raze/polymer/eduke32/source/lunatic/geom.lua

148 lines
4.1 KiB
Lua
Raw Normal View History

-- Geometry module for Lunatic.
local ffi = require("ffi")
local math = require("math")
local type = type
local error = error
module(...)
-- This has no metamethods, but can be useful for calculations expecting
-- integer values, e.g. geom.ivec3(x, y, z) is a reasonable way to round
-- a vec3. It can be also used as the RHS to the vec2/vec3 arithmetic
-- methods.
-- NOTE: We must have a typedef with that exact name, because for
-- Lunatic (i.e. not stand-alone), it is a duplicate (and ignored)
-- declaration for an already metatype'd type.
ffi.cdef "typedef struct { int32_t x, y, z; } vec3_t;"
ivec3 = ffi.typeof("vec3_t")
local dvec2_t = ffi.typeof("struct { double x, y; }")
local dvec3_t = ffi.typeof("struct { double x, y, z; }")
local vec2_mt = {
__add = function(a, b) return dvec2_t(a.x+b.x, a.y+b.y) end,
__sub = function(a, b) return dvec2_t(a.x-b.x, a.y-b.y) end,
__unm = function(a) return dvec2_t(-a.x, -a.y) end,
__mul = function(a,b)
if (type(a)=="number") then
return dvec2_t(a*b.x, a*b.y)
end
if (type(b)~="number") then
error("number expected in vec2 multiplication", 2)
end
return dvec2_t(a.x*b, a.y*b)
end,
__div = function(a,b)
if (type(b)~="number") then
error("number expected in vec2 division", 2)
end
return dvec2_t(a.x/b, a.y/b)
end,
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
__tostring = function(a) return "vec2("..a.x..", "..a.y..")" end,
__index = {
lensq = function(a) return a.x*a.x + a.y*a.y end,
-- Manhattan distance:
len1 = function(a) return math.abs(a.x)+math.abs(a.y) end,
},
}
local vec3_mt = {
__add = function(a, b) return dvec3_t(a.x+b.x, a.y+b.y, a.z+b.z) end,
__sub = function(a, b) return dvec3_t(a.x-b.x, a.y-b.y, a.z-b.z) end,
__unm = function(a) return dvec3_t(-a.x, -a.y, -a.z) end,
__mul = function(a,b)
if (type(a)=="number") then
return dvec3_t(a*b.x, a*b.y, a*b.z)
end
if (type(b)~="number") then
error("number expected in vec3 multiplication", 2)
end
return dvec3_t(a.x*b, a.y*b, a.z*b)
end,
__div = function(a,b)
if (type(b)~="number") then
error("number expected in vec3 division", 2)
end
return dvec3_t(a.x/b, a.y/b, a.z/b)
end,
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
__tostring = function(a) return "vec3("..a.x..", "..a.y..", "..a.z..")" end,
__index = {
lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end,
-- Manhattan distance:
len1 = function(a) return math.abs(a.x)+math.abs(a.y)+math.abs(a.z) end,
toivec3 = function(v)
return ivec3(v.x, v.y, v.z)
end,
},
}
-- VEC2 user data constructor.
-- * vec2(<table>), <table> should be indexable with "x" and "y"
-- * vec2(x, y), assuming that x and y are numbers
vec2 = ffi.metatype(dvec2_t, vec2_mt)
-- Returns a vec2 from anything indexable with "x" and "y"
-- (vec2(t) works if t is such a table, but not if it's a vec2 or a cdata of
-- different type)
function tovec2(t) return vec2(t.x, t.y) end
-- Same for vec3
vec3 = ffi.metatype(dvec3_t, vec3_mt)
function tovec3(t) return vec3(t.x, t.y, t.z) end
-- Two-element vector cross product.
-- Anti-commutative, distributive.
function cross2(v, w)
return v.y*w.x - v.x*w.y
end
-- Finds the intersection point of two lines given by
-- point a and vector v
-- and
-- point b and vector w
--
-- Returns:
-- if <TODO>, nil
-- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that <TODO>
-- else, the intersection point
function intersect(a,v, b,w, retpoint_p)
local vxw = cross2(v,w)
if (vxw ~= 0) then
local btoa = tovec2(a)-tovec2(b)
local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw
if (retpoint_p) then
return tovec2(a)+cv*tovec2(v)
else
return cv, cw
end
end
-- return nil if v and w parallel (or either of them is a point), or if
-- they contain NaNs
end