mirror of
https://github.com/DrBeef/JKXR.git
synced 2025-01-23 17:01:06 +00:00
1434 lines
33 KiB
C
1434 lines
33 KiB
C
|
/*
|
||
|
===========================================================================
|
||
|
Copyright (C) 1999 - 2005, Id Software, Inc.
|
||
|
Copyright (C) 2000 - 2013, Raven Software, Inc.
|
||
|
Copyright (C) 2001 - 2013, Activision, Inc.
|
||
|
Copyright (C) 2013 - 2015, OpenJK contributors
|
||
|
|
||
|
This file is part of the OpenJK source code.
|
||
|
|
||
|
OpenJK is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License version 2 as
|
||
|
published by the Free Software Foundation.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
===========================================================================
|
||
|
*/
|
||
|
|
||
|
#include "q_math.h"
|
||
|
#include <assert.h>
|
||
|
#include <float.h>
|
||
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// DIRECTION ENCODING
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
#define NUMVERTEXNORMALS 162
|
||
|
static const vec3_t bytedirs[NUMVERTEXNORMALS] =
|
||
|
{
|
||
|
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
|
||
|
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
|
||
|
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
|
||
|
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
|
||
|
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
|
||
|
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
|
||
|
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
|
||
|
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
|
||
|
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
|
||
|
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
|
||
|
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
|
||
|
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
|
||
|
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
|
||
|
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
|
||
|
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
|
||
|
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
|
||
|
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
|
||
|
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
|
||
|
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
|
||
|
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
|
||
|
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
|
||
|
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
|
||
|
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
|
||
|
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
|
||
|
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
|
||
|
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
|
||
|
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
|
||
|
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
|
||
|
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
|
||
|
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
|
||
|
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
|
||
|
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
|
||
|
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
|
||
|
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
|
||
|
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
|
||
|
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
|
||
|
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
|
||
|
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
|
||
|
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
|
||
|
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
|
||
|
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
|
||
|
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
|
||
|
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
|
||
|
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
|
||
|
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
|
||
|
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
|
||
|
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
|
||
|
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
|
||
|
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
|
||
|
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
|
||
|
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
|
||
|
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
|
||
|
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
|
||
|
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
|
||
|
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
|
||
|
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
|
||
|
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
|
||
|
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
|
||
|
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
|
||
|
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
|
||
|
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
|
||
|
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
|
||
|
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
|
||
|
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
|
||
|
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
|
||
|
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
|
||
|
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
|
||
|
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
|
||
|
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
|
||
|
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
|
||
|
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
|
||
|
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
|
||
|
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
|
||
|
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
|
||
|
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
|
||
|
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
|
||
|
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
|
||
|
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
|
||
|
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
|
||
|
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
|
||
|
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
|
||
|
};
|
||
|
|
||
|
// this isn't a real cheap function to call!
|
||
|
int DirToByte( vec3_t dir )
|
||
|
{
|
||
|
int i, best;
|
||
|
float d, bestd;
|
||
|
|
||
|
if ( !dir ) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bestd = 0;
|
||
|
best = 0;
|
||
|
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
|
||
|
{
|
||
|
d = DotProduct(dir, bytedirs[i]);
|
||
|
if (d > bestd)
|
||
|
{
|
||
|
bestd = d;
|
||
|
best = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return best;
|
||
|
}
|
||
|
|
||
|
void ByteToDir( int b, vec3_t dir )
|
||
|
{
|
||
|
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
|
||
|
VectorCopy( vec3_origin, dir );
|
||
|
return;
|
||
|
}
|
||
|
VectorCopy(bytedirs[b], dir);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** NormalToLatLong
|
||
|
**
|
||
|
** We use two byte encoded normals in some space critical applications.
|
||
|
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
|
||
|
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
|
||
|
**
|
||
|
*/
|
||
|
//rwwRMG - added
|
||
|
void NormalToLatLong( const vec3_t normal, byte bytes[2] )
|
||
|
{
|
||
|
// check for singularities
|
||
|
if (!normal[0] && !normal[1])
|
||
|
{
|
||
|
if ( normal[2] > 0.0f )
|
||
|
{
|
||
|
bytes[0] = 0;
|
||
|
bytes[1] = 0; // lat = 0, long = 0
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bytes[0] = 128;
|
||
|
bytes[1] = 0; // lat = 0, long = 128
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int a, b;
|
||
|
|
||
|
a = (int)(RAD2DEG( (float)atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ));
|
||
|
a &= 0xff;
|
||
|
|
||
|
b = (int)(RAD2DEG( (float)acos( normal[2] ) ) * ( 255.0f / 360.0f ));
|
||
|
b &= 0xff;
|
||
|
|
||
|
bytes[0] = b; // longitude
|
||
|
bytes[1] = a; // lattitude
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// RANDOM NUMBER GENERATION
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
int Q_rand( int *seed )
|
||
|
{
|
||
|
*seed = (69069 * *seed + 1);
|
||
|
return *seed;
|
||
|
}
|
||
|
|
||
|
float Q_random( int *seed )
|
||
|
{
|
||
|
return (Q_rand(seed) & 0xffff) / (float)0x10000;
|
||
|
}
|
||
|
|
||
|
float Q_crandom( int *seed )
|
||
|
{
|
||
|
return 2.0f * (Q_random(seed) - 0.5f);
|
||
|
}
|
||
|
|
||
|
// This is the VC libc version of rand() without multiple seeds per thread or 12 levels
|
||
|
// of subroutine calls.
|
||
|
// Both calls have been designed to minimise the inherent number of float <--> int
|
||
|
// conversions and the additional math required to get the desired value.
|
||
|
// eg the typical tint = (rand() * 255) / 32768
|
||
|
// becomes tint = irand(0, 255)
|
||
|
static uint32_t holdrand = 0x89abcdef;
|
||
|
|
||
|
void Rand_Init( int seed )
|
||
|
{
|
||
|
holdrand = seed;
|
||
|
}
|
||
|
|
||
|
// Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max)
|
||
|
float flrand(float min, float max)
|
||
|
{
|
||
|
float result;
|
||
|
|
||
|
holdrand = (holdrand * 214013L) + 2531011L;
|
||
|
result = (float)(holdrand >> 17); // 0 - 32767 range
|
||
|
result = ((result * (max - min)) / (float)QRAND_MAX) + min;
|
||
|
|
||
|
return(result);
|
||
|
}
|
||
|
|
||
|
float Q_flrand( float min, float max )
|
||
|
{
|
||
|
return flrand(min, max);
|
||
|
}
|
||
|
|
||
|
// Returns an integer min <= x <= max (ie inclusive)
|
||
|
int irand( int min, int max )
|
||
|
{
|
||
|
int result;
|
||
|
|
||
|
assert((max - min) < QRAND_MAX);
|
||
|
|
||
|
max++;
|
||
|
holdrand = (holdrand * 214013L) + 2531011L;
|
||
|
result = holdrand >> 17;
|
||
|
result = ((result * (max - min)) >> 15) + min;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
int Q_irand( int value1, int value2 )
|
||
|
{
|
||
|
return irand(value1, value2);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
erandom
|
||
|
|
||
|
This function produces a random number with a exponential
|
||
|
distribution and the specified mean value.
|
||
|
*/
|
||
|
float erandom( float mean )
|
||
|
{
|
||
|
float r;
|
||
|
|
||
|
do {
|
||
|
r = Q_flrand(0.0f, 1.0f);
|
||
|
} while ( r == 0.0 );
|
||
|
|
||
|
return -mean * logf( r );
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// MATH UTILITIES
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
signed char ClampChar( int i )
|
||
|
{
|
||
|
if ( i < -128 ) {
|
||
|
return -128;
|
||
|
}
|
||
|
if ( i > 127 ) {
|
||
|
return 127;
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
signed short ClampShort( int i )
|
||
|
{
|
||
|
if ( i < -32768 ) {
|
||
|
return -32768;
|
||
|
}
|
||
|
if ( i > 0x7fff ) {
|
||
|
return 0x7fff;
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
int Com_Clampi( int min, int max, int value )
|
||
|
{
|
||
|
if ( value < min )
|
||
|
{
|
||
|
return min;
|
||
|
}
|
||
|
if ( value > max )
|
||
|
{
|
||
|
return max;
|
||
|
}
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
float Com_Clamp( float min, float max, float value ) {
|
||
|
if ( value < min ) {
|
||
|
return min;
|
||
|
}
|
||
|
if ( value > max ) {
|
||
|
return max;
|
||
|
}
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
int Com_AbsClampi( int min, int max, int value )
|
||
|
{
|
||
|
if( value < 0 )
|
||
|
{
|
||
|
return Com_Clampi( -max, -min, value );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return Com_Clampi( min, max, value );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float Com_AbsClamp( float min, float max, float value )
|
||
|
{
|
||
|
if( value < 0.0f )
|
||
|
{
|
||
|
return Com_Clamp( -max, -min, value );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return Com_Clamp( min, max, value );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
float Q_rsqrt( float number )
|
||
|
{
|
||
|
byteAlias_t t;
|
||
|
float x2, y;
|
||
|
const float threehalfs = 1.5F;
|
||
|
|
||
|
x2 = number * 0.5F;
|
||
|
y = number;
|
||
|
t.f = number;
|
||
|
t.i = 0x5f3759df - ( t.i >> 1 ); // what the fuck?
|
||
|
y = t.f;
|
||
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
||
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
||
|
|
||
|
assert( !Q_isnan(y) );
|
||
|
return y;
|
||
|
}
|
||
|
|
||
|
float Q_fabs( float f )
|
||
|
{
|
||
|
byteAlias_t fi;
|
||
|
fi.f = f;
|
||
|
fi.i &= 0x7FFFFFFF;
|
||
|
return fi.f;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=====================
|
||
|
Q_acos
|
||
|
|
||
|
the msvc acos doesn't always return a value between -PI and PI:
|
||
|
|
||
|
int i;
|
||
|
i = 1065353246;
|
||
|
acos(*(float*) &i) == -1.#IND0
|
||
|
|
||
|
This should go in q_math but it is too late to add new traps
|
||
|
to game and ui
|
||
|
=====================
|
||
|
*/
|
||
|
float Q_acos(float c) {
|
||
|
float angle;
|
||
|
|
||
|
angle = acosf(c);
|
||
|
|
||
|
if (angle > M_PI) {
|
||
|
return (float)M_PI;
|
||
|
}
|
||
|
if (angle < -M_PI) {
|
||
|
return (float)M_PI;
|
||
|
}
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
float Q_asin(float c)
|
||
|
{
|
||
|
float angle;
|
||
|
|
||
|
angle = asinf(c);
|
||
|
|
||
|
if (angle > M_PI) {
|
||
|
return (float)M_PI;
|
||
|
}
|
||
|
if (angle < -M_PI) {
|
||
|
return (float)M_PI;
|
||
|
}
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
float Q_powf ( float x, int y )
|
||
|
{
|
||
|
float r = x;
|
||
|
for ( y--; y>0; y-- )
|
||
|
r *= x;
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
qboolean Q_isnan (float f)
|
||
|
{
|
||
|
#ifdef _MSC_VER
|
||
|
return (qboolean)(_isnan (f) != 0);
|
||
|
#else
|
||
|
return (qboolean)(isnan (f) != 0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int Q_log2( int val )
|
||
|
{
|
||
|
int answer;
|
||
|
|
||
|
answer = 0;
|
||
|
while ( ( val>>=1 ) != 0 ) {
|
||
|
answer++;
|
||
|
}
|
||
|
return answer;
|
||
|
}
|
||
|
|
||
|
float LerpAngle(float from, float to, float frac)
|
||
|
{
|
||
|
float a;
|
||
|
|
||
|
if ( to - from > 180 ) {
|
||
|
to -= 360;
|
||
|
}
|
||
|
if ( to - from < -180 ) {
|
||
|
to += 360;
|
||
|
}
|
||
|
a = from + frac * (to - from);
|
||
|
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
AngleSubtract
|
||
|
|
||
|
Always returns a value from -180 to 180
|
||
|
=================
|
||
|
*/
|
||
|
float AngleSubtract( float a1, float a2 ) {
|
||
|
float a;
|
||
|
|
||
|
a = a1 - a2;
|
||
|
a=fmodf(a,360);//chop it down quickly, then level it out
|
||
|
while ( a > 180 ) {
|
||
|
a -= 360;
|
||
|
}
|
||
|
while ( a < -180 ) {
|
||
|
a += 360;
|
||
|
}
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
|
||
|
v3[0] = AngleSubtract( v1[0], v2[0] );
|
||
|
v3[1] = AngleSubtract( v1[1], v2[1] );
|
||
|
v3[2] = AngleSubtract( v1[2], v2[2] );
|
||
|
}
|
||
|
|
||
|
float AngleMod(float a) {
|
||
|
a = (360.0f/65536) * ((int)(a*(65536/360.0f)) & 65535);
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
AngleNormalize360
|
||
|
|
||
|
returns angle normalized to the range [0 <= angle < 360]
|
||
|
=================
|
||
|
*/
|
||
|
float AngleNormalize360 ( float angle ) {
|
||
|
return (360.0f / 65536) * ((int)(angle * (65536 / 360.0f)) & 65535);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
AngleNormalize180
|
||
|
|
||
|
returns angle normalized to the range [-180 < angle <= 180]
|
||
|
=================
|
||
|
*/
|
||
|
float AngleNormalize180 ( float angle ) {
|
||
|
angle = AngleNormalize360( angle );
|
||
|
if ( angle > 180.0 ) {
|
||
|
angle -= 360.0;
|
||
|
}
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
AngleDelta
|
||
|
|
||
|
returns the normalized delta from angle1 to angle2
|
||
|
=================
|
||
|
*/
|
||
|
float AngleDelta ( float angle1, float angle2 ) {
|
||
|
return AngleNormalize180( angle1 - angle2 );
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// GEOMETRIC UTILITIES
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
/*
|
||
|
=====================
|
||
|
PlaneFromPoints
|
||
|
|
||
|
Returns false if the triangle is degenrate.
|
||
|
The normal will point out of the clock for clockwise ordered points
|
||
|
=====================
|
||
|
*/
|
||
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
||
|
vec3_t d1, d2;
|
||
|
|
||
|
VectorSubtract( b, a, d1 );
|
||
|
VectorSubtract( c, a, d2 );
|
||
|
CrossProduct( d2, d1, plane );
|
||
|
if ( VectorNormalize( plane ) == 0 ) {
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
plane[3] = DotProduct( a, plane );
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
===============
|
||
|
RotatePointAroundVector
|
||
|
|
||
|
From q3mme
|
||
|
===============
|
||
|
*/
|
||
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) {
|
||
|
float m[3][3];
|
||
|
float c, s, t;
|
||
|
|
||
|
degrees = -DEG2RAD( degrees );
|
||
|
s = sinf( degrees );
|
||
|
c = cosf( degrees );
|
||
|
t = 1 - c;
|
||
|
|
||
|
m[0][0] = t*dir[0]*dir[0] + c;
|
||
|
m[0][1] = t*dir[0]*dir[1] + s*dir[2];
|
||
|
m[0][2] = t*dir[0]*dir[2] - s*dir[1];
|
||
|
|
||
|
m[1][0] = t*dir[0]*dir[1] - s*dir[2];
|
||
|
m[1][1] = t*dir[1]*dir[1] + c;
|
||
|
m[1][2] = t*dir[1]*dir[2] + s*dir[0];
|
||
|
|
||
|
m[2][0] = t*dir[0]*dir[2] + s*dir[1];
|
||
|
m[2][1] = t*dir[1]*dir[2] - s*dir[0];
|
||
|
m[2][2] = t*dir[2]*dir[2] + c;
|
||
|
VectorRotate( point, m, dst );
|
||
|
}
|
||
|
|
||
|
void RotateAroundDirection( matrix3_t axis, float yaw ) {
|
||
|
|
||
|
// create an arbitrary axis[1]
|
||
|
PerpendicularVector( axis[1], axis[0] );
|
||
|
|
||
|
// rotate it around axis[0] by yaw
|
||
|
if ( yaw ) {
|
||
|
vec3_t temp;
|
||
|
|
||
|
VectorCopy( axis[1], temp );
|
||
|
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
|
||
|
}
|
||
|
|
||
|
// cross to get axis[2]
|
||
|
CrossProduct( axis[0], axis[1], axis[2] );
|
||
|
}
|
||
|
|
||
|
void vectoangles( const vec3_t value1, vec3_t angles ) {
|
||
|
float forward;
|
||
|
float yaw, pitch;
|
||
|
|
||
|
if ( value1[1] == 0 && value1[0] == 0 ) {
|
||
|
yaw = 0;
|
||
|
if ( value1[2] > 0 ) {
|
||
|
pitch = 90;
|
||
|
}
|
||
|
else {
|
||
|
pitch = 270;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if ( value1[0] ) {
|
||
|
yaw = ( atan2f ( value1[1], value1[0] ) * 180 / M_PI );
|
||
|
}
|
||
|
else if ( value1[1] > 0 ) {
|
||
|
yaw = 90;
|
||
|
}
|
||
|
else {
|
||
|
yaw = 270;
|
||
|
}
|
||
|
if ( yaw < 0 ) {
|
||
|
yaw += 360;
|
||
|
}
|
||
|
|
||
|
forward = sqrtf ( value1[0]*value1[0] + value1[1]*value1[1] );
|
||
|
pitch = ( atan2f(value1[2], forward) * 180 / M_PI );
|
||
|
if ( pitch < 0 ) {
|
||
|
pitch += 360;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
angles[PITCH] = -pitch;
|
||
|
angles[YAW] = yaw;
|
||
|
angles[ROLL] = 0;
|
||
|
}
|
||
|
|
||
|
vec_t GetYawForDirection( const vec3_t p1, const vec3_t p2 ) {
|
||
|
vec3_t v, angles;
|
||
|
|
||
|
VectorSubtract( p2, p1, v );
|
||
|
vectoangles( v, angles );
|
||
|
|
||
|
return angles[YAW];
|
||
|
}
|
||
|
|
||
|
void GetAnglesForDirection( const vec3_t p1, const vec3_t p2, vec3_t out ) {
|
||
|
vec3_t v;
|
||
|
|
||
|
VectorSubtract( p2, p1, v );
|
||
|
vectoangles( v, out );
|
||
|
}
|
||
|
|
||
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
||
|
{
|
||
|
float d;
|
||
|
vec3_t n;
|
||
|
float inv_denom;
|
||
|
|
||
|
inv_denom = DotProduct( normal, normal );
|
||
|
assert( Q_fabs(inv_denom) != 0.0f );
|
||
|
inv_denom = 1.0f / inv_denom;
|
||
|
|
||
|
d = DotProduct( normal, p ) * inv_denom;
|
||
|
|
||
|
n[0] = normal[0] * inv_denom;
|
||
|
n[1] = normal[1] * inv_denom;
|
||
|
n[2] = normal[2] * inv_denom;
|
||
|
|
||
|
dst[0] = p[0] - d * n[0];
|
||
|
dst[1] = p[1] - d * n[1];
|
||
|
dst[2] = p[2] - d * n[2];
|
||
|
}
|
||
|
|
||
|
qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
|
||
|
{
|
||
|
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
|
||
|
float distEnd2From, distEnd2Result, theta, cos_theta, dot;
|
||
|
|
||
|
//Find the perpendicular vector to vec from start to end
|
||
|
VectorSubtract( from, start, vecStart2From);
|
||
|
VectorSubtract( end, start, vecStart2End);
|
||
|
|
||
|
dot = DotProductNormalize( vecStart2From, vecStart2End );
|
||
|
|
||
|
if ( dot <= 0 )
|
||
|
{
|
||
|
//The perpendicular would be beyond or through the start point
|
||
|
VectorCopy( start, result );
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
if ( dot == 1 )
|
||
|
{
|
||
|
//parallel, closer of 2 points will be the target
|
||
|
if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
|
||
|
{
|
||
|
VectorCopy( from, result );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
VectorCopy( end, result );
|
||
|
}
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
//Try other end
|
||
|
VectorSubtract( from, end, vecEnd2From);
|
||
|
VectorSubtract( start, end, vecEnd2Start);
|
||
|
|
||
|
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
|
||
|
|
||
|
if ( dot <= 0 )
|
||
|
{//The perpendicular would be beyond or through the start point
|
||
|
VectorCopy( end, result );
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
if ( dot == 1 )
|
||
|
{//parallel, closer of 2 points will be the target
|
||
|
if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
|
||
|
{
|
||
|
VectorCopy( from, result );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
VectorCopy( end, result );
|
||
|
}
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
// /|
|
||
|
// c / |
|
||
|
// / |a
|
||
|
// theta /)__|
|
||
|
// b
|
||
|
//cos(theta) = b / c
|
||
|
//solve for b
|
||
|
//b = cos(theta) * c
|
||
|
|
||
|
//angle between vecs end2from and end2start, should be between 0 and 90
|
||
|
theta = 90 * (1 - dot);//theta
|
||
|
|
||
|
//Get length of side from End2Result using sine of theta
|
||
|
distEnd2From = VectorLength( vecEnd2From );//c
|
||
|
cos_theta = cosf(DEG2RAD(theta));//cos(theta)
|
||
|
distEnd2Result = cos_theta * distEnd2From;//b
|
||
|
|
||
|
//Extrapolate to find result
|
||
|
VectorNormalize( vecEnd2Start );
|
||
|
VectorMA( end, distEnd2Result, vecEnd2Start, result );
|
||
|
|
||
|
//perpendicular intersection is between the 2 endpoints
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
|
||
|
{
|
||
|
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
|
||
|
float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta, dot;
|
||
|
|
||
|
//Find the perpendicular vector to vec from start to end
|
||
|
VectorSubtract( from, start, vecStart2From);
|
||
|
VectorSubtract( end, start, vecStart2End);
|
||
|
VectorSubtract( from, end, vecEnd2From);
|
||
|
VectorSubtract( start, end, vecEnd2Start);
|
||
|
|
||
|
dot = DotProductNormalize( vecStart2From, vecStart2End );
|
||
|
|
||
|
distStart2From = Distance( start, from );
|
||
|
distEnd2From = Distance( end, from );
|
||
|
|
||
|
if ( dot <= 0 )
|
||
|
{
|
||
|
//The perpendicular would be beyond or through the start point
|
||
|
return distStart2From;
|
||
|
}
|
||
|
|
||
|
if ( dot == 1 )
|
||
|
{
|
||
|
//parallel, closer of 2 points will be the target
|
||
|
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
|
||
|
}
|
||
|
|
||
|
//Try other end
|
||
|
|
||
|
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
|
||
|
|
||
|
if ( dot <= 0 )
|
||
|
{//The perpendicular would be beyond or through the end point
|
||
|
return distEnd2From;
|
||
|
}
|
||
|
|
||
|
if ( dot == 1 )
|
||
|
{//parallel, closer of 2 points will be the target
|
||
|
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
|
||
|
}
|
||
|
|
||
|
// /|
|
||
|
// c / |
|
||
|
// / |a
|
||
|
// theta /)__|
|
||
|
// b
|
||
|
//cos(theta) = b / c
|
||
|
//solve for b
|
||
|
//b = cos(theta) * c
|
||
|
|
||
|
//angle between vecs end2from and end2start, should be between 0 and 90
|
||
|
theta = 90 * (1 - dot);//theta
|
||
|
|
||
|
//Get length of side from End2Result using sine of theta
|
||
|
cos_theta = cosf(DEG2RAD(theta));//cos(theta)
|
||
|
distEnd2Result = cos_theta * distEnd2From;//b
|
||
|
|
||
|
//Extrapolate to find result
|
||
|
VectorNormalize( vecEnd2Start );
|
||
|
VectorMA( end, distEnd2Result, vecEnd2Start, intersection );
|
||
|
|
||
|
//perpendicular intersection is between the 2 endpoints, return dist to it from from
|
||
|
return Distance( intersection, from );
|
||
|
}
|
||
|
|
||
|
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
|
||
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
||
|
in1[0][2] * in2[2][0];
|
||
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
||
|
in1[0][2] * in2[2][1];
|
||
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
||
|
in1[0][2] * in2[2][2];
|
||
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
||
|
in1[1][2] * in2[2][0];
|
||
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
||
|
in1[1][2] * in2[2][1];
|
||
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
||
|
in1[1][2] * in2[2][2];
|
||
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
||
|
in1[2][2] * in2[2][0];
|
||
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
||
|
in1[2][2] * in2[2][1];
|
||
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
||
|
in1[2][2] * in2[2][2];
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// BOUNDING BOX
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
||
|
int i;
|
||
|
vec3_t corner;
|
||
|
float a, b;
|
||
|
|
||
|
for (i=0 ; i<3 ; i++) {
|
||
|
a = fabsf( mins[i] );
|
||
|
b = fabsf( maxs[i] );
|
||
|
corner[i] = a > b ? a : b;
|
||
|
}
|
||
|
|
||
|
return VectorLength (corner);
|
||
|
}
|
||
|
|
||
|
void ClearBounds( vec3_t mins, vec3_t maxs ) {
|
||
|
mins[0] = mins[1] = mins[2] = 100000;
|
||
|
maxs[0] = maxs[1] = maxs[2] = -100000;
|
||
|
}
|
||
|
|
||
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
|
||
|
if ( v[0] < mins[0] ) {
|
||
|
mins[0] = v[0];
|
||
|
}
|
||
|
if ( v[0] > maxs[0]) {
|
||
|
maxs[0] = v[0];
|
||
|
}
|
||
|
|
||
|
if ( v[1] < mins[1] ) {
|
||
|
mins[1] = v[1];
|
||
|
}
|
||
|
if ( v[1] > maxs[1]) {
|
||
|
maxs[1] = v[1];
|
||
|
}
|
||
|
|
||
|
if ( v[2] < mins[2] ) {
|
||
|
mins[2] = v[2];
|
||
|
}
|
||
|
if ( v[2] > maxs[2]) {
|
||
|
maxs[2] = v[2];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// PLANE
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
void SetPlaneSignbits( cplane_t *out )
|
||
|
{
|
||
|
int bits, j;
|
||
|
|
||
|
// for fast box on planeside test
|
||
|
bits = 0;
|
||
|
for (j=0 ; j<3 ; j++) {
|
||
|
if (out->normal[j] < 0) {
|
||
|
bits |= 1<<j;
|
||
|
}
|
||
|
}
|
||
|
out->signbits = bits;
|
||
|
}
|
||
|
|
||
|
int PlaneTypeForNormal( vec3_t normal )
|
||
|
{
|
||
|
if ( normal[0] == 1.0 )
|
||
|
return PLANE_X;
|
||
|
if ( normal[1] == 1.0 )
|
||
|
return PLANE_Y;
|
||
|
if ( normal[2] == 1.0 )
|
||
|
return PLANE_Z;
|
||
|
|
||
|
return PLANE_NON_AXIAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
==================
|
||
|
BoxOnPlaneSide
|
||
|
|
||
|
Returns 1, 2, or 1 + 2
|
||
|
==================
|
||
|
*/
|
||
|
int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, cplane_t *p)
|
||
|
{
|
||
|
float dist[2];
|
||
|
int sides, b, i;
|
||
|
|
||
|
// fast axial cases
|
||
|
if (p->type < 3)
|
||
|
{
|
||
|
if (p->dist <= emins[p->type])
|
||
|
return 1;
|
||
|
if (p->dist >= emaxs[p->type])
|
||
|
return 2;
|
||
|
return 3;
|
||
|
}
|
||
|
|
||
|
// general case
|
||
|
dist[0] = dist[1] = 0;
|
||
|
if (p->signbits < 8) // >= 8: default case is original code (dist[0]=dist[1]=0)
|
||
|
{
|
||
|
for (i=0 ; i<3 ; i++)
|
||
|
{
|
||
|
b = (p->signbits >> i) & 1;
|
||
|
dist[ b] += p->normal[i]*emaxs[i];
|
||
|
dist[!b] += p->normal[i]*emins[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sides = 0;
|
||
|
if (dist[0] >= p->dist)
|
||
|
sides = 1;
|
||
|
if (dist[1] < p->dist)
|
||
|
sides |= 2;
|
||
|
|
||
|
return sides;
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// AXIS
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
matrix3_t axisDefault = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
|
||
|
|
||
|
void AxisClear( matrix3_t axis ) {
|
||
|
axis[0][0] = 1;
|
||
|
axis[0][1] = 0;
|
||
|
axis[0][2] = 0;
|
||
|
axis[1][0] = 0;
|
||
|
axis[1][1] = 1;
|
||
|
axis[1][2] = 0;
|
||
|
axis[2][0] = 0;
|
||
|
axis[2][1] = 0;
|
||
|
axis[2][2] = 1;
|
||
|
}
|
||
|
|
||
|
void AxisCopy( matrix3_t in, matrix3_t out ) {
|
||
|
VectorCopy( in[0], out[0] );
|
||
|
VectorCopy( in[1], out[1] );
|
||
|
VectorCopy( in[2], out[2] );
|
||
|
}
|
||
|
|
||
|
void AnglesToAxis( const vec3_t angles, matrix3_t axis ) {
|
||
|
vec3_t right;
|
||
|
|
||
|
// angle vectors returns "right" instead of "y axis"
|
||
|
AngleVectors( angles, axis[0], right, axis[2] );
|
||
|
VectorSubtract( vec3_origin, right, axis[1] );
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC2
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
vec2_t vec2_zero = {0,0};
|
||
|
|
||
|
void VectorAdd2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vec1[0]+vec2[0];
|
||
|
vecOut[1] = vec1[1]+vec2[1];
|
||
|
}
|
||
|
|
||
|
void VectorSubtract2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vec1[0]-vec2[0];
|
||
|
vecOut[1] = vec1[1]-vec2[1];
|
||
|
}
|
||
|
|
||
|
void VectorScale2( const vec2_t vecIn, float scale, vec2_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vecIn[0]*scale;
|
||
|
vecOut[1] = vecIn[1]*scale;
|
||
|
}
|
||
|
|
||
|
void VectorMA2( const vec2_t vec1, float scale, const vec2_t vec2, vec2_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vec1[0] + scale*vec2[0];
|
||
|
vecOut[1] = vec1[1] + scale*vec2[1];
|
||
|
}
|
||
|
|
||
|
void VectorSet2( vec2_t vec, float x, float y )
|
||
|
{
|
||
|
vec[0]=x; vec[1]=y;
|
||
|
}
|
||
|
|
||
|
void VectorClear2( vec2_t vec )
|
||
|
{
|
||
|
vec[0] = vec[1] = 0.0f;
|
||
|
}
|
||
|
|
||
|
void VectorCopy2( const vec2_t vecIn, vec2_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vecIn[0];
|
||
|
vecOut[1] = vecIn[1];
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC3
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
vec3_t vec3_origin = {0,0,0};
|
||
|
|
||
|
void VectorAdd( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vec1[0]+vec2[0];
|
||
|
vecOut[1] = vec1[1]+vec2[1];
|
||
|
vecOut[2] = vec1[2]+vec2[2];
|
||
|
}
|
||
|
|
||
|
void VectorSubtract( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vec1[0]-vec2[0];
|
||
|
vecOut[1] = vec1[1]-vec2[1];
|
||
|
vecOut[2] = vec1[2]-vec2[2];
|
||
|
}
|
||
|
|
||
|
void VectorScale( const vec3_t vecIn, float scale, vec3_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vecIn[0]*scale;
|
||
|
vecOut[1] = vecIn[1]*scale;
|
||
|
vecOut[2] = vecIn[2]*scale;
|
||
|
}
|
||
|
|
||
|
void VectorMA( const vec3_t vec1, float scale, const vec3_t vec2, vec3_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vec1[0] + scale*vec2[0];
|
||
|
vecOut[1] = vec1[1] + scale*vec2[1];
|
||
|
vecOut[2] = vec1[2] + scale*vec2[2];
|
||
|
}
|
||
|
|
||
|
void VectorSet( vec3_t vec, float x, float y, float z )
|
||
|
{
|
||
|
vec[0]=x; vec[1]=y; vec[2]=z;
|
||
|
}
|
||
|
|
||
|
void VectorClear( vec3_t vec )
|
||
|
{
|
||
|
vec[0] = vec[1] = vec[2] = 0.0f;
|
||
|
}
|
||
|
|
||
|
void VectorCopy( const vec3_t vecIn, vec3_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vecIn[0];
|
||
|
vecOut[1] = vecIn[1];
|
||
|
vecOut[2] = vecIn[2];
|
||
|
}
|
||
|
|
||
|
float VectorLength( const vec3_t vec )
|
||
|
{
|
||
|
return (float)sqrt( vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2] );
|
||
|
}
|
||
|
|
||
|
float VectorLengthSquared( const vec3_t vec )
|
||
|
{
|
||
|
return (vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
|
||
|
}
|
||
|
|
||
|
float Distance( const vec3_t p1, const vec3_t p2 )
|
||
|
{
|
||
|
vec3_t v;
|
||
|
|
||
|
VectorSubtract( p2, p1, v );
|
||
|
return VectorLength( v );
|
||
|
}
|
||
|
|
||
|
float DistanceSquared( const vec3_t p1, const vec3_t p2 )
|
||
|
{
|
||
|
vec3_t v;
|
||
|
|
||
|
VectorSubtract( p2, p1, v );
|
||
|
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||
|
}
|
||
|
|
||
|
// fast vector normalize routine that does not check to make sure
|
||
|
// that length != 0, nor does it return length, uses rsqrt approximation
|
||
|
void VectorNormalizeFast( vec3_t vec )
|
||
|
{
|
||
|
float ilength;
|
||
|
|
||
|
ilength = Q_rsqrt( DotProduct( vec, vec ) );
|
||
|
|
||
|
vec[0] *= ilength;
|
||
|
vec[1] *= ilength;
|
||
|
vec[2] *= ilength;
|
||
|
}
|
||
|
|
||
|
float VectorNormalize( vec3_t vec )
|
||
|
{
|
||
|
float length, ilength;
|
||
|
|
||
|
length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
|
||
|
length = sqrtf( length );
|
||
|
|
||
|
if ( length ) {
|
||
|
ilength = 1/length;
|
||
|
vec[0] *= ilength;
|
||
|
vec[1] *= ilength;
|
||
|
vec[2] *= ilength;
|
||
|
}
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
float VectorNormalize2( const vec3_t vec, vec3_t vecOut )
|
||
|
{
|
||
|
float length, ilength;
|
||
|
|
||
|
length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
|
||
|
length = sqrtf( length );
|
||
|
|
||
|
if ( length ) {
|
||
|
ilength = 1/length;
|
||
|
vecOut[0] = vec[0]*ilength;
|
||
|
vecOut[1] = vec[1]*ilength;
|
||
|
vecOut[2] = vec[2]*ilength;
|
||
|
}
|
||
|
else
|
||
|
VectorClear( vecOut );
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
|
||
|
{
|
||
|
vecc[0] = veca[0] + (scale * (vecb[0] - veca[0]));
|
||
|
vecc[1] = veca[1] + (scale * (vecb[1] - veca[1]));
|
||
|
vecc[2] = veca[2] + (scale * (vecb[2] - veca[2]));
|
||
|
}
|
||
|
|
||
|
void VectorInc( vec3_t vec ) {
|
||
|
vec[0] += 1.0f; vec[1] += 1.0f; vec[2] += 1.0f;
|
||
|
}
|
||
|
|
||
|
void VectorDec( vec3_t vec ) {
|
||
|
vec[0] -= 1.0f; vec[1] -= 1.0f; vec[2] -= 1.0f;
|
||
|
}
|
||
|
|
||
|
void VectorInverse( vec3_t vec ) {
|
||
|
vec[0] = -vec[0]; vec[1] = -vec[1]; vec[2] = -vec[2];
|
||
|
}
|
||
|
|
||
|
void CrossProduct( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut ) {
|
||
|
vecOut[0] = vec1[1]*vec2[2] - vec1[2]*vec2[1];
|
||
|
vecOut[1] = vec1[2]*vec2[0] - vec1[0]*vec2[2];
|
||
|
vecOut[2] = vec1[0]*vec2[1] - vec1[1]*vec2[0];
|
||
|
}
|
||
|
|
||
|
float DotProduct( const vec3_t vec1, const vec3_t vec2 ) {
|
||
|
return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
|
||
|
}
|
||
|
|
||
|
qboolean VectorCompare( const vec3_t vec1, const vec3_t vec2 )
|
||
|
{
|
||
|
return (qboolean)(vec1[0] == vec2[0] && vec1[1] == vec2[1] && vec1[2] == vec2[2]);
|
||
|
}
|
||
|
|
||
|
qboolean VectorCompare2( const vec3_t v1, const vec3_t v2 )
|
||
|
{
|
||
|
if ( v1[0] > (v2[0] + 0.0001f) || v1[0] < (v2[0] - 0.0001f) ||
|
||
|
v1[1] > (v2[1] + 0.0001f) || v1[1] < (v2[1] + 0.0001f) ||
|
||
|
v1[2] > (v2[2] + 0.0001f) || v1[2] < (v2[2] + 0.0001f) )
|
||
|
{
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
void SnapVector( float *v )
|
||
|
{
|
||
|
#if defined(_MSC_VER) && !defined(idx64)
|
||
|
// pitiful attempt to reduce _ftol2 calls -rww
|
||
|
static int i;
|
||
|
static float f;
|
||
|
|
||
|
f = *v;
|
||
|
__asm fld f
|
||
|
__asm fistp i
|
||
|
*v = (float)i;
|
||
|
v++;
|
||
|
f = *v;
|
||
|
__asm fld f
|
||
|
__asm fistp i
|
||
|
*v = (float)i;
|
||
|
v++;
|
||
|
f = *v;
|
||
|
__asm fld f
|
||
|
__asm fistp i
|
||
|
*v = (float)i;
|
||
|
#else // mac, linux, mingw
|
||
|
v[0] = (int)v[0];
|
||
|
v[1] = (int)v[1];
|
||
|
v[2] = (int)v[2];
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
float DistanceHorizontal( const vec3_t p1, const vec3_t p2 )
|
||
|
{
|
||
|
vec3_t v;
|
||
|
|
||
|
VectorSubtract( p2, p1, v );
|
||
|
return sqrtf( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
|
||
|
}
|
||
|
|
||
|
float DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 )
|
||
|
{
|
||
|
vec3_t v;
|
||
|
|
||
|
VectorSubtract( p2, p1, v );
|
||
|
return v[0]*v[0] + v[1]*v[1]; //Leave off the z component
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
MakeNormalVectors
|
||
|
|
||
|
Given a normalized forward vector, create two
|
||
|
other perpendicular vectors
|
||
|
================
|
||
|
*/
|
||
|
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
|
||
|
float d;
|
||
|
|
||
|
// this rotate and negate guarantees a vector
|
||
|
// not colinear with the original
|
||
|
right[1] = -forward[0];
|
||
|
right[2] = forward[1];
|
||
|
right[0] = forward[2];
|
||
|
|
||
|
d = DotProduct(right, forward);
|
||
|
VectorMA(right, -d, forward, right);
|
||
|
VectorNormalize (right);
|
||
|
CrossProduct (right, forward, up);
|
||
|
}
|
||
|
|
||
|
void VectorRotate( const vec3_t in, matrix3_t matrix, vec3_t out )
|
||
|
{
|
||
|
out[0] = DotProduct( in, matrix[0] );
|
||
|
out[1] = DotProduct( in, matrix[1] );
|
||
|
out[2] = DotProduct( in, matrix[2] );
|
||
|
}
|
||
|
|
||
|
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
|
||
|
float angle;
|
||
|
static float sr, sp, sy, cr, cp, cy;
|
||
|
// static to help MS compiler fp bugs
|
||
|
|
||
|
angle = angles[YAW] * (M_PI*2 / 360);
|
||
|
sy = sinf(angle);
|
||
|
cy = cosf(angle);
|
||
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
||
|
sp = sinf(angle);
|
||
|
cp = cosf(angle);
|
||
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
||
|
sr = sinf(angle);
|
||
|
cr = cosf(angle);
|
||
|
|
||
|
if (forward)
|
||
|
{
|
||
|
forward[0] = cp*cy;
|
||
|
forward[1] = cp*sy;
|
||
|
forward[2] = -sp;
|
||
|
}
|
||
|
if (right)
|
||
|
{
|
||
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
||
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
||
|
right[2] = -1*sr*cp;
|
||
|
}
|
||
|
if (up)
|
||
|
{
|
||
|
up[0] = (cr*sp*cy+-sr*-sy);
|
||
|
up[1] = (cr*sp*sy+-sr*cy);
|
||
|
up[2] = cr*cp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** assumes "src" is normalized
|
||
|
*/
|
||
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
||
|
{
|
||
|
int pos;
|
||
|
int i;
|
||
|
float minelem = 1.0F;
|
||
|
vec3_t tempvec;
|
||
|
|
||
|
/*
|
||
|
** find the smallest magnitude axially aligned vector
|
||
|
*/
|
||
|
for ( pos = 0, i = 0; i < 3; i++ )
|
||
|
{
|
||
|
if ( fabs( src[i] ) < minelem )
|
||
|
{
|
||
|
pos = i;
|
||
|
minelem = fabsf( src[i] );
|
||
|
}
|
||
|
}
|
||
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
||
|
tempvec[pos] = 1.0F;
|
||
|
|
||
|
/*
|
||
|
** project the point onto the plane defined by src
|
||
|
*/
|
||
|
ProjectPointOnPlane( dst, tempvec, src );
|
||
|
|
||
|
/*
|
||
|
** normalize the result
|
||
|
*/
|
||
|
VectorNormalize( dst );
|
||
|
}
|
||
|
|
||
|
float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
|
||
|
{
|
||
|
vec3_t v1, v2;
|
||
|
|
||
|
VectorNormalize2( inVec1, v1 );
|
||
|
VectorNormalize2( inVec2, v2 );
|
||
|
|
||
|
return DotProduct(v1, v2);
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC4
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
void VectorScale4( const vec4_t vecIn, float scale, vec4_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vecIn[0]*scale;
|
||
|
vecOut[1] = vecIn[1]*scale;
|
||
|
vecOut[2] = vecIn[2]*scale;
|
||
|
vecOut[3] = vecIn[3]*scale;
|
||
|
}
|
||
|
|
||
|
void VectorCopy4( const vec4_t vecIn, vec4_t vecOut )
|
||
|
{
|
||
|
vecOut[0] = vecIn[0];
|
||
|
vecOut[1] = vecIn[1];
|
||
|
vecOut[2] = vecIn[2];
|
||
|
vecOut[3] = vecIn[3];
|
||
|
}
|
||
|
|
||
|
void VectorSet4( vec4_t vec, float x, float y, float z, float w )
|
||
|
{
|
||
|
vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w;
|
||
|
}
|
||
|
|
||
|
void VectorClear4( vec4_t vec )
|
||
|
{
|
||
|
vec[0] = vec[1] = vec[2] = vec[3] = 0;
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC5
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
void VectorSet5( vec5_t vec, float x, float y, float z, float w, float u ) {
|
||
|
vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w; vec[4]=u;
|
||
|
}
|