0 >> 4) | (bv0 << 2); auto rv2 = rv1 - ro1; auto gv2 = gv1 - go1; auto bv2 = bv1 - bo1; uint64 error = 0; for (int i = 0; i < 16; ++i) { int32 cR = clampu8((rh2 * (i / 4) + rv2 * (i % 4) + ro2) >> 2); int32 cG = clampu8((gh2 * (i / 4) + gv2 * (i % 4) + go2) >> 2); int32 cB = clampu8((bh2 * (i / 4) + bv2 * (i % 4) + bo2) >> 2); int32 difR = static_cast(src[i * 4 + 0]) - cR; int32 difG = static_cast(src[i * 4 + 1]) - cG; int32 difB = static_cast(src[i * 4 + 2]) - cB; int32 dif = difR * 38 + difG * 76 + difB * 14; error += dif * dif; } /**/ uint32 rgbv = cvB | (cvG << 6) | (cvR << 13); uint32 rgbh = chB | (chG << 6) | (chR << 13); uint32 hi = rgbv | ((rgbh & 0x1FFF) << 19); uint32 lo = (chR & 0x1) | 0x2 | ((chR << 1) & 0x7C); lo |= ((coB & 0x07) << 7) | ((coB & 0x18) << 8) | ((coB & 0x20) << 11); lo |= ((coG & 0x3F) << 17) | ((coG & 0x40) << 18); lo |= coR << 25; const auto idx = (coR & 0x20) | ((coG & 0x20) >> 1) | ((coB & 0x1E) >> 1); lo |= g_flags[idx]; uint64 result = static_cast(byteswap(lo)); result |= static_cast(static_cast(byteswap(hi))) << 32; return std::make_pair(result, error); } template uint64 EncodeSelectors( uint64 d, const T terr[2][8], const S tsel[16][8], const uint32* id, const uint64 value, const uint64 error) { size_t tidx[2]; tidx[0] = GetLeastError( terr[0], 8 ); tidx[1] = GetLeastError( terr[1], 8 ); if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error) { return value; } d |= tidx[0] << 26; d |= tidx[1] << 29; for( int i=0; i<16; i++ ) { uint64 t = tsel[i][tidx[id[i]%2]]; d |= ( t & 0x1 ) << ( i + 32 ); d |= ( t & 0x2 ) << ( i + 47 ); } return FixByteOrder(d); } } uint64 ProcessRGB( const uint8* src ) { uint64 d = CheckSolid( src ); if( d != 0 ) return d; v4i a[8]; uint err[4] = {}; PrepareAverages( a, src, err ); size_t idx = GetLeastError( err, 4 ); EncodeAverages( d, a, idx ); uint64 terr[2][8] = {}; uint16 tsel[16][8]; auto id = g_id[idx]; FindBestFit( terr, tsel, a, id, src ); return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) ); } uint64 ProcessRGB_ETC2( const uint8* src ) { auto result = Planar( src ); uint64 d = 0; v4i a[8]; uint err[4] = {}; PrepareAverages( a, src, err ); size_t idx = GetLeastError( err, 4 ); EncodeAverages( d, a, idx ); uint64 terr[2][8] = {}; uint16 tsel[16][8]; auto id = g_id[idx]; FindBestFit( terr, tsel, a, id, src ); return EncodeSelectors( d, terr, tsel, id, result.first, result.second ); }