jkxr/Projects/Android/jni/OpenJK/code/qcommon/matcomp.cpp
Simon 4597b03873 Initial Commit
Opens in Android Studio but haven't even tried to build it yet (it won't.. I know that much!)
2022-09-18 16:37:21 +01:00

338 lines
8.4 KiB
C++

/*
===========================================================================
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
#include "q_shared.h"
#include "matcomp.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <memory.h> // for memcpy
#define MC_MASK_X ((1<<(MC_BITS_X))-1)
#define MC_MASK_Y ((1<<(MC_BITS_Y))-1)
#define MC_MASK_Z ((1<<(MC_BITS_Z))-1)
#define MC_MASK_VECT ((1<<(MC_BITS_VECT))-1)
#define MC_SCALE_VECT (1.0f/(float)((1<<(MC_BITS_VECT-1))-2))
#define MC_POS_X (0)
#define MC_SHIFT_X (0)
#define MC_POS_Y ((((MC_BITS_X))/8))
#define MC_SHIFT_Y ((((MC_BITS_X)%8)))
#define MC_POS_Z ((((MC_BITS_X+MC_BITS_Y))/8))
#define MC_SHIFT_Z ((((MC_BITS_X+MC_BITS_Y)%8)))
#define MC_POS_V11 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z))/8))
#define MC_SHIFT_V11 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z)%8)))
#define MC_POS_V12 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT))/8))
#define MC_SHIFT_V12 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT)%8)))
#define MC_POS_V13 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*2))/8))
#define MC_SHIFT_V13 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*2)%8)))
#define MC_POS_V21 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*3))/8))
#define MC_SHIFT_V21 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*3)%8)))
#define MC_POS_V22 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*4))/8))
#define MC_SHIFT_V22 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*4)%8)))
#define MC_POS_V23 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*5))/8))
#define MC_SHIFT_V23 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*5)%8)))
#define MC_POS_V31 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*6))/8))
#define MC_SHIFT_V31 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*6)%8)))
#define MC_POS_V32 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*7))/8))
#define MC_SHIFT_V32 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*7)%8)))
#define MC_POS_V33 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*8))/8))
#define MC_SHIFT_V33 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*8)%8)))
void MC_Compress(const float mat[3][4],unsigned char * _comp)
{
char comp[MC_COMP_BYTES*2];
int i,val;
for (i=0;i<MC_COMP_BYTES;i++)
comp[i]=0;
val=(int)(mat[0][3]/MC_SCALE_X);
val+=1<<(MC_BITS_X-1);
if (val>=(1<<MC_BITS_X))
val=(1<<MC_BITS_X)-1;
if (val<0)
val=0;
byteAlias_t *ba = (byteAlias_t *)&comp[MC_POS_X];
ba->ui |= ((uint32_t)val) << MC_SHIFT_X;
val=(int)(mat[1][3]/MC_SCALE_Y);
val+=1<<(MC_BITS_Y-1);
if (val>=(1<<MC_BITS_Y))
val=(1<<MC_BITS_Y)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_Y];
ba->ui |= ((uint32_t)val) << MC_SHIFT_Y;
val=(int)(mat[2][3]/MC_SCALE_Z);
val+=1<<(MC_BITS_Z-1);
if (val>=(1<<MC_BITS_Z))
val=(1<<MC_BITS_Z)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_Z];
ba->ui |= ((uint32_t)val) << MC_SHIFT_Z;
val=(int)(mat[0][0]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V11];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V11;
val=(int)(mat[0][1]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V12];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V12;
val=(int)(mat[0][2]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V13];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V13;
val=(int)(mat[1][0]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V21];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V21;
val=(int)(mat[1][1]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V22];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V22;
val=(int)(mat[1][2]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V23];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V23;
val=(int)(mat[2][0]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V31];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V31;
val=(int)(mat[2][1]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V32];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V32;
val=(int)(mat[2][2]/MC_SCALE_VECT);
val+=1<<(MC_BITS_VECT-1);
if (val>=(1<<MC_BITS_VECT))
val=(1<<MC_BITS_VECT)-1;
if (val<0)
val=0;
ba = (byteAlias_t *)&comp[MC_POS_V33];
ba->ui |= ((uint32_t)val) << MC_SHIFT_V33;
// I added this because the line above actually ORs data into an int at the 22 byte (from 0), and therefore
// technically is writing beyond the 24th byte of the output array. This *should* be harmless if the OR'd-in value
// doesn't change those bytes, but BoundsChecker says that it's accessing undefined memory (which it does,
// sometimes). This is probably bad, so...
memcpy(_comp,comp,MC_COMP_BYTES);
}
void MC_UnCompress(float mat[3][4],const unsigned char * comp)
{
int val;
val=(int)((unsigned short *)(comp))[0];
val-=1<<(MC_BITS_X-1);
mat[0][3]=((float)(val))*MC_SCALE_X;
val=(int)((unsigned short *)(comp))[1];
val-=1<<(MC_BITS_Y-1);
mat[1][3]=((float)(val))*MC_SCALE_Y;
val=(int)((unsigned short *)(comp))[2];
val-=1<<(MC_BITS_Z-1);
mat[2][3]=((float)(val))*MC_SCALE_Z;
val=(int)((unsigned short *)(comp))[3];
val-=1<<(MC_BITS_VECT-1);
mat[0][0]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[4];
val-=1<<(MC_BITS_VECT-1);
mat[0][1]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[5];
val-=1<<(MC_BITS_VECT-1);
mat[0][2]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[6];
val-=1<<(MC_BITS_VECT-1);
mat[1][0]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[7];
val-=1<<(MC_BITS_VECT-1);
mat[1][1]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[8];
val-=1<<(MC_BITS_VECT-1);
mat[1][2]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[9];
val-=1<<(MC_BITS_VECT-1);
mat[2][0]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[10];
val-=1<<(MC_BITS_VECT-1);
mat[2][1]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[11];
val-=1<<(MC_BITS_VECT-1);
mat[2][2]=((float)(val))*MC_SCALE_VECT;
}
void MC_UnCompressQuat(float mat[3][4],const unsigned char * comp)
{
float w,x,y,z,f;
float fTx;
float fTy;
float fTz;
float fTwx;
float fTwy;
float fTwz;
float fTxx;
float fTxy;
float fTxz;
float fTyy;
float fTyz;
float fTzz;
const unsigned short *pwIn = (unsigned short *) comp;
w = *pwIn++;
w/=16383.0f;
w-=2.0f;
x = *pwIn++;
x/=16383.0f;
x-=2.0f;
y = *pwIn++;
y/=16383.0f;
y-=2.0f;
z = *pwIn++;
z/=16383.0f;
z-=2.0f;
fTx = 2.0f*x;
fTy = 2.0f*y;
fTz = 2.0f*z;
fTwx = fTx*w;
fTwy = fTy*w;
fTwz = fTz*w;
fTxx = fTx*x;
fTxy = fTy*x;
fTxz = fTz*x;
fTyy = fTy*y;
fTyz = fTz*y;
fTzz = fTz*z;
// rot...
//
mat[0][0] = 1.0f-(fTyy+fTzz);
mat[0][1] = fTxy-fTwz;
mat[0][2] = fTxz+fTwy;
mat[1][0] = fTxy+fTwz;
mat[1][1] = 1.0f-(fTxx+fTzz);
mat[1][2] = fTyz-fTwx;
mat[2][0] = fTxz-fTwy;
mat[2][1] = fTyz+fTwx;
mat[2][2] = 1.0f-(fTxx+fTyy);
// xlat...
//
f = *pwIn++;
f/=64;
f-=512;
mat[0][3] = f;
f = *pwIn++;
f/=64;
f-=512;
mat[1][3] = f;
f = *pwIn++;
f/=64;
f-=512;
mat[2][3] = f;
}