quakequest/Projects/Android/jni/QuakeQuestSrc/QuakeQuest_SurfaceView.c
2021-03-15 23:05:23 +00:00

2805 lines
89 KiB
C

/************************************************************************************
Filename : QuakeQuest_SurfaceView.c based on VrCubeWorld_SurfaceView.c
Content : This sample uses a plain Android SurfaceView and handles all
Activity and Surface life cycle events in native code. This sample
does not use the application framework and also does not use LibOVR.
This sample only uses the VrApi.
Created : March, 2015
Authors : J.M.P. van Waveren / Simon Brown
Copyright : Copyright 2015 Oculus VR, LLC. All Rights reserved.
*************************************************************************************/
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/prctl.h> // for prctl( PR_SET_NAME )
#include <android/log.h>
#include <android/native_window_jni.h> // for native window JNI
#include <android/input.h>
#include "argtable3.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES3/gl3.h>
#include <GLES3/gl3ext.h>
#include "../darkplaces/qtypes.h"
#include "../darkplaces/quakedef.h"
#include "../darkplaces/menu.h"
#include "VrApi.h"
#include "VrApi_Helpers.h"
#include "VrApi_SystemUtils.h"
#include "VrApi_Input.h"
#include "VrApi_Types.h"
#include "VrCompositor.h"
#include "VrCommon.h"
#if !defined( EGL_OPENGL_ES3_BIT_KHR )
#define EGL_OPENGL_ES3_BIT_KHR 0x0040
#endif
// EXT_texture_border_clamp
#ifndef GL_CLAMP_TO_BORDER
#define GL_CLAMP_TO_BORDER 0x812D
#endif
#ifndef GL_TEXTURE_BORDER_COLOR
#define GL_TEXTURE_BORDER_COLOR 0x1004
#endif
#if !defined( GL_EXT_multisampled_render_to_texture )
typedef void (GL_APIENTRY* PFNGLRENDERBUFFERSTORAGEMULTISAMPLEEXTPROC) (GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height);
typedef void (GL_APIENTRY* PFNGLFRAMEBUFFERTEXTURE2DMULTISAMPLEEXTPROC) (GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level, GLsizei samples);
#endif
#if !defined( GL_OVR_multiview )
static const int GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_NUM_VIEWS_OVR = 0x9630;
static const int GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_BASE_VIEW_INDEX_OVR = 0x9632;
static const int GL_MAX_VIEWS_OVR = 0x9631;
typedef void (GL_APIENTRY* PFNGLFRAMEBUFFERTEXTUREMULTIVIEWOVRPROC) (GLenum target, GLenum attachment, GLuint texture, GLint level, GLint baseViewIndex, GLsizei numViews);
#endif
#if !defined( GL_OVR_multiview_multisampled_render_to_texture )
typedef void (GL_APIENTRY* PFNGLFRAMEBUFFERTEXTUREMULTISAMPLEMULTIVIEWOVRPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLsizei samples, GLint baseViewIndex, GLsizei numViews);
#endif
// Must use EGLSyncKHR because the VrApi still supports OpenGL ES 2.0
#define EGL_SYNC
#if defined EGL_SYNC
// EGL_KHR_reusable_sync
PFNEGLCREATESYNCKHRPROC eglCreateSyncKHR;
PFNEGLDESTROYSYNCKHRPROC eglDestroySyncKHR;
PFNEGLCLIENTWAITSYNCKHRPROC eglClientWaitSyncKHR;
PFNEGLSIGNALSYNCKHRPROC eglSignalSyncKHR;
PFNEGLGETSYNCATTRIBKHRPROC eglGetSyncAttribKHR;
#endif
//Let's go to the maximum!
int CPU_LEVEL = 4;
int GPU_LEVEL = 4;
int NUM_MULTI_SAMPLES = 1;
float SS_MULTIPLIER = 1.2f;
float maximumSupportedFramerate=60.0; //The lowest default framerate
extern float worldPosition[3];
float hmdPosition[3];
float playerHeight;
float positionDeltaThisFrame[3];
extern cvar_t vr_worldscale;
extern cvar_t r_lasersight;
extern cvar_t cl_movementspeed;
extern cvar_t cl_walkdirection;
extern cvar_t cl_controllerdeadzone;
extern cvar_t cl_righthanded;
extern cvar_t vr_weaponpitchadjust;
extern cvar_t slowmo;
extern cvar_t bullettime;
extern cvar_t cl_trackingmode;
ovrDeviceID controllerIDs[2];
jclass clazz;
float radians(float deg) {
return (deg * M_PI) / 180.0;
}
float degrees(float rad) {
return (rad * 180.0) / M_PI;
}
/* global arg_xxx structs */
struct arg_dbl *ss;
struct arg_int *cpu;
struct arg_int *gpu;
struct arg_dbl *msaa;
struct arg_end *end;
char **argv;
int argc=0;
/*
================================================================================
System Clock Time in millis
================================================================================
*/
double GetTimeInMilliSeconds()
{
struct timespec now;
clock_gettime( CLOCK_MONOTONIC, &now );
return ( now.tv_sec * 1e9 + now.tv_nsec ) * (double)(1e-6);
}
/*
================================================================================
QuakeQuest Stuff
================================================================================
*/
//All the functionality we link to in the DarkPlaces Quake implementation
extern void QC_BeginFrame();
extern void QC_DrawFrame(int eye, int x, int y);
extern void QC_EndFrame();
extern void QC_GetAudio();
extern void QC_KeyEvent(int state,int key,int character);
extern void QC_MoveEvent(float yaw, float pitch, float roll);
extern void QC_SetCallbacks(void *init_audio, void *write_audio);
extern void QC_SetResolution(int width, int height);
extern void QC_Analog(int enable,float x,float y);
extern void QC_MotionEvent(float delta, float dx, float dy);
extern int main (int argc, char **argv);
extern int key_consoleactive;
static bool quake_initialised = false;
static JavaVM *jVM;
static jobject audioBuffer=0;
static jobject audioCallbackObj=0;
static jobject qquestCallbackObj=0;
jmethodID android_initAudio;
jmethodID android_writeAudio;
jmethodID android_pauseAudio;
jmethodID android_resumeAudio;
jmethodID android_terminateAudio;
void jni_initAudio(void *buffer, int size)
{
ALOGV("Calling: jni_initAudio");
JNIEnv *env;
jobject tmp;
(*jVM)->GetEnv(jVM, (void**) &env, JNI_VERSION_1_4);
tmp = (*env)->NewDirectByteBuffer(env, buffer, size);
audioBuffer = (jobject)(*env)->NewGlobalRef(env, tmp);
return (*env)->CallVoidMethod(env, audioCallbackObj, android_initAudio, size);
}
void jni_writeAudio(int offset, int length)
{
ALOGV("Calling: jni_writeAudio");
if (audioBuffer==0) return;
JNIEnv *env;
if (((*jVM)->GetEnv(jVM, (void**) &env, JNI_VERSION_1_4))<0)
{
(*jVM)->AttachCurrentThread(jVM,&env, NULL);
}
(*env)->CallVoidMethod(env, audioCallbackObj, android_writeAudio, audioBuffer, offset, length);
}
void jni_pauseAudio()
{
ALOGV("Calling: jni_pauseAudio");
if (audioBuffer==0) return;
JNIEnv *env;
if (((*jVM)->GetEnv(jVM, (void**) &env, JNI_VERSION_1_4))<0)
{
(*jVM)->AttachCurrentThread(jVM,&env, NULL);
}
(*env)->CallVoidMethod(env, audioCallbackObj, android_pauseAudio);
}
void jni_resumeAudio()
{
ALOGV("Calling: jni_resumeAudio");
if (audioBuffer==0) return;
JNIEnv *env;
if (((*jVM)->GetEnv(jVM, (void**) &env, JNI_VERSION_1_4))<0)
{
(*jVM)->AttachCurrentThread(jVM,&env, NULL);
}
(*env)->CallVoidMethod(env, audioCallbackObj, android_resumeAudio);
}
void jni_terminateAudio()
{
ALOGV("Calling: jni_terminateAudio");
if (audioBuffer==0) return;
JNIEnv *env;
if (((*jVM)->GetEnv(jVM, (void**) &env, JNI_VERSION_1_4))<0)
{
(*jVM)->AttachCurrentThread(jVM,&env, NULL);
}
(*env)->CallVoidMethod(env, audioCallbackObj, android_terminateAudio);
}
//Timing stuff for joypad control
static long oldtime=0;
long delta=0;
int curtime;
int Sys_Milliseconds (void)
{
struct timeval tp;
struct timezone tzp;
static int secbase;
gettimeofday(&tp, &tzp);
if (!secbase)
{
secbase = tp.tv_sec;
return tp.tv_usec/1000;
}
curtime = (tp.tv_sec - secbase)*1000 + tp.tv_usec/1000;
return curtime;
}
int runStatus = -1;
void QC_exit(int exitCode)
{
runStatus = exitCode;
}
vec3_t hmdorientation;
extern float gunangles[3];
float weaponOffset[3];
float weaponVelocity[3];
float vrFOV;
int hmdType;
int bigScreen = 1;
extern client_static_t cls;
qboolean useScreenLayer()
{
//TODO
return (bigScreen != 0 || cls.demoplayback || key_consoleactive);
}
void BigScreenMode(int mode)
{
if (bigScreen != 2)
{
bigScreen = mode;
}
}
extern int stereoMode;
static void UnEscapeQuotes( char *arg )
{
char *last = NULL;
while( *arg ) {
if( *arg == '"' && *last == '\\' ) {
char *c_curr = arg;
char *c_last = last;
while( *c_curr ) {
*c_last = *c_curr;
c_last = c_curr;
c_curr++;
}
*c_last = '\0';
}
last = arg;
arg++;
}
}
static int ParseCommandLine(char *cmdline, char **argv)
{
char *bufp;
char *lastp = NULL;
int argc, last_argc;
argc = last_argc = 0;
for ( bufp = cmdline; *bufp; ) {
while ( isspace(*bufp) ) {
++bufp;
}
if ( *bufp == '"' ) {
++bufp;
if ( *bufp ) {
if ( argv ) {
argv[argc] = bufp;
}
++argc;
}
while ( *bufp && ( *bufp != '"' || *lastp == '\\' ) ) {
lastp = bufp;
++bufp;
}
} else {
if ( *bufp ) {
if ( argv ) {
argv[argc] = bufp;
}
++argc;
}
while ( *bufp && ! isspace(*bufp) ) {
++bufp;
}
}
if ( *bufp ) {
if ( argv ) {
*bufp = '\0';
}
++bufp;
}
if( argv && last_argc != argc ) {
UnEscapeQuotes( argv[last_argc] );
}
last_argc = argc;
}
if ( argv ) {
argv[argc] = NULL;
}
return(argc);
}
/*
================================================================================
OpenGL-ES Utility Functions
================================================================================
*/
typedef struct
{
bool multi_view; // GL_OVR_multiview, GL_OVR_multiview2
bool EXT_texture_border_clamp; // GL_EXT_texture_border_clamp, GL_OES_texture_border_clamp
} OpenGLExtensions_t;
OpenGLExtensions_t glExtensions;
static void EglInitExtensions()
{
#if defined EGL_SYNC
eglCreateSyncKHR = (PFNEGLCREATESYNCKHRPROC) eglGetProcAddress( "eglCreateSyncKHR" );
eglDestroySyncKHR = (PFNEGLDESTROYSYNCKHRPROC) eglGetProcAddress( "eglDestroySyncKHR" );
eglClientWaitSyncKHR = (PFNEGLCLIENTWAITSYNCKHRPROC) eglGetProcAddress( "eglClientWaitSyncKHR" );
eglSignalSyncKHR = (PFNEGLSIGNALSYNCKHRPROC) eglGetProcAddress( "eglSignalSyncKHR" );
eglGetSyncAttribKHR = (PFNEGLGETSYNCATTRIBKHRPROC) eglGetProcAddress( "eglGetSyncAttribKHR" );
#endif
const char * allExtensions = (const char *)glGetString( GL_EXTENSIONS );
if ( allExtensions != NULL )
{
glExtensions.multi_view = strstr( allExtensions, "GL_OVR_multiview2" ) &&
strstr( allExtensions, "GL_OVR_multiview_multisampled_render_to_texture" );
glExtensions.EXT_texture_border_clamp = false;//strstr( allExtensions, "GL_EXT_texture_border_clamp" ) ||
//strstr( allExtensions, "GL_OES_texture_border_clamp" );
}
}
static const char * EglErrorString( const EGLint error )
{
switch ( error )
{
case EGL_SUCCESS: return "EGL_SUCCESS";
case EGL_NOT_INITIALIZED: return "EGL_NOT_INITIALIZED";
case EGL_BAD_ACCESS: return "EGL_BAD_ACCESS";
case EGL_BAD_ALLOC: return "EGL_BAD_ALLOC";
case EGL_BAD_ATTRIBUTE: return "EGL_BAD_ATTRIBUTE";
case EGL_BAD_CONTEXT: return "EGL_BAD_CONTEXT";
case EGL_BAD_CONFIG: return "EGL_BAD_CONFIG";
case EGL_BAD_CURRENT_SURFACE: return "EGL_BAD_CURRENT_SURFACE";
case EGL_BAD_DISPLAY: return "EGL_BAD_DISPLAY";
case EGL_BAD_SURFACE: return "EGL_BAD_SURFACE";
case EGL_BAD_MATCH: return "EGL_BAD_MATCH";
case EGL_BAD_PARAMETER: return "EGL_BAD_PARAMETER";
case EGL_BAD_NATIVE_PIXMAP: return "EGL_BAD_NATIVE_PIXMAP";
case EGL_BAD_NATIVE_WINDOW: return "EGL_BAD_NATIVE_WINDOW";
case EGL_CONTEXT_LOST: return "EGL_CONTEXT_LOST";
default: return "unknown";
}
}
static const char * GlFrameBufferStatusString( GLenum status )
{
switch ( status )
{
case GL_FRAMEBUFFER_UNDEFINED: return "GL_FRAMEBUFFER_UNDEFINED";
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";
case GL_FRAMEBUFFER_UNSUPPORTED: return "GL_FRAMEBUFFER_UNSUPPORTED";
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE: return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE";
default: return "unknown";
}
}
/*
================================================================================
ovrEgl
================================================================================
*/
typedef struct
{
EGLint MajorVersion;
EGLint MinorVersion;
EGLDisplay Display;
EGLConfig Config;
EGLSurface TinySurface;
EGLSurface MainSurface;
EGLContext Context;
} ovrEgl;
static void ovrEgl_Clear( ovrEgl * egl )
{
egl->MajorVersion = 0;
egl->MinorVersion = 0;
egl->Display = 0;
egl->Config = 0;
egl->TinySurface = EGL_NO_SURFACE;
egl->MainSurface = EGL_NO_SURFACE;
egl->Context = EGL_NO_CONTEXT;
}
static void ovrEgl_CreateContext( ovrEgl * egl, const ovrEgl * shareEgl )
{
if ( egl->Display != 0 )
{
return;
}
egl->Display = eglGetDisplay( EGL_DEFAULT_DISPLAY );
ALOGV( " eglInitialize( Display, &MajorVersion, &MinorVersion )" );
eglInitialize( egl->Display, &egl->MajorVersion, &egl->MinorVersion );
// Do NOT use eglChooseConfig, because the Android EGL code pushes in multisample
// flags in eglChooseConfig if the user has selected the "force 4x MSAA" option in
// settings, and that is completely wasted for our warp target.
const int MAX_CONFIGS = 1024;
EGLConfig configs[MAX_CONFIGS];
EGLint numConfigs = 0;
if ( eglGetConfigs( egl->Display, configs, MAX_CONFIGS, &numConfigs ) == EGL_FALSE )
{
ALOGE( " eglGetConfigs() failed: %s", EglErrorString( eglGetError() ) );
return;
}
const EGLint configAttribs[] =
{
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 8, // need alpha for the multi-pass timewarp compositor
EGL_DEPTH_SIZE, 0,
EGL_STENCIL_SIZE, 0,
EGL_SAMPLES, 0,
EGL_NONE
};
egl->Config = 0;
for ( int i = 0; i < numConfigs; i++ )
{
EGLint value = 0;
eglGetConfigAttrib( egl->Display, configs[i], EGL_RENDERABLE_TYPE, &value );
if ( ( value & EGL_OPENGL_ES3_BIT_KHR ) != EGL_OPENGL_ES3_BIT_KHR )
{
continue;
}
// The pbuffer config also needs to be compatible with normal window rendering
// so it can share textures with the window context.
eglGetConfigAttrib( egl->Display, configs[i], EGL_SURFACE_TYPE, &value );
if ( ( value & ( EGL_WINDOW_BIT | EGL_PBUFFER_BIT ) ) != ( EGL_WINDOW_BIT | EGL_PBUFFER_BIT ) )
{
continue;
}
int j = 0;
for ( ; configAttribs[j] != EGL_NONE; j += 2 )
{
eglGetConfigAttrib( egl->Display, configs[i], configAttribs[j], &value );
if ( value != configAttribs[j + 1] )
{
break;
}
}
if ( configAttribs[j] == EGL_NONE )
{
egl->Config = configs[i];
break;
}
}
if ( egl->Config == 0 )
{
ALOGE( " eglChooseConfig() failed: %s", EglErrorString( eglGetError() ) );
return;
}
EGLint contextAttribs[] =
{
EGL_CONTEXT_CLIENT_VERSION, 3,
EGL_NONE
};
ALOGV( " Context = eglCreateContext( Display, Config, EGL_NO_CONTEXT, contextAttribs )" );
egl->Context = eglCreateContext( egl->Display, egl->Config, ( shareEgl != NULL ) ? shareEgl->Context : EGL_NO_CONTEXT, contextAttribs );
if ( egl->Context == EGL_NO_CONTEXT )
{
ALOGE( " eglCreateContext() failed: %s", EglErrorString( eglGetError() ) );
return;
}
const EGLint surfaceAttribs[] =
{
EGL_WIDTH, 16,
EGL_HEIGHT, 16,
EGL_NONE
};
ALOGV( " TinySurface = eglCreatePbufferSurface( Display, Config, surfaceAttribs )" );
egl->TinySurface = eglCreatePbufferSurface( egl->Display, egl->Config, surfaceAttribs );
if ( egl->TinySurface == EGL_NO_SURFACE )
{
ALOGE( " eglCreatePbufferSurface() failed: %s", EglErrorString( eglGetError() ) );
eglDestroyContext( egl->Display, egl->Context );
egl->Context = EGL_NO_CONTEXT;
return;
}
ALOGV( " eglMakeCurrent( Display, TinySurface, TinySurface, Context )" );
if ( eglMakeCurrent( egl->Display, egl->TinySurface, egl->TinySurface, egl->Context ) == EGL_FALSE )
{
ALOGE( " eglMakeCurrent() failed: %s", EglErrorString( eglGetError() ) );
eglDestroySurface( egl->Display, egl->TinySurface );
eglDestroyContext( egl->Display, egl->Context );
egl->Context = EGL_NO_CONTEXT;
return;
}
}
static void ovrEgl_DestroyContext( ovrEgl * egl )
{
if ( egl->Display != 0 )
{
ALOGE( " eglMakeCurrent( Display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT )" );
if ( eglMakeCurrent( egl->Display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT ) == EGL_FALSE )
{
ALOGE( " eglMakeCurrent() failed: %s", EglErrorString( eglGetError() ) );
}
}
if ( egl->Context != EGL_NO_CONTEXT )
{
ALOGE( " eglDestroyContext( Display, Context )" );
if ( eglDestroyContext( egl->Display, egl->Context ) == EGL_FALSE )
{
ALOGE( " eglDestroyContext() failed: %s", EglErrorString( eglGetError() ) );
}
egl->Context = EGL_NO_CONTEXT;
}
if ( egl->TinySurface != EGL_NO_SURFACE )
{
ALOGE( " eglDestroySurface( Display, TinySurface )" );
if ( eglDestroySurface( egl->Display, egl->TinySurface ) == EGL_FALSE )
{
ALOGE( " eglDestroySurface() failed: %s", EglErrorString( eglGetError() ) );
}
egl->TinySurface = EGL_NO_SURFACE;
}
if ( egl->Display != 0 )
{
ALOGE( " eglTerminate( Display )" );
if ( eglTerminate( egl->Display ) == EGL_FALSE )
{
ALOGE( " eglTerminate() failed: %s", EglErrorString( eglGetError() ) );
}
egl->Display = 0;
}
}
/*
================================================================================
ovrFramebuffer
================================================================================
*/
static void ovrFramebuffer_Clear( ovrFramebuffer * frameBuffer )
{
frameBuffer->Width = 0;
frameBuffer->Height = 0;
frameBuffer->Multisamples = 0;
frameBuffer->TextureSwapChainLength = 0;
frameBuffer->TextureSwapChainIndex = 0;
frameBuffer->ColorTextureSwapChain = NULL;
frameBuffer->DepthBuffers = NULL;
frameBuffer->FrameBuffers = NULL;
}
static bool ovrFramebuffer_Create( ovrFramebuffer * frameBuffer, const GLenum colorFormat, const int width, const int height, const int multisamples )
{
PFNGLRENDERBUFFERSTORAGEMULTISAMPLEEXTPROC glRenderbufferStorageMultisampleEXT =
(PFNGLRENDERBUFFERSTORAGEMULTISAMPLEEXTPROC)eglGetProcAddress( "glRenderbufferStorageMultisampleEXT" );
PFNGLFRAMEBUFFERTEXTURE2DMULTISAMPLEEXTPROC glFramebufferTexture2DMultisampleEXT =
(PFNGLFRAMEBUFFERTEXTURE2DMULTISAMPLEEXTPROC)eglGetProcAddress( "glFramebufferTexture2DMultisampleEXT" );
PFNGLFRAMEBUFFERTEXTUREMULTIVIEWOVRPROC glFramebufferTextureMultiviewOVR =
(PFNGLFRAMEBUFFERTEXTUREMULTIVIEWOVRPROC) eglGetProcAddress( "glFramebufferTextureMultiviewOVR" );
PFNGLFRAMEBUFFERTEXTUREMULTISAMPLEMULTIVIEWOVRPROC glFramebufferTextureMultisampleMultiviewOVR =
(PFNGLFRAMEBUFFERTEXTUREMULTISAMPLEMULTIVIEWOVRPROC) eglGetProcAddress( "glFramebufferTextureMultisampleMultiviewOVR" );
frameBuffer->Width = width;
frameBuffer->Height = height;
frameBuffer->Multisamples = multisamples;
frameBuffer->ColorTextureSwapChain = vrapi_CreateTextureSwapChain3( VRAPI_TEXTURE_TYPE_2D, colorFormat, frameBuffer->Width, frameBuffer->Height, 1, 3 );
frameBuffer->TextureSwapChainLength = vrapi_GetTextureSwapChainLength( frameBuffer->ColorTextureSwapChain );
frameBuffer->DepthBuffers = (GLuint *)malloc( frameBuffer->TextureSwapChainLength * sizeof( GLuint ) );
frameBuffer->FrameBuffers = (GLuint *)malloc( frameBuffer->TextureSwapChainLength * sizeof( GLuint ) );
for ( int i = 0; i < frameBuffer->TextureSwapChainLength; i++ )
{
// Create the color buffer texture.
const GLuint colorTexture = vrapi_GetTextureSwapChainHandle( frameBuffer->ColorTextureSwapChain, i );
GLenum colorTextureTarget = GL_TEXTURE_2D;
GL( glBindTexture( colorTextureTarget, colorTexture ) );
if ( glExtensions.EXT_texture_border_clamp )
{
GL( glTexParameteri( colorTextureTarget, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER ) );
GL( glTexParameteri( colorTextureTarget, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER ) );
GLfloat borderColor[] = { 0.0f, 0.0f, 0.0f, 0.0f };
GL( glTexParameterfv( colorTextureTarget, GL_TEXTURE_BORDER_COLOR, borderColor ) );
}
else
{
// Just clamp to edge. However, this requires manually clearing the border
// around the layer to clear the edge texels.
GL( glTexParameteri( colorTextureTarget, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ) );
GL( glTexParameteri( colorTextureTarget, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ) );
}
GL( glTexParameteri( colorTextureTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ) );
GL( glTexParameteri( colorTextureTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ) );
GL( glBindTexture( colorTextureTarget, 0 ) );
{
if ( multisamples > 1 && glRenderbufferStorageMultisampleEXT != NULL && glFramebufferTexture2DMultisampleEXT != NULL )
{
// Create multisampled depth buffer.
GL( glGenRenderbuffers( 1, &frameBuffer->DepthBuffers[i] ) );
GL( glBindRenderbuffer( GL_RENDERBUFFER, frameBuffer->DepthBuffers[i] ) );
GL( glRenderbufferStorageMultisampleEXT( GL_RENDERBUFFER, multisamples, GL_DEPTH_COMPONENT24, frameBuffer->Width, frameBuffer->Height ) );
GL( glBindRenderbuffer( GL_RENDERBUFFER, 0 ) );
// Create the frame buffer.
// NOTE: glFramebufferTexture2DMultisampleEXT only works with GL_FRAMEBUFFER.
GL( glGenFramebuffers( 1, &frameBuffer->FrameBuffers[i] ) );
GL( glBindFramebuffer( GL_FRAMEBUFFER, frameBuffer->FrameBuffers[i] ) );
GL( glFramebufferTexture2DMultisampleEXT( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, colorTexture, 0, multisamples ) );
GL( glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, frameBuffer->DepthBuffers[i] ) );
GL( GLenum renderFramebufferStatus = glCheckFramebufferStatus( GL_FRAMEBUFFER ) );
GL( glBindFramebuffer( GL_FRAMEBUFFER, 0 ) );
if ( renderFramebufferStatus != GL_FRAMEBUFFER_COMPLETE )
{
ALOGE( "Incomplete frame buffer object: %s", GlFrameBufferStatusString( renderFramebufferStatus ) );
return false;
}
}
else
{
// Create depth buffer.
GL( glGenRenderbuffers( 1, &frameBuffer->DepthBuffers[i] ) );
GL( glBindRenderbuffer( GL_RENDERBUFFER, frameBuffer->DepthBuffers[i] ) );
GL( glRenderbufferStorage( GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, frameBuffer->Width, frameBuffer->Height ) );
GL( glBindRenderbuffer( GL_RENDERBUFFER, 0 ) );
// Create the frame buffer.
GL( glGenFramebuffers( 1, &frameBuffer->FrameBuffers[i] ) );
GL( glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBuffer->FrameBuffers[i] ) );
GL( glFramebufferRenderbuffer( GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, frameBuffer->DepthBuffers[i] ) );
GL( glFramebufferTexture2D( GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, colorTexture, 0 ) );
GL( GLenum renderFramebufferStatus = glCheckFramebufferStatus( GL_DRAW_FRAMEBUFFER ) );
GL( glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 ) );
if ( renderFramebufferStatus != GL_FRAMEBUFFER_COMPLETE )
{
ALOGE( "Incomplete frame buffer object: %s", GlFrameBufferStatusString( renderFramebufferStatus ) );
return false;
}
}
}
}
return true;
}
void ovrFramebuffer_Destroy( ovrFramebuffer * frameBuffer )
{
GL( glDeleteFramebuffers( frameBuffer->TextureSwapChainLength, frameBuffer->FrameBuffers ) );
GL( glDeleteRenderbuffers( frameBuffer->TextureSwapChainLength, frameBuffer->DepthBuffers ) );
vrapi_DestroyTextureSwapChain( frameBuffer->ColorTextureSwapChain );
free( frameBuffer->DepthBuffers );
free( frameBuffer->FrameBuffers );
ovrFramebuffer_Clear( frameBuffer );
}
void ovrFramebuffer_SetCurrent( ovrFramebuffer * frameBuffer )
{
GL( glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBuffer->FrameBuffers[frameBuffer->TextureSwapChainIndex] ) );
}
void ovrFramebuffer_SetNone()
{
GL( glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 ) );
}
void ovrFramebuffer_Resolve( ovrFramebuffer * frameBuffer )
{
// Discard the depth buffer, so the tiler won't need to write it back out to memory.
const GLenum depthAttachment[1] = { GL_DEPTH_ATTACHMENT };
glInvalidateFramebuffer( GL_DRAW_FRAMEBUFFER, 1, depthAttachment );
// Flush this frame worth of commands.
glFlush();
}
void ovrFramebuffer_Advance( ovrFramebuffer * frameBuffer )
{
// Advance to the next texture from the set.
frameBuffer->TextureSwapChainIndex = ( frameBuffer->TextureSwapChainIndex + 1 ) % frameBuffer->TextureSwapChainLength;
}
void ovrFramebuffer_ClearEdgeTexels( ovrFramebuffer * frameBuffer )
{
GL( glEnable( GL_SCISSOR_TEST ) );
GL( glViewport( 0, 0, frameBuffer->Width, frameBuffer->Height ) );
// Explicitly clear the border texels to black because OpenGL-ES does not support GL_CLAMP_TO_BORDER.
// Clear to fully opaque black.
GL( glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ) );
// bottom
GL( glScissor( 0, 0, frameBuffer->Width, 1 ) );
GL( glClear( GL_COLOR_BUFFER_BIT ) );
// top
GL( glScissor( 0, frameBuffer->Height - 1, frameBuffer->Width, 1 ) );
GL( glClear( GL_COLOR_BUFFER_BIT ) );
// left
GL( glScissor( 0, 0, 1, frameBuffer->Height ) );
GL( glClear( GL_COLOR_BUFFER_BIT ) );
// right
GL( glScissor( frameBuffer->Width - 1, 0, 1, frameBuffer->Height ) );
GL( glClear( GL_COLOR_BUFFER_BIT ) );
GL( glScissor( 0, 0, 0, 0 ) );
GL( glDisable( GL_SCISSOR_TEST ) );
}
/*
================================================================================
ovrRenderer
================================================================================
*/
void ovrRenderer_Clear( ovrRenderer * renderer )
{
for ( int eye = 0; eye < VRAPI_FRAME_LAYER_EYE_MAX; eye++ )
{
ovrFramebuffer_Clear( &renderer->FrameBuffer[eye] );
}
renderer->NumBuffers = VRAPI_FRAME_LAYER_EYE_MAX;
}
void ovrRenderer_Create( int width, int height, ovrRenderer * renderer, const ovrJava * java )
{
renderer->NumBuffers = VRAPI_FRAME_LAYER_EYE_MAX;
// Create the render Textures.
for ( int eye = 0; eye < VRAPI_FRAME_LAYER_EYE_MAX; eye++ )
{
ovrFramebuffer_Create( &renderer->FrameBuffer[eye],
GL_RGBA8,
width,
height,
NUM_MULTI_SAMPLES );
}
}
void ovrRenderer_Destroy( ovrRenderer * renderer )
{
for ( int eye = 0; eye < renderer->NumBuffers; eye++ )
{
ovrFramebuffer_Destroy( &renderer->FrameBuffer[eye] );
}
}
#ifndef EPSILON
#define EPSILON 0.001f
#endif
static ovrVector3f normalizeVec(ovrVector3f vec) {
//NOTE: leave w-component untouched
//@@const float EPSILON = 0.000001f;
float xxyyzz = vec.x*vec.x + vec.y*vec.y + vec.z*vec.z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is zero vector
//float invLength = invSqrt(xxyyzz);
ovrVector3f result;
float invLength = 1.0f / sqrtf(xxyyzz);
result.x = vec.x * invLength;
result.y = vec.y * invLength;
result.z = vec.z * invLength;
return result;
}
void NormalizeAngles(vec3_t angles)
{
while (angles[0] >= 90) angles[0] -= 180;
while (angles[1] >= 180) angles[1] -= 360;
while (angles[2] >= 180) angles[2] -= 360;
while (angles[0] < -90) angles[0] += 180;
while (angles[1] < -180) angles[1] += 360;
while (angles[2] < -180) angles[2] += 360;
}
void GetAnglesFromVectors(const ovrVector3f forward, const ovrVector3f right, const ovrVector3f up, vec3_t angles)
{
float sr, sp, sy, cr, cp, cy;
sp = -forward.z;
float cp_x_cy = forward.x;
float cp_x_sy = forward.y;
float cp_x_sr = -right.z;
float cp_x_cr = up.z;
float yaw = atan2(cp_x_sy, cp_x_cy);
float roll = atan2(cp_x_sr, cp_x_cr);
cy = cos(yaw);
sy = sin(yaw);
cr = cos(roll);
sr = sin(roll);
if (fabs(cy) > EPSILON)
{
cp = cp_x_cy / cy;
}
else if (fabs(sy) > EPSILON)
{
cp = cp_x_sy / sy;
}
else if (fabs(sr) > EPSILON)
{
cp = cp_x_sr / sr;
}
else if (fabs(cr) > EPSILON)
{
cp = cp_x_cr / cr;
}
else
{
cp = cos(asin(sp));
}
float pitch = atan2(sp, cp);
angles[0] = pitch / (M_PI*2.f / 360.f);
angles[1] = yaw / (M_PI*2.f / 360.f);
angles[2] = roll / (M_PI*2.f / 360.f);
NormalizeAngles(angles);
}
void QuatToYawPitchRoll(ovrQuatf q, float pitchAdjust, vec3_t out) {
ovrMatrix4f mat = ovrMatrix4f_CreateFromQuaternion( &q );
if (pitchAdjust != 0.0f)
{
ovrMatrix4f rot = ovrMatrix4f_CreateRotation(radians(pitchAdjust), 0.0f, 0.0f);
mat = ovrMatrix4f_Multiply(&mat, &rot);
}
ovrVector4f v1 = {0, 0, -1, 0};
ovrVector4f v2 = {1, 0, 0, 0};
ovrVector4f v3 = {0, 1, 0, 0};
ovrVector4f forwardInVRSpace = ovrVector4f_MultiplyMatrix4f(&mat, &v1);
ovrVector4f rightInVRSpace = ovrVector4f_MultiplyMatrix4f(&mat, &v2);
ovrVector4f upInVRSpace = ovrVector4f_MultiplyMatrix4f(&mat, &v3);
ovrVector3f forward = {-forwardInVRSpace.z, -forwardInVRSpace.x, forwardInVRSpace.y};
ovrVector3f right = {-rightInVRSpace.z, -rightInVRSpace.x, rightInVRSpace.y};
ovrVector3f up = {-upInVRSpace.z, -upInVRSpace.x, upInVRSpace.y};
ovrVector3f forwardNormal = normalizeVec(forward);
ovrVector3f rightNormal = normalizeVec(right);
ovrVector3f upNormal = normalizeVec(up);
GetAnglesFromVectors(forwardNormal, rightNormal, upNormal, out);
return;
}
void setWorldPosition( float x, float y, float z )
{
positionDeltaThisFrame[0] = (worldPosition[0] - x);
positionDeltaThisFrame[1] = (worldPosition[1] - y);
positionDeltaThisFrame[2] = (worldPosition[2] - z);
worldPosition[0] = x;
worldPosition[1] = y;
worldPosition[2] = z;
}
extern float playerYaw;
void setHMDPosition( float x, float y, float z, float yaw )
{
static bool s_useScreen = false;
VectorSet(hmdPosition, x, y, z);
if (s_useScreen != useScreenLayer())
{
s_useScreen = useScreenLayer();
//Record player height on transition
playerHeight = y;
}
if (!useScreenLayer())
{
playerYaw = yaw;
}
}
qboolean isMultiplayer()
{
return Cvar_VariableValue("maxclients") > 1;
}
/*
========================
Android_Vibrate
========================
*/
//0 = left, 1 = right
float vibration_channel_duration[2] = {0.0f, 0.0f};
float vibration_channel_intensity[2] = {0.0f, 0.0f};
void Android_Vibrate( float duration, int channel, float intensity )
{
if (vibration_channel_duration[channel] > 0.0f)
return;
if (vibration_channel_duration[channel] == -1.0f && duration != 0.0f)
return;
vibration_channel_duration[channel] = duration;
vibration_channel_intensity[channel] = intensity;
}
static void ovrRenderer_RenderFrame( ovrRenderer * renderer, const ovrJava * java,
const ovrTracking2 * tracking, ovrMobile * ovr )
{
ovrTracking2 updatedTracking = *tracking;
//Get orientation
// We extract Yaw, Pitch, Roll instead of directly using the orientation
// to allow "additional" yaw manipulation with mouse/controller.
const ovrQuatf quatHmd = tracking->HeadPose.Pose.Orientation;
const ovrVector3f positionHmd = tracking->HeadPose.Pose.Position;
QuatToYawPitchRoll(quatHmd, 0.0f, hmdorientation);
setHMDPosition(positionHmd.x, positionHmd.y, positionHmd.z, hmdorientation[YAW]);
//Use hmd position for world position
setWorldPosition(positionHmd.x, positionHmd.y, positionHmd.z);
ALOGV(" HMD-Yaw: %f", hmdorientation[YAW]);
ALOGV(" HMD-Position: %f, %f, %f", positionHmd.x, positionHmd.y, positionHmd.z);
//Set move information - if showing menu, don't pass head orientation through
if (m_state == m_none)
QC_MoveEvent(hmdorientation[YAW], hmdorientation[PITCH], hmdorientation[ROLL]);
else
QC_MoveEvent(0, 0, 0);
//Set everything up
QC_BeginFrame(/* true to stop time if needed in future */ false);
// Render the eye images.
for ( int eye = 0; eye < renderer->NumBuffers; eye++ )
{
ovrFramebuffer * frameBuffer = &renderer->FrameBuffer[eye];
ovrFramebuffer_SetCurrent( frameBuffer );
//If showing the menu, then render mono, easier to navigate menu
{
GL( glEnable( GL_SCISSOR_TEST ) );
GL( glDepthMask( GL_TRUE ) );
GL( glEnable( GL_DEPTH_TEST ) );
GL( glDepthFunc( GL_LEQUAL ) );
//We are using the size of the render target
GL( glViewport( 0, 0, frameBuffer->Width, frameBuffer->Height ) );
GL( glScissor( 0, 0, frameBuffer->Width, frameBuffer->Height ) );
GL( glClearColor( 0.01f, 0.0f, 0.0f, 1.0f ) );
GL( glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ) );
GL( glDisable(GL_SCISSOR_TEST));
//Now do the drawing for this eye
QC_DrawFrame(eye, 0, 0);
}
//Clear edge to prevent smearing
ovrFramebuffer_ClearEdgeTexels( frameBuffer );
ovrFramebuffer_Resolve( frameBuffer );
ovrFramebuffer_Advance( frameBuffer );
}
QC_EndFrame();
ovrFramebuffer_SetNone();
}
/*
================================================================================
ovrRenderThread
================================================================================
*/
/*
================================================================================
ovrApp
================================================================================
*/
typedef struct
{
ovrJava Java;
ovrEgl Egl;
ANativeWindow * NativeWindow;
bool Resumed;
ovrMobile * Ovr;
ovrScene Scene;
long long FrameIndex;
double DisplayTime;
int SwapInterval;
int CpuLevel;
int GpuLevel;
int MainThreadTid;
int RenderThreadTid;
ovrLayer_Union2 Layers[ovrMaxLayerCount];
int LayerCount;
ovrRenderer Renderer;
} ovrApp;
static void ovrApp_Clear( ovrApp * app )
{
app->Java.Vm = NULL;
app->Java.Env = NULL;
app->Java.ActivityObject = NULL;
app->Ovr = NULL;
app->FrameIndex = 1;
app->DisplayTime = 0;
app->SwapInterval = 1;
app->CpuLevel = 2;
app->GpuLevel = 2;
app->MainThreadTid = 0;
app->RenderThreadTid = 0;
ovrEgl_Clear( &app->Egl );
ovrScene_Clear( &app->Scene );
ovrRenderer_Clear( &app->Renderer );
}
static void ovrApp_PushBlackFinal( ovrApp * app )
{
int frameFlags = 0;
frameFlags |= VRAPI_FRAME_FLAG_FLUSH | VRAPI_FRAME_FLAG_FINAL;
ovrLayerProjection2 layer = vrapi_DefaultLayerBlackProjection2();
layer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_INHIBIT_SRGB_FRAMEBUFFER;
const ovrLayerHeader2 * layers[] =
{
&layer.Header
};
ovrSubmitFrameDescription2 frameDesc = {};
frameDesc.Flags = frameFlags;
frameDesc.SwapInterval = 1;
frameDesc.FrameIndex = app->FrameIndex;
frameDesc.DisplayTime = app->DisplayTime;
frameDesc.LayerCount = 1;
frameDesc.Layers = layers;
vrapi_SubmitFrame2( app->Ovr, &frameDesc );
}
static void ovrApp_HandleVrModeChanges( ovrApp * app )
{
if ( app->Resumed != false && app->NativeWindow != NULL )
{
if ( app->Ovr == NULL )
{
ovrModeParms parms = vrapi_DefaultModeParms( &app->Java );
// Must reset the FLAG_FULLSCREEN window flag when using a SurfaceView
parms.Flags |= VRAPI_MODE_FLAG_RESET_WINDOW_FULLSCREEN;
parms.Flags |= VRAPI_MODE_FLAG_NATIVE_WINDOW;
parms.Display = (size_t)app->Egl.Display;
parms.WindowSurface = (size_t)app->NativeWindow;
parms.ShareContext = (size_t)app->Egl.Context;
ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) );
ALOGV( " vrapi_EnterVrMode()" );
app->Ovr = vrapi_EnterVrMode( &parms );
ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) );
// If entering VR mode failed then the ANativeWindow was not valid.
if ( app->Ovr == NULL )
{
ALOGE( "Invalid ANativeWindow!" );
app->NativeWindow = NULL;
}
// Set performance parameters once we have entered VR mode and have a valid ovrMobile.
if ( app->Ovr != NULL )
{
//AmmarkoV : Set our refresh rate..!
ovrResult result = vrapi_SetDisplayRefreshRate(app->Ovr,maximumSupportedFramerate);
if (result == ovrSuccess) { ALOGV("Changed refresh rate. %f Hz",maximumSupportedFramerate); } else
{ ALOGV("Failed to change refresh rate to 90Hz Result=%d",result); }
vrapi_SetClockLevels( app->Ovr, app->CpuLevel, app->GpuLevel );
ALOGV( " vrapi_SetClockLevels( %d, %d )", app->CpuLevel, app->GpuLevel );
vrapi_SetPerfThread( app->Ovr, VRAPI_PERF_THREAD_TYPE_MAIN, app->MainThreadTid );
ALOGV( " vrapi_SetPerfThread( MAIN, %d )", app->MainThreadTid );
vrapi_SetPerfThread( app->Ovr, VRAPI_PERF_THREAD_TYPE_RENDERER, app->RenderThreadTid );
ALOGV( " vrapi_SetPerfThread( RENDERER, %d )", app->RenderThreadTid );
}
}
}
else
{
if ( app->Ovr != NULL )
{
ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) );
ALOGV( " vrapi_LeaveVrMode()" );
vrapi_LeaveVrMode( app->Ovr );
app->Ovr = NULL;
ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) );
}
}
}
static void handleTrackedControllerButton(ovrInputStateTrackedRemote * trackedRemoteState, ovrInputStateTrackedRemote * prevTrackedRemoteState, uint32_t button, int key)
{
if ((trackedRemoteState->Buttons & button) != (prevTrackedRemoteState->Buttons & button))
{
QC_KeyEvent((trackedRemoteState->Buttons & button) > 0 ? 1 : 0, key, 0);
}
}
static void rotateAboutOrigin(float v1, float v2, float rotation, vec2_t out)
{
vec3_t temp;
temp[0] = v1;
temp[1] = v2;
vec3_t v;
matrix4x4_t matrix;
Matrix4x4_CreateFromQuakeEntity(&matrix, 0.0f, 0.0f, 0.0f, 0.0f, rotation, 0.0f, 1.0f);
Matrix4x4_Transform(&matrix, temp, v);
out[0] = v[0];
out[1] = v[1];
}
static void rotateAboutOrigin2(vec3_t in, float pitch, float yaw, vec3_t out)
{
vec3_t v;
matrix4x4_t matrix;
Matrix4x4_CreateFromQuakeEntity(&matrix, 0.0f, 0.0f, 0.0f, pitch, yaw, 0.0f, 1.0f);
Matrix4x4_Transform(&matrix, in, v);
Vector2Copy(out, v);
}
ovrInputStateTrackedRemote leftTrackedRemoteState_old;
ovrInputStateTrackedRemote leftTrackedRemoteState_new;
ovrTracking leftRemoteTracking;
ovrInputStateTrackedRemote rightTrackedRemoteState_old;
ovrInputStateTrackedRemote rightTrackedRemoteState_new;
ovrTracking rightRemoteTracking;
//Text Input stuff
bool textInput = false;
int shift = 0;
int left_grid = 0;
char left_lower[3][10] = {"bcfihgdae", "klorqpmjn", "tuwzyxvs "};
char left_shift[3][10] = {"BCFIHGDAE", "KLORQPMJN", "TUWZYXVS "};
int right_grid = 0;
char right_lower[2][10] = {"236987415", "+-)]&[(?0"};
char right_shift[2][10] = {"\"*:|._~/#", "%^}>,<{\\@"};
char left_grid_map[2][3][3][8] = {
{
{
"a b c", "j k l", "s t u"
},
{
"d e f", "m n o", "v w"
},
{
"g h i", "p q r", "x y z"
},
},
{
{
"A B C", "J K L", "S T U"
},
{
"D E F", "M N O", "V W"
},
{
"G H I", "P Q R", "X Y Z"
},
}
};
char right_grid_map[2][3][2][8] = {
{
{
"1 2 3", "? + -"
},
{
"4 5 6", "( 0 )"
},
{
"7 8 9", "[ & ]"
},
},
{
{
"/ \" *", "\\ % ^"
},
{
"~ # :", "{ @ }"
},
{
"_ . |", "< , >"
},
}
};
static int getCharacter(float x, float y)
{
int c = 8;
if (x < -0.3f || x > 0.3f || y < -0.3f || y > 0.3f)
{
if (x == 0.0f)
{
if (y > 0.0f)
{
c = 0;
}
else
{
c = 4;
}
}
else
{
float angle = atanf(y / x) / ((float)M_PI / 180.0f);
if (x > 0.0f)
{
c = (int)(((90.0f - angle) + 22.5f) / 45.0f);
}
else
{
c = (int)(((90.0f - angle) + 22.5f) / 45.0f) + 4;
if (c == 8)
c = 0;
}
}
}
return c;
}
int breakHere = 0;
#define NLF_DEADZONE 0.1
#define NLF_POWER 2.2
float nonLinearFilter(float in)
{
float val = 0.0f;
if (in > NLF_DEADZONE)
{
val = in;
val -= NLF_DEADZONE;
val /= (1.0f - NLF_DEADZONE);
val = powf(val, NLF_POWER);
}
else if (in < -NLF_DEADZONE)
{
val = in;
val += NLF_DEADZONE;
val /= (1.0f - NLF_DEADZONE);
val = -powf(fabsf(val), NLF_POWER);
}
return val;
}
float length(float x, float y)
{
return sqrtf(powf(x, 2.0f) + powf(y, 2.0f));
}
static void weaponHaptics()
{
if (useScreenLayer())
{
return;
}
qboolean isFirePressed = false;
if (cl_righthanded.integer) {
//Fire
isFirePressed = rightTrackedRemoteState_new.Buttons & ovrButton_Trigger;
} else {
isFirePressed = leftTrackedRemoteState_new.Buttons & ovrButton_Trigger;
}
if (isFirePressed)
{
static double timeLastHaptic = 0;
double timeNow = GetTimeInMilliSeconds();
float hapticInterval = 0;
float hapticLevel = 0;
float hapticLength = 0;
switch (cl.stats[STAT_ACTIVEWEAPON])
{
case IT_SHOTGUN:
{
hapticInterval = 500;
hapticLevel = 0.7f;
hapticLength = 150;
}
break;
case IT_SUPER_SHOTGUN:
{
hapticInterval = 700;
hapticLevel = 0.8f;
hapticLength = 200;
}
break;
case IT_NAILGUN:
{
hapticInterval = 100;
hapticLevel = 0.6f;
hapticLength = 50;
}
break;
case IT_SUPER_NAILGUN:
{
hapticInterval = 80;
hapticLevel = 0.9f;
hapticLength = 50;
}
break;
case IT_GRENADE_LAUNCHER:
{
hapticInterval = 600;
hapticLevel = 0.7f;
hapticLength = 100;
}
break;
case IT_ROCKET_LAUNCHER:
{
hapticInterval = 800;
hapticLevel = 1.0f;
hapticLength = 300;
}
break;
case IT_LIGHTNING:
{
hapticInterval = 100;
hapticLevel = lhrandom(0.0, 0.8f);
hapticLength = 80;
}
break;
case IT_SUPER_LIGHTNING:
{
hapticInterval = 100;
hapticLevel = lhrandom(0.3, 1.0f);
hapticLength = 60;
}
break;
case IT_AXE:
{
hapticInterval = 500;
hapticLevel = 0.6f;
hapticLength = 100;
}
break;
}
if ((timeNow - timeLastHaptic) > hapticInterval)
{
timeLastHaptic = timeNow;
Android_Vibrate(hapticLength, cl_righthanded.integer ? 1 : 0, hapticLevel);
}
}
}
static void ovrApp_HandleInput( ovrApp * app )
{
float remote_movementSideways = 0.0f;
float remote_movementForward = 0.0f;
float positional_movementSideways = 0.0f;
float positional_movementForward = 0.0f;
float controllerAngles[3];
//The amount of yaw changed by controller
float yawOffset = cl.viewangles[YAW] - hmdorientation[YAW];
for ( int i = 0; ; i++ ) {
ovrInputCapabilityHeader cap;
ovrResult result = vrapi_EnumerateInputDevices(app->Ovr, i, &cap);
if (result < 0) {
break;
}
if (cap.Type == ovrControllerType_TrackedRemote) {
ovrTracking remoteTracking;
ovrInputStateTrackedRemote trackedRemoteState;
trackedRemoteState.Header.ControllerType = ovrControllerType_TrackedRemote;
result = vrapi_GetCurrentInputState(app->Ovr, cap.DeviceID, &trackedRemoteState.Header);
if (result == ovrSuccess) {
ovrInputTrackedRemoteCapabilities remoteCapabilities;
remoteCapabilities.Header = cap;
result = vrapi_GetInputDeviceCapabilities(app->Ovr, &remoteCapabilities.Header);
result = vrapi_GetInputTrackingState(app->Ovr, cap.DeviceID, app->DisplayTime,
&remoteTracking);
if (remoteCapabilities.ControllerCapabilities & ovrControllerCaps_RightHand) {
rightTrackedRemoteState_new = trackedRemoteState;
rightRemoteTracking = remoteTracking;
controllerIDs[1] = cap.DeviceID;
} else{
leftTrackedRemoteState_new = trackedRemoteState;
leftRemoteTracking = remoteTracking;
controllerIDs[0] = cap.DeviceID;
}
}
}
}
ovrInputStateTrackedRemote *dominantTrackedRemoteState = cl_righthanded.integer ? &rightTrackedRemoteState_new : &leftTrackedRemoteState_new;
ovrInputStateTrackedRemote *dominantTrackedRemoteStateOld = cl_righthanded.integer ? &rightTrackedRemoteState_old : &leftTrackedRemoteState_old;
ovrTracking *dominantRemoteTracking = cl_righthanded.integer ? &rightRemoteTracking : &leftRemoteTracking;
ovrInputStateTrackedRemote *offHandTrackedRemoteState = !cl_righthanded.integer ? &rightTrackedRemoteState_new : &leftTrackedRemoteState_new;
ovrInputStateTrackedRemote *offHandTrackedRemoteStateOld = !cl_righthanded.integer ? &rightTrackedRemoteState_old : &leftTrackedRemoteState_old;
ovrTracking *offHandRemoteTracking = !cl_righthanded.integer ? &rightRemoteTracking : &leftRemoteTracking;
if (textInput)
{
//Toggle text input
if ((leftTrackedRemoteState_new.Buttons & ovrButton_Y) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_Y) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_Y)) {
textInput = !textInput;
SCR_CenterPrint("Text Input: Disabled");
}
int left_char_index = getCharacter(leftTrackedRemoteState_new.Joystick.x, leftTrackedRemoteState_new.Joystick.y);
int right_char_index = getCharacter(rightTrackedRemoteState_new.Joystick.x, rightTrackedRemoteState_new.Joystick.y);
//Toggle Shift
if ((leftTrackedRemoteState_new.Buttons & ovrButton_X) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_X) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_X)) {
shift = 1 - shift;
}
//Cycle Left Grid
if ((leftTrackedRemoteState_new.Buttons & ovrButton_GripTrigger) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_GripTrigger) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_GripTrigger)) {
left_grid = (++left_grid) % 3;
}
//Cycle Right Grid
if ((rightTrackedRemoteState_new.Buttons & ovrButton_GripTrigger) &&
(rightTrackedRemoteState_new.Buttons & ovrButton_GripTrigger) !=
(rightTrackedRemoteState_old.Buttons & ovrButton_GripTrigger)) {
right_grid = (++right_grid) % 2;
}
char left_char;
char right_char;
if (shift)
{
left_char = left_shift[left_grid][left_char_index];
right_char = right_shift[right_grid][right_char_index];
} else{
left_char = left_lower[left_grid][left_char_index];
right_char = right_lower[right_grid][right_char_index];
}
//Enter
if ((rightTrackedRemoteState_new.Buttons & ovrButton_A) !=
(rightTrackedRemoteState_old.Buttons & ovrButton_A)) {
QC_KeyEvent((rightTrackedRemoteState_new.Buttons & ovrButton_A) > 0 ? 1 : 0, K_ENTER, 0);
}
//Delete
if ((rightTrackedRemoteState_new.Buttons & ovrButton_B) !=
(rightTrackedRemoteState_old.Buttons & ovrButton_B)) {
QC_KeyEvent((rightTrackedRemoteState_new.Buttons & ovrButton_B) > 0 ? 1 : 0, K_BACKSPACE, 0);
}
//Use Left Character
if ((leftTrackedRemoteState_new.Buttons & ovrButton_Trigger) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_Trigger)) {
QC_KeyEvent((leftTrackedRemoteState_new.Buttons & ovrButton_Trigger) > 0 ? 1 : 0,
left_char, left_char);
}
//Use Right Character
if ((rightTrackedRemoteState_new.Buttons & ovrButton_Trigger) !=
(rightTrackedRemoteState_old.Buttons & ovrButton_Trigger)) {
QC_KeyEvent((rightTrackedRemoteState_new.Buttons & ovrButton_Trigger) > 0 ? 1 : 0,
right_char, right_char);
}
//Menu button - could be on left or right controller
handleTrackedControllerButton(&leftTrackedRemoteState_new, &leftTrackedRemoteState_old,
ovrButton_Enter, K_ESCAPE);
handleTrackedControllerButton(&rightTrackedRemoteState_new, &rightTrackedRemoteState_old,
ovrButton_Enter, K_ESCAPE);
if (textInput) {
//Draw grid maps to screen
char buffer[256];
//Give the user an idea of what the buttons are
dpsnprintf(buffer, 256,
" %s %s\n %s %s\n %s %s\n\nText Input: %c %c",
left_grid_map[shift][0][left_grid], right_grid_map[shift][0][right_grid],
left_grid_map[shift][1][left_grid], right_grid_map[shift][1][right_grid],
left_grid_map[shift][2][left_grid], right_grid_map[shift][2][right_grid],
left_char, right_char);
SCR_CenterPrint(buffer);
}
//Save state
leftTrackedRemoteState_old = leftTrackedRemoteState_new;
rightTrackedRemoteState_old = rightTrackedRemoteState_new;
} else {
//dominant hand stuff first
{
weaponOffset[0] = dominantRemoteTracking->HeadPose.Pose.Position.x - hmdPosition[0];
weaponOffset[1] = dominantRemoteTracking->HeadPose.Pose.Position.y - hmdPosition[1];
weaponOffset[2] = dominantRemoteTracking->HeadPose.Pose.Position.z - hmdPosition[2];
weaponVelocity[0] = dominantRemoteTracking->HeadPose.LinearVelocity.x;
weaponVelocity[1] = dominantRemoteTracking->HeadPose.LinearVelocity.y;
weaponVelocity[2] = dominantRemoteTracking->HeadPose.LinearVelocity.z;
///Weapon location relative to view
vec2_t v;
rotateAboutOrigin(weaponOffset[0], weaponOffset[2], -yawOffset, v);
weaponOffset[0] = v[0];
weaponOffset[2] = v[1];
//Set gun angles
const ovrQuatf quatRemote = dominantRemoteTracking->HeadPose.Pose.Orientation;
QuatToYawPitchRoll(quatRemote, vr_weaponpitchadjust.value, gunangles);
gunangles[YAW] += yawOffset;
//Change laser sight on joystick click
if ((dominantTrackedRemoteState->Buttons & ovrButton_Joystick) &&
(dominantTrackedRemoteState->Buttons & ovrButton_Joystick) !=
(dominantTrackedRemoteStateOld->Buttons & ovrButton_Joystick)) {
Cvar_SetValueQuick(&r_lasersight, (r_lasersight.integer + 1) % 3);
}
}
//off-hand stuff
float controllerYawHeading;
float hmdYawHeading;
{
QuatToYawPitchRoll(offHandRemoteTracking->HeadPose.Pose.Orientation, 0.0f,
controllerAngles);
controllerYawHeading = controllerAngles[YAW] - gunangles[YAW] + yawOffset;
hmdYawHeading = hmdorientation[YAW] - gunangles[YAW] + yawOffset;
}
//Right-hand specific stuff
{
ALOGE(" Right-Controller-Position: %f, %f, %f",
rightRemoteTracking.HeadPose.Pose.Position.x,
rightRemoteTracking.HeadPose.Pose.Position.y,
rightRemoteTracking.HeadPose.Pose.Position.z);
//This section corrects for the fact that the controller actually controls direction of movement, but we want to move relative to the direction the
//player is facing for positional tracking
float multiplier = /*arbitrary value that works ->*/
2300.0f / (cl_movementspeed.value * ((offHandTrackedRemoteState->Buttons & ovrButton_Trigger) ? cl_movespeedkey.value : 1.0f));
vec2_t v;
rotateAboutOrigin(-positionDeltaThisFrame[0] * multiplier,
positionDeltaThisFrame[2] * multiplier, yawOffset - gunangles[YAW], v);
positional_movementSideways = v[0];
positional_movementForward = v[1];
long t = Sys_Milliseconds();
delta = t - oldtime;
oldtime = t;
if (delta > 1000)
delta = 1000;
QC_MotionEvent(delta, rightTrackedRemoteState_new.Joystick.x,
rightTrackedRemoteState_new.Joystick.y);
if (bigScreen != 0) {
int rightJoyState = (rightTrackedRemoteState_new.Joystick.x > 0.7f ? 1 : 0);
if (rightJoyState != (rightTrackedRemoteState_old.Joystick.x > 0.7f ? 1 : 0)) {
QC_KeyEvent(rightJoyState, 'd', 0);
}
rightJoyState = (rightTrackedRemoteState_new.Joystick.x < -0.7f ? 1 : 0);
if (rightJoyState != (rightTrackedRemoteState_old.Joystick.x < -0.7f ? 1 : 0)) {
QC_KeyEvent(rightJoyState, 'a', 0);
}
rightJoyState = (rightTrackedRemoteState_new.Joystick.y < -0.7f ? 1 : 0);
if (rightJoyState != (rightTrackedRemoteState_old.Joystick.y < -0.7f ? 1 : 0)) {
QC_KeyEvent(rightJoyState, K_DOWNARROW, 0);
}
rightJoyState = (rightTrackedRemoteState_new.Joystick.y > 0.7f ? 1 : 0);
if (rightJoyState != (rightTrackedRemoteState_old.Joystick.y > 0.7f ? 1 : 0)) {
QC_KeyEvent(rightJoyState, K_UPARROW, 0);
}
//Click an option
handleTrackedControllerButton(&rightTrackedRemoteState_new,
&rightTrackedRemoteState_old, ovrButton_A, K_ENTER);
//Back button
handleTrackedControllerButton(&rightTrackedRemoteState_new,
&rightTrackedRemoteState_old, ovrButton_B, K_ESCAPE);
} else {
//Jump
handleTrackedControllerButton(&rightTrackedRemoteState_new,
&rightTrackedRemoteState_old, ovrButton_A, K_SPACE);
//Adjust weapon aim pitch
if ((rightTrackedRemoteState_new.Buttons & ovrButton_B) &&
(rightTrackedRemoteState_new.Buttons & ovrButton_B) !=
(rightTrackedRemoteState_old.Buttons & ovrButton_B)) {
//Unused
}
{
//Weapon/Inventory Chooser
int rightJoyState = (rightTrackedRemoteState_new.Joystick.y < -0.7f ? 1 : 0);
if (rightJoyState != (rightTrackedRemoteState_old.Joystick.y < -0.7f ? 1 : 0)) {
QC_KeyEvent(rightJoyState, '/', 0);
}
rightJoyState = (rightTrackedRemoteState_new.Joystick.y > 0.7f ? 1 : 0);
if (rightJoyState != (rightTrackedRemoteState_old.Joystick.y > 0.7f ? 1 : 0)) {
QC_KeyEvent(rightJoyState, '#', 0);
}
}
}
if (cl_righthanded.integer) {
//Fire
handleTrackedControllerButton(&rightTrackedRemoteState_new,
&rightTrackedRemoteState_old,
ovrButton_Trigger, K_MOUSE1);
} else {
//Run
handleTrackedControllerButton(&rightTrackedRemoteState_new,
&rightTrackedRemoteState_old,
ovrButton_Trigger, K_SHIFT);
}
rightTrackedRemoteState_old = rightTrackedRemoteState_new;
}
//Left-hand specific stuff
{
ALOGE(" Left-Controller-Position: %f, %f, %f",
leftRemoteTracking.HeadPose.Pose.Position.x,
leftRemoteTracking.HeadPose.Pose.Position.y,
leftRemoteTracking.HeadPose.Pose.Position.z);
//Menu button
handleTrackedControllerButton(&leftTrackedRemoteState_new, &leftTrackedRemoteState_old,
ovrButton_Enter, K_ESCAPE);
if (bigScreen != 0) {
int leftJoyState = (leftTrackedRemoteState_new.Joystick.x > 0.7f ? 1 : 0);
if (leftJoyState != (leftTrackedRemoteState_old.Joystick.x > 0.7f ? 1 : 0)) {
QC_KeyEvent(leftJoyState, 'd', 0);
}
leftJoyState = (leftTrackedRemoteState_new.Joystick.x < -0.7f ? 1 : 0);
if (leftJoyState != (leftTrackedRemoteState_old.Joystick.x < -0.7f ? 1 : 0)) {
QC_KeyEvent(leftJoyState, 'a', 0);
}
leftJoyState = (leftTrackedRemoteState_new.Joystick.y < -0.7f ? 1 : 0);
if (leftJoyState != (leftTrackedRemoteState_old.Joystick.y < -0.7f ? 1 : 0)) {
QC_KeyEvent(leftJoyState, K_DOWNARROW, 0);
}
leftJoyState = (leftTrackedRemoteState_new.Joystick.y > 0.7f ? 1 : 0);
if (leftJoyState != (leftTrackedRemoteState_old.Joystick.y > 0.7f ? 1 : 0)) {
QC_KeyEvent(leftJoyState, K_UPARROW, 0);
}
}
//Apply a filter and quadratic scaler so small movements are easier to make
//and we don't get movement jitter when the joystick doesn't quite center properly
float dist = length(leftTrackedRemoteState_new.Joystick.x, leftTrackedRemoteState_new.Joystick.y);
float nlf = nonLinearFilter(dist);
float x = nlf * leftTrackedRemoteState_new.Joystick.x;
float y = nlf * leftTrackedRemoteState_new.Joystick.y;
//Adjust to be off-hand controller oriented
vec2_t v;
rotateAboutOrigin(x,
y,
cl_walkdirection.integer == 1 ? hmdYawHeading : controllerYawHeading,
v);
remote_movementSideways = v[0];
remote_movementForward = v[1];
if (cl_righthanded.integer) {
//Run
handleTrackedControllerButton(&leftTrackedRemoteState_new,
&leftTrackedRemoteState_old,
ovrButton_Trigger, K_SHIFT);
} else {
//Fire
handleTrackedControllerButton(&leftTrackedRemoteState_new,
&leftTrackedRemoteState_old,
ovrButton_Trigger, K_MOUSE1);
}
static bool canUseQuickSave = false;
if (canUseQuickSave)
{
if ((leftTrackedRemoteState_new.Buttons & ovrButton_X) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_X) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_X)) {
Cbuf_InsertText("save quick\n");
//Vibrate to let user know they successfully saved
SCR_CenterPrint("Quick Saved");
Android_Vibrate(500, cl_righthanded.integer ? 0 : 1, 1.0);
}
if ((leftTrackedRemoteState_new.Buttons & ovrButton_Y) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_Y) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_Y)) {
Cbuf_InsertText("load quick");
}
}
else {
#ifndef NDEBUG
//Give all weapons and all ammo and god mode
if ((leftTrackedRemoteState_new.Buttons & ovrButton_X) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_X) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_X)) {
Cbuf_InsertText("God\n");
Cbuf_InsertText("Impulse 9\n");
breakHere = 1;
}
#endif
//Toggle text input
if ((leftTrackedRemoteState_new.Buttons & ovrButton_Y) &&
(leftTrackedRemoteState_new.Buttons & ovrButton_Y) !=
(leftTrackedRemoteState_old.Buttons & ovrButton_Y)) {
textInput = !textInput;
}
}
if (offHandRemoteTracking->Status & (VRAPI_TRACKING_STATUS_POSITION_TRACKED | VRAPI_TRACKING_STATUS_POSITION_VALID)) {
canUseQuickSave = false;
}
else if (!canUseQuickSave) {
canUseQuickSave = true;
//Vibrate to let user know they can quick save
Android_Vibrate(500, cl_righthanded.integer ? 0 : 1, 1.0);
}
leftTrackedRemoteState_old = leftTrackedRemoteState_new;
}
QC_Analog(true, remote_movementSideways + positional_movementSideways,
remote_movementForward + positional_movementForward);
if (bullettime.integer)
{
float speed = powf(sqrtf(powf(leftTrackedRemoteState_new.Joystick.x, 2) + powf(leftTrackedRemoteState_new.Joystick.y, 2)), 1.1f);
float movement = sqrtf(powf(positionDeltaThisFrame[0] * 80.0f, 2) + powf(positionDeltaThisFrame[1] * 80.0f, 2) + powf(positionDeltaThisFrame[2] * 80.0f, 2));
float weaponMovement = sqrtf(powf(weaponVelocity[0], 2) + powf(weaponVelocity[1], 2) + powf(weaponVelocity[2], 2));
float maximum = max(max(speed, movement), weaponMovement);
speed = bound(0.12f, maximum, 1.0f);
Cvar_SetValueQuick(&slowmo, speed);
}
}
}
/*
================================================================================
ovrMessageQueue
================================================================================
*/
typedef enum
{
MQ_WAIT_NONE, // don't wait
MQ_WAIT_RECEIVED, // wait until the consumer thread has received the message
MQ_WAIT_PROCESSED // wait until the consumer thread has processed the message
} ovrMQWait;
#define MAX_MESSAGE_PARMS 8
#define MAX_MESSAGES 1024
typedef struct
{
int Id;
ovrMQWait Wait;
long long Parms[MAX_MESSAGE_PARMS];
} ovrMessage;
static void ovrMessage_Init( ovrMessage * message, const int id, const int wait )
{
message->Id = id;
message->Wait = wait;
memset( message->Parms, 0, sizeof( message->Parms ) );
}
static void ovrMessage_SetPointerParm( ovrMessage * message, int index, void * ptr ) { *(void **)&message->Parms[index] = ptr; }
static void * ovrMessage_GetPointerParm( ovrMessage * message, int index ) { return *(void **)&message->Parms[index]; }
static void ovrMessage_SetIntegerParm( ovrMessage * message, int index, int value ) { message->Parms[index] = value; }
static int ovrMessage_GetIntegerParm( ovrMessage * message, int index ) { return (int)message->Parms[index]; }
static void ovrMessage_SetFloatParm( ovrMessage * message, int index, float value ) { *(float *)&message->Parms[index] = value; }
static float ovrMessage_GetFloatParm( ovrMessage * message, int index ) { return *(float *)&message->Parms[index]; }
// Cyclic queue with messages.
typedef struct
{
ovrMessage Messages[MAX_MESSAGES];
volatile int Head; // dequeue at the head
volatile int Tail; // enqueue at the tail
ovrMQWait Wait;
volatile bool EnabledFlag;
volatile bool PostedFlag;
volatile bool ReceivedFlag;
volatile bool ProcessedFlag;
pthread_mutex_t Mutex;
pthread_cond_t PostedCondition;
pthread_cond_t ReceivedCondition;
pthread_cond_t ProcessedCondition;
} ovrMessageQueue;
static void ovrMessageQueue_Create( ovrMessageQueue * messageQueue )
{
messageQueue->Head = 0;
messageQueue->Tail = 0;
messageQueue->Wait = MQ_WAIT_NONE;
messageQueue->EnabledFlag = false;
messageQueue->PostedFlag = false;
messageQueue->ReceivedFlag = false;
messageQueue->ProcessedFlag = false;
pthread_mutexattr_t attr;
pthread_mutexattr_init( &attr );
pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_ERRORCHECK );
pthread_mutex_init( &messageQueue->Mutex, &attr );
pthread_mutexattr_destroy( &attr );
pthread_cond_init( &messageQueue->PostedCondition, NULL );
pthread_cond_init( &messageQueue->ReceivedCondition, NULL );
pthread_cond_init( &messageQueue->ProcessedCondition, NULL );
}
static void ovrMessageQueue_Destroy( ovrMessageQueue * messageQueue )
{
pthread_mutex_destroy( &messageQueue->Mutex );
pthread_cond_destroy( &messageQueue->PostedCondition );
pthread_cond_destroy( &messageQueue->ReceivedCondition );
pthread_cond_destroy( &messageQueue->ProcessedCondition );
}
static void ovrMessageQueue_Enable( ovrMessageQueue * messageQueue, const bool set )
{
messageQueue->EnabledFlag = set;
}
static void ovrMessageQueue_PostMessage( ovrMessageQueue * messageQueue, const ovrMessage * message )
{
if ( !messageQueue->EnabledFlag )
{
return;
}
while ( messageQueue->Tail - messageQueue->Head >= MAX_MESSAGES )
{
usleep( 1000 );
}
pthread_mutex_lock( &messageQueue->Mutex );
messageQueue->Messages[messageQueue->Tail & ( MAX_MESSAGES - 1 )] = *message;
messageQueue->Tail++;
messageQueue->PostedFlag = true;
pthread_cond_broadcast( &messageQueue->PostedCondition );
if ( message->Wait == MQ_WAIT_RECEIVED )
{
while ( !messageQueue->ReceivedFlag )
{
pthread_cond_wait( &messageQueue->ReceivedCondition, &messageQueue->Mutex );
}
messageQueue->ReceivedFlag = false;
}
else if ( message->Wait == MQ_WAIT_PROCESSED )
{
while ( !messageQueue->ProcessedFlag )
{
pthread_cond_wait( &messageQueue->ProcessedCondition, &messageQueue->Mutex );
}
messageQueue->ProcessedFlag = false;
}
pthread_mutex_unlock( &messageQueue->Mutex );
}
static void ovrMessageQueue_SleepUntilMessage( ovrMessageQueue * messageQueue )
{
if ( messageQueue->Wait == MQ_WAIT_PROCESSED )
{
messageQueue->ProcessedFlag = true;
pthread_cond_broadcast( &messageQueue->ProcessedCondition );
messageQueue->Wait = MQ_WAIT_NONE;
}
pthread_mutex_lock( &messageQueue->Mutex );
if ( messageQueue->Tail > messageQueue->Head )
{
pthread_mutex_unlock( &messageQueue->Mutex );
return;
}
while ( !messageQueue->PostedFlag )
{
pthread_cond_wait( &messageQueue->PostedCondition, &messageQueue->Mutex );
}
messageQueue->PostedFlag = false;
pthread_mutex_unlock( &messageQueue->Mutex );
}
static bool ovrMessageQueue_GetNextMessage( ovrMessageQueue * messageQueue, ovrMessage * message, bool waitForMessages )
{
if ( messageQueue->Wait == MQ_WAIT_PROCESSED )
{
messageQueue->ProcessedFlag = true;
pthread_cond_broadcast( &messageQueue->ProcessedCondition );
messageQueue->Wait = MQ_WAIT_NONE;
}
if ( waitForMessages )
{
ovrMessageQueue_SleepUntilMessage( messageQueue );
}
pthread_mutex_lock( &messageQueue->Mutex );
if ( messageQueue->Tail <= messageQueue->Head )
{
pthread_mutex_unlock( &messageQueue->Mutex );
return false;
}
*message = messageQueue->Messages[messageQueue->Head & ( MAX_MESSAGES - 1 )];
messageQueue->Head++;
pthread_mutex_unlock( &messageQueue->Mutex );
if ( message->Wait == MQ_WAIT_RECEIVED )
{
messageQueue->ReceivedFlag = true;
pthread_cond_broadcast( &messageQueue->ReceivedCondition );
}
else if ( message->Wait == MQ_WAIT_PROCESSED )
{
messageQueue->Wait = MQ_WAIT_PROCESSED;
}
return true;
}
/*
================================================================================
ovrAppThread
================================================================================
*/
enum
{
MESSAGE_ON_CREATE,
MESSAGE_ON_START,
MESSAGE_ON_RESUME,
MESSAGE_ON_PAUSE,
MESSAGE_ON_STOP,
MESSAGE_ON_DESTROY,
MESSAGE_ON_SURFACE_CREATED,
MESSAGE_ON_SURFACE_DESTROYED
};
typedef struct
{
JavaVM * JavaVm;
jobject ActivityObject;
jclass ActivityClass;
pthread_t Thread;
ovrMessageQueue MessageQueue;
ANativeWindow * NativeWindow;
} ovrAppThread;
long shutdownCountdown;
int m_width;
int m_height;
static ovrJava java;
qboolean R_SetMode( void );
void Quest_GetScreenRes(int *width, int *height)
{
*width = m_width;
*height = m_height;
}
int Quest_GetRefresh()
{
return vrapi_GetSystemPropertyInt( &java, VRAPI_SYS_PROP_DISPLAY_REFRESH_RATE );
}
float getFOV()
{
return vrapi_GetSystemPropertyFloat( &java, VRAPI_SYS_PROP_SUGGESTED_EYE_FOV_DEGREES_Y );
}
void Quest_MessageBox(const char *title, const char *text)
{
ALOGE("%s %s", title, text);
}
float GetFOV()
{
return vrapi_GetSystemPropertyFloat( &java, VRAPI_SYS_PROP_SUGGESTED_EYE_FOV_DEGREES_Y );
}
float GetSysTicrate()
{
return 1.0F / (float)(vrapi_GetSystemPropertyInt(&java, VRAPI_SYS_PROP_DISPLAY_REFRESH_RATE));
}
void * AppThreadFunction( void * parm )
{
ovrAppThread * appThread = (ovrAppThread *)parm;
java.Vm = appThread->JavaVm;
(*java.Vm)->AttachCurrentThread( java.Vm, &java.Env, NULL );
java.ActivityObject = appThread->ActivityObject;
// Note that AttachCurrentThread will reset the thread name.
prctl( PR_SET_NAME, (long)"OVR::Main", 0, 0, 0 );
const ovrInitParms initParms = vrapi_DefaultInitParms( &java );
int32_t initResult = vrapi_Initialize( &initParms );
if ( initResult != VRAPI_INITIALIZE_SUCCESS )
{
// If intialization failed, vrapi_* function calls will not be available.
exit( 0 );
}
ovrApp appState;
ovrApp_Clear( &appState );
appState.Java = java;
// This app will handle android gamepad events itself.
vrapi_SetPropertyInt( &appState.Java, VRAPI_EAT_NATIVE_GAMEPAD_EVENTS, 0 );
//Using a symmetrical render target
m_width=vrapi_GetSystemPropertyInt( &java, VRAPI_SYS_PROP_SUGGESTED_EYE_TEXTURE_WIDTH ) * SS_MULTIPLIER;
m_height=m_width;
//AmmarkoV : Query Refresh rates and select maximum..!
//-----------------------------------------------------------------------------------------------------------
int numberOfRefreshRates = vrapi_GetSystemPropertyInt(&java,VRAPI_SYS_PROP_NUM_SUPPORTED_DISPLAY_REFRESH_RATES);
float refreshRatesArray[16]; //Refresh rates are currently (12/2020) the following 4 : 60.0 / 72.0 / 80.0 / 90.0
if (numberOfRefreshRates > 16 ) { numberOfRefreshRates = 16; }
vrapi_GetSystemPropertyFloatArray(&java, VRAPI_SYS_PROP_SUPPORTED_DISPLAY_REFRESH_RATES,&refreshRatesArray[0], numberOfRefreshRates);
for (int i = 0; i < numberOfRefreshRates; i++) {
//ALOGV("Supported refresh rate : %s Hz", refreshRatesArray[i]);
if (maximumSupportedFramerate<refreshRatesArray[i])
{
maximumSupportedFramerate=refreshRatesArray[i];
}
}
if (maximumSupportedFramerate>90.0)
{
ALOGV("Soft limiting to 90.0 Hz as per John carmack's request ( https://www.onlinepeeps.org/oculus-quest-2-according-to-carmack-in-the-future-also-at-120-hz/ );P");
maximumSupportedFramerate=90.0;
}
//-----------------------------------------------------------------------------------------------------------
ovrEgl_CreateContext( &appState.Egl, NULL );
EglInitExtensions();
appState.CpuLevel = CPU_LEVEL;
appState.GpuLevel = GPU_LEVEL;
appState.MainThreadTid = gettid();
ovrRenderer_Create( m_width, m_height, &appState.Renderer, &java );
chdir("/sdcard/QuakeQuest");
hmdType = vrapi_GetSystemPropertyInt(&java, VRAPI_SYS_PROP_DEVICE_TYPE);
for ( bool destroyed = false; destroyed == false; )
{
for ( ; ; )
{
ovrMessage message;
const bool waitForMessages = ( appState.Ovr == NULL && destroyed == false );
if ( !ovrMessageQueue_GetNextMessage( &appThread->MessageQueue, &message, waitForMessages ) )
{
break;
}
switch ( message.Id )
{
case MESSAGE_ON_CREATE:
{
break;
}
case MESSAGE_ON_START:
{
if (!quake_initialised)
{
ALOGV( " Initialising Quake Engine" );
QC_SetResolution((int)m_width, (int)m_height);
if (argc != 0)
{
main(argc, argv);
}
else
{
int argc = 1; char *argv[] = { "quake" };
main(argc, argv);
}
quake_initialised = true;
//Ensure game starts with credits active
MR_ToggleMenu(2);
}
break;
}
case MESSAGE_ON_RESUME:
{
//If we get here, then user has opted not to quit
jni_resumeAudio();
appState.Resumed = true;
break;
}
case MESSAGE_ON_PAUSE:
{
jni_pauseAudio();
appState.Resumed = false;
break;
}
case MESSAGE_ON_STOP:
{
break;
}
case MESSAGE_ON_DESTROY:
{
appState.NativeWindow = NULL;
destroyed = true;
break;
}
case MESSAGE_ON_SURFACE_CREATED: { appState.NativeWindow = (ANativeWindow *)ovrMessage_GetPointerParm( &message, 0 ); break; }
case MESSAGE_ON_SURFACE_DESTROYED: { appState.NativeWindow = NULL; break; }
}
ovrApp_HandleVrModeChanges( &appState );
}
if ( appState.Ovr == NULL )
{
continue;
}
//Use floor based tracking space
vrapi_SetTrackingSpace(appState.Ovr, VRAPI_TRACKING_SPACE_LOCAL_FLOOR);
// Create the scene if not yet created.
// The scene is created here to be able to show a loading icon.
if ( !ovrScene_IsCreated( &appState.Scene ) )
{
ovrScene_Create( m_width, m_height, &appState.Scene, &java );
}
// This is the only place the frame index is incremented, right before
// calling vrapi_GetPredictedDisplayTime().
appState.FrameIndex++;
// Create the scene if not yet created.
// The scene is created here to be able to show a loading icon.
if (!quake_initialised || runStatus != -1)
{
// Show a loading icon.
int frameFlags = 0;
frameFlags |= VRAPI_FRAME_FLAG_FLUSH;
ovrLayerProjection2 blackLayer = vrapi_DefaultLayerBlackProjection2();
blackLayer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_INHIBIT_SRGB_FRAMEBUFFER;
ovrLayerLoadingIcon2 iconLayer = vrapi_DefaultLayerLoadingIcon2();
iconLayer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_INHIBIT_SRGB_FRAMEBUFFER;
const ovrLayerHeader2 * layers[] =
{
&blackLayer.Header,
&iconLayer.Header,
};
ovrSubmitFrameDescription2 frameDesc = {};
frameDesc.Flags = frameFlags;
frameDesc.SwapInterval = 1;
frameDesc.FrameIndex = appState.FrameIndex;
frameDesc.DisplayTime = appState.DisplayTime;
frameDesc.LayerCount = 2;
frameDesc.Layers = layers;
vrapi_SubmitFrame2( appState.Ovr, &frameDesc );
}
//Handle haptics
static float lastFrameTime = 0.0f;
float timestamp = (float)(GetTimeInMilliSeconds());
float frametime = timestamp - lastFrameTime;
lastFrameTime = timestamp;
for (int i = 0; i < 2; ++i) {
if (vibration_channel_duration[i] > 0.0f ||
vibration_channel_duration[i] == -1.0f) {
vrapi_SetHapticVibrationSimple(appState.Ovr, controllerIDs[i],
vibration_channel_intensity[i]);
if (vibration_channel_duration[i] != -1.0f) {
vibration_channel_duration[i] -= frametime;
if (vibration_channel_duration[i] < 0.0f) {
vibration_channel_duration[i] = 0.0f;
vibration_channel_intensity[i] = 0.0f;
}
}
} else {
vrapi_SetHapticVibrationSimple(appState.Ovr, controllerIDs[i], 0.0f);
}
}
if (runStatus == -1) {
#ifndef NDEBUG
if (appState.FrameIndex > 10800)
{
//Trigger shutdown after a couple of minutes in debug mode
runStatus = 0;
}
#endif
//Set 90hz mode for Quest 2
if (hmdType == VRAPI_DEVICE_TYPE_OCULUSQUEST2) {
vrapi_SetDisplayRefreshRate(appState.Ovr, 90);
}
// Get the HMD pose, predicted for the middle of the time period during which
// the new eye images will be displayed. The number of frames predicted ahead
// depends on the pipeline depth of the engine and the synthesis rate.
// The better the prediction, the less black will be pulled in at the edges.
const double predictedDisplayTime = vrapi_GetPredictedDisplayTime(appState.Ovr,
appState.FrameIndex);
const ovrTracking2 tracking = vrapi_GetPredictedTracking2(appState.Ovr,
predictedDisplayTime);
appState.DisplayTime = predictedDisplayTime;
ovrApp_HandleInput(&appState);
weaponHaptics();
ovrSubmitFrameDescription2 frameDesc = { 0 };
if (!useScreenLayer()) {
ovrLayerProjection2 layer = vrapi_DefaultLayerProjection2();
layer.HeadPose = tracking.HeadPose;
for ( int eye = 0; eye < VRAPI_FRAME_LAYER_EYE_MAX; eye++ )
{
ovrFramebuffer * frameBuffer = &appState.Renderer.FrameBuffer[appState.Renderer.NumBuffers == 1 ? 0 : eye];
layer.Textures[eye].ColorSwapChain = frameBuffer->ColorTextureSwapChain;
layer.Textures[eye].SwapChainIndex = frameBuffer->TextureSwapChainIndex;
ovrMatrix4f projectionMatrix;
float fov = getFOV();
projectionMatrix = ovrMatrix4f_CreateProjectionFov(fov, fov,
0.0f, 0.0f, 0.1f, 0.0f);
layer.Textures[eye].TexCoordsFromTanAngles = ovrMatrix4f_TanAngleMatrixFromProjection(&projectionMatrix);
layer.Textures[eye].TextureRect.x = 0;
layer.Textures[eye].TextureRect.y = 0;
layer.Textures[eye].TextureRect.width = 1.0f;
layer.Textures[eye].TextureRect.height = 1.0f;
}
layer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_CHROMATIC_ABERRATION_CORRECTION;
//Call the game drawing code to populate the cylinder layer texture
ovrRenderer_RenderFrame(&appState.Renderer,
&appState.Java,
&tracking,
appState.Ovr);
// Set up the description for this frame.
const ovrLayerHeader2 *layers[] =
{
&layer.Header
};
ovrSubmitFrameDescription2 frameDesc = {};
frameDesc.Flags = 0;
frameDesc.SwapInterval = appState.SwapInterval;
frameDesc.FrameIndex = appState.FrameIndex;
frameDesc.DisplayTime = appState.DisplayTime;
frameDesc.LayerCount = 1;
frameDesc.Layers = layers;
// Hand over the eye images to the time warp.
vrapi_SubmitFrame2(appState.Ovr, &frameDesc);
} else {
// Set-up the compositor layers for this frame.
// NOTE: Multiple independent layers are allowed, but they need to be added
// in a depth consistent order.
memset( appState.Layers, 0, sizeof( ovrLayer_Union2 ) * ovrMaxLayerCount );
appState.LayerCount = 0;
// Add a simple cylindrical layer
appState.Layers[appState.LayerCount++].Cylinder =
BuildCylinderLayer( &appState.Scene.CylinderRenderer,
appState.Scene.CylinderWidth, appState.Scene.CylinderHeight, &tracking, radians(playerYaw) );
//Call the game drawing code to populate the cylinder layer texture
ovrRenderer_RenderFrame(&appState.Scene.CylinderRenderer,
&appState.Java,
&tracking,
appState.Ovr);
// Compose the layers for this frame.
const ovrLayerHeader2 * layerHeaders[ovrMaxLayerCount] = { 0 };
for ( int i = 0; i < appState.LayerCount; i++ )
{
layerHeaders[i] = &appState.Layers[i].Header;
}
// Set up the description for this frame.
frameDesc.Flags = 0;
frameDesc.SwapInterval = appState.SwapInterval;
frameDesc.FrameIndex = appState.FrameIndex;
frameDesc.DisplayTime = appState.DisplayTime;
frameDesc.LayerCount = appState.LayerCount;
frameDesc.Layers = layerHeaders;
// Hand over the eye images to the time warp.
vrapi_SubmitFrame2(appState.Ovr, &frameDesc);
}
}
else
{
//We are now shutting down
if (runStatus == 0)
{
//Give us half a second (36 frames)
shutdownCountdown = 36;
runStatus++;
} else if (runStatus == 1)
{
if (--shutdownCountdown == 0) {
runStatus++;
}
} else if (runStatus == 2)
{
Host_Shutdown();
jni_terminateAudio();
runStatus++;
} else if (runStatus == 3)
{
ovrRenderer_Destroy( &appState.Renderer );
ovrEgl_DestroyContext( &appState.Egl );
(*java.Vm)->DetachCurrentThread( java.Vm );
vrapi_Shutdown();
exit( 0 );
}
}
}
return NULL;
}
static void ovrAppThread_Create( ovrAppThread * appThread, JNIEnv * env, jobject activityObject, jclass activityClass )
{
(*env)->GetJavaVM( env, &appThread->JavaVm );
appThread->ActivityObject = (*env)->NewGlobalRef( env, activityObject );
appThread->ActivityClass = (*env)->NewGlobalRef( env, activityClass );
appThread->Thread = 0;
appThread->NativeWindow = NULL;
ovrMessageQueue_Create( &appThread->MessageQueue );
const int createErr = pthread_create( &appThread->Thread, NULL, AppThreadFunction, appThread );
if ( createErr != 0 )
{
ALOGE( "pthread_create returned %i", createErr );
}
}
static void ovrAppThread_Destroy( ovrAppThread * appThread, JNIEnv * env )
{
pthread_join( appThread->Thread, NULL );
(*env)->DeleteGlobalRef( env, appThread->ActivityObject );
(*env)->DeleteGlobalRef( env, appThread->ActivityClass );
ovrMessageQueue_Destroy( &appThread->MessageQueue );
}
/*
================================================================================
Activity lifecycle
================================================================================
*/
int JNI_OnLoad(JavaVM* vm, void* reserved)
{
JNIEnv *env;
jVM = vm;
if((*vm)->GetEnv(vm, (void**) &env, JNI_VERSION_1_4) != JNI_OK)
{
ALOGE("Failed JNI_OnLoad");
return -1;
}
return JNI_VERSION_1_4;
}
JNIEXPORT jlong JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onCreate( JNIEnv * env, jclass activityClass, jobject activity,
jstring commandLineParams)
{
ALOGV( " GLES3JNILib::onCreate()" );
/* the global arg_xxx structs are initialised within the argtable */
void *argtable[] = {
ss = arg_dbl0("s", "supersampling", "<double>", "super sampling value (e.g. 1.0)"),
cpu = arg_int0("c", "cpu", "<int>", "CPU perf index 1-3 (default: 2)"),
gpu = arg_int0("g", "gpu", "<int>", "GPU perf index 1-3 (default: 3)"),
msaa = arg_dbl0("m", "msaa", "<int>", "msaa value 1-4 (default 1)"), // Don't think this actually works
end = arg_end(20)
};
jboolean iscopy;
const char *arg = (*env)->GetStringUTFChars(env, commandLineParams, &iscopy);
char *cmdLine = NULL;
if (arg && strlen(arg))
{
cmdLine = strdup(arg);
}
(*env)->ReleaseStringUTFChars(env, commandLineParams, arg);
ALOGV("Command line %s", cmdLine);
argv = malloc(sizeof(char*) * 255);
argc = ParseCommandLine(strdup(cmdLine), argv);
/* verify the argtable[] entries were allocated sucessfully */
if (arg_nullcheck(argtable) == 0) {
/* Parse the command line as defined by argtable[] */
arg_parse(argc, argv, argtable);
if (ss->count > 0 && ss->dval[0] > 0.0)
{
SS_MULTIPLIER = ss->dval[0];
if (SS_MULTIPLIER > 1.2F)
{
SS_MULTIPLIER = 1.2F;
}
}
if (cpu->count > 0 && cpu->ival[0] > 0 && cpu->ival[0] < 10)
{
CPU_LEVEL = cpu->ival[0];
}
if (gpu->count > 0 && gpu->ival[0] > 0 && gpu->ival[0] < 10)
{
GPU_LEVEL = gpu->ival[0];
}
if (msaa->count > 0 && msaa->dval[0] > 0 && msaa->dval[0] < 5)
{
NUM_MULTI_SAMPLES = msaa->dval[0];
}
}
ovrAppThread * appThread = (ovrAppThread *) malloc( sizeof( ovrAppThread ) );
ovrAppThread_Create( appThread, env, activity, activityClass );
ovrMessageQueue_Enable( &appThread->MessageQueue, true );
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_CREATE, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
return (jlong)((size_t)appThread);
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_setCallbackObjects(JNIEnv *env, jobject obj, jobject obj1, jobject obj2)
{
jclass audioCallbackClass;
(*jVM)->GetEnv(jVM, (void**) &env, JNI_VERSION_1_4);
audioCallbackObj = (jobject)(*env)->NewGlobalRef(env, obj1);
audioCallbackClass = (*env)->GetObjectClass(env, audioCallbackObj);
android_initAudio = (*env)->GetMethodID(env,audioCallbackClass,"initAudio","(I)V");
android_writeAudio = (*env)->GetMethodID(env,audioCallbackClass,"writeAudio","(Ljava/nio/ByteBuffer;II)V");
android_pauseAudio = (*env)->GetMethodID(env,audioCallbackClass,"pauseAudio","()V");
android_resumeAudio = (*env)->GetMethodID(env,audioCallbackClass,"resumeAudio","()V");
android_terminateAudio = (*env)->GetMethodID(env,audioCallbackClass,"terminateAudio","()V");
jclass qquestCallbackClass;
qquestCallbackObj = (jobject)(*env)->NewGlobalRef(env, obj2);
qquestCallbackClass = (*env)->GetObjectClass(env, qquestCallbackObj);
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onStart( JNIEnv * env, jobject obj, jlong handle)
{
ALOGV( " GLES3JNILib::onStart()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_START, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onResume( JNIEnv * env, jobject obj, jlong handle )
{
ALOGV( " GLES3JNILib::onResume()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_RESUME, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onPause( JNIEnv * env, jobject obj, jlong handle )
{
ALOGV( " GLES3JNILib::onPause()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_PAUSE, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onStop( JNIEnv * env, jobject obj, jlong handle )
{
ALOGV( " GLES3JNILib::onStop()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_STOP, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onDestroy( JNIEnv * env, jobject obj, jlong handle )
{
ALOGV( " GLES3JNILib::onDestroy()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_DESTROY, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
ovrMessageQueue_Enable( &appThread->MessageQueue, false );
ovrAppThread_Destroy( appThread, env );
free( appThread );
}
/*
================================================================================
Surface lifecycle
================================================================================
*/
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onSurfaceCreated( JNIEnv * env, jobject obj, jlong handle, jobject surface )
{
ALOGV( " GLES3JNILib::onSurfaceCreated()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ANativeWindow * newNativeWindow = ANativeWindow_fromSurface( env, surface );
if ( ANativeWindow_getWidth( newNativeWindow ) < ANativeWindow_getHeight( newNativeWindow ) )
{
// An app that is relaunched after pressing the home button gets an initial surface with
// the wrong orientation even though android:screenOrientation="landscape" is set in the
// manifest. The choreographer callback will also never be called for this surface because
// the surface is immediately replaced with a new surface with the correct orientation.
ALOGE( " Surface not in landscape mode!" );
}
ALOGV( " NativeWindow = ANativeWindow_fromSurface( env, surface )" );
appThread->NativeWindow = newNativeWindow;
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_SURFACE_CREATED, MQ_WAIT_PROCESSED );
ovrMessage_SetPointerParm( &message, 0, appThread->NativeWindow );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onSurfaceChanged( JNIEnv * env, jobject obj, jlong handle, jobject surface )
{
ALOGV( " GLES3JNILib::onSurfaceChanged()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ANativeWindow * newNativeWindow = ANativeWindow_fromSurface( env, surface );
if ( ANativeWindow_getWidth( newNativeWindow ) < ANativeWindow_getHeight( newNativeWindow ) )
{
// An app that is relaunched after pressing the home button gets an initial surface with
// the wrong orientation even though android:screenOrientation="landscape" is set in the
// manifest. The choreographer callback will also never be called for this surface because
// the surface is immediately replaced with a new surface with the correct orientation.
ALOGE( " Surface not in landscape mode!" );
}
if ( newNativeWindow != appThread->NativeWindow )
{
if ( appThread->NativeWindow != NULL )
{
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_SURFACE_DESTROYED, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
ALOGV( " ANativeWindow_release( NativeWindow )" );
ANativeWindow_release( appThread->NativeWindow );
appThread->NativeWindow = NULL;
}
if ( newNativeWindow != NULL )
{
ALOGV( " NativeWindow = ANativeWindow_fromSurface( env, surface )" );
appThread->NativeWindow = newNativeWindow;
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_SURFACE_CREATED, MQ_WAIT_PROCESSED );
ovrMessage_SetPointerParm( &message, 0, appThread->NativeWindow );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
}
}
else if ( newNativeWindow != NULL )
{
ANativeWindow_release( newNativeWindow );
}
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_onSurfaceDestroyed( JNIEnv * env, jobject obj, jlong handle )
{
ALOGV( " GLES3JNILib::onSurfaceDestroyed()" );
ovrAppThread * appThread = (ovrAppThread *)((size_t)handle);
ovrMessage message;
ovrMessage_Init( &message, MESSAGE_ON_SURFACE_DESTROYED, MQ_WAIT_PROCESSED );
ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message );
ALOGV( " ANativeWindow_release( NativeWindow )" );
ANativeWindow_release( appThread->NativeWindow );
appThread->NativeWindow = NULL;
}
JNIEXPORT void JNICALL Java_com_drbeef_quakequest_GLES3JNILib_requestAudioData(JNIEnv *env, jclass c, jlong handle)
{
ALOGV("Calling: QC_GetAudio");
QC_GetAudio();
}