/*
===========================================================================
Copyright (C) 1999 - 2005, Id Software, Inc.
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see .
===========================================================================
*/
#include "q_math.h"
#include
#include
#include
#include
///////////////////////////////////////////////////////////////////////////
//
// DIRECTION ENCODING
//
///////////////////////////////////////////////////////////////////////////
#define NUMVERTEXNORMALS 162
static const vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
};
// this isn't a real cheap function to call!
int DirToByte( vec3_t dir )
{
int i, best;
float d, bestd;
if ( !dir ) {
return 0;
}
bestd = 0;
best = 0;
for (i=0 ; i bestd)
{
bestd = d;
best = i;
}
}
return best;
}
void ByteToDir( int b, vec3_t dir )
{
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
VectorCopy( vec3_origin, dir );
return;
}
VectorCopy(bytedirs[b], dir);
}
/*
** NormalToLatLong
**
** We use two byte encoded normals in some space critical applications.
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
**
*/
//rwwRMG - added
void NormalToLatLong( const vec3_t normal, byte bytes[2] )
{
// check for singularities
if (!normal[0] && !normal[1])
{
if ( normal[2] > 0.0f )
{
bytes[0] = 0;
bytes[1] = 0; // lat = 0, long = 0
}
else
{
bytes[0] = 128;
bytes[1] = 0; // lat = 0, long = 128
}
}
else
{
int a, b;
a = (int)(RAD2DEG( (float)atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ));
a &= 0xff;
b = (int)(RAD2DEG( (float)acos( normal[2] ) ) * ( 255.0f / 360.0f ));
b &= 0xff;
bytes[0] = b; // longitude
bytes[1] = a; // lattitude
}
}
///////////////////////////////////////////////////////////////////////////
//
// RANDOM NUMBER GENERATION
//
///////////////////////////////////////////////////////////////////////////
int Q_rand( int *seed )
{
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random( int *seed )
{
return (Q_rand(seed) & 0xffff) / (float)0x10000;
}
float Q_crandom( int *seed )
{
return 2.0f * (Q_random(seed) - 0.5f);
}
// This is the VC libc version of rand() without multiple seeds per thread or 12 levels
// of subroutine calls.
// Both calls have been designed to minimise the inherent number of float <--> int
// conversions and the additional math required to get the desired value.
// eg the typical tint = (rand() * 255) / 32768
// becomes tint = irand(0, 255)
static uint32_t holdrand = 0x89abcdef;
void Rand_Init( int seed )
{
holdrand = seed;
}
// Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max)
float flrand(float min, float max)
{
float result;
holdrand = (holdrand * 214013L) + 2531011L;
result = (float)(holdrand >> 17); // 0 - 32767 range
result = ((result * (max - min)) / (float)QRAND_MAX) + min;
return(result);
}
float Q_flrand( float min, float max )
{
return flrand(min, max);
}
// Returns an integer min <= x <= max (ie inclusive)
int irand( int min, int max )
{
int result;
assert((max - min) < QRAND_MAX);
max++;
holdrand = (holdrand * 214013L) + 2531011L;
result = holdrand >> 17;
result = ((result * (max - min)) >> 15) + min;
return result;
}
int Q_irand( int value1, int value2 )
{
return irand(value1, value2);
}
/*
erandom
This function produces a random number with a exponential
distribution and the specified mean value.
*/
float erandom( float mean )
{
float r;
do {
r = Q_flrand(0.0f, 1.0f);
} while ( r == 0.0 );
return -mean * logf( r );
}
///////////////////////////////////////////////////////////////////////////
//
// MATH UTILITIES
//
///////////////////////////////////////////////////////////////////////////
signed char ClampChar( int i )
{
if ( i < -128 ) {
return -128;
}
if ( i > 127 ) {
return 127;
}
return i;
}
signed short ClampShort( int i )
{
if ( i < -32768 ) {
return -32768;
}
if ( i > 0x7fff ) {
return 0x7fff;
}
return i;
}
int Com_Clampi( int min, int max, int value )
{
if ( value < min )
{
return min;
}
if ( value > max )
{
return max;
}
return value;
}
float Com_Clamp( float min, float max, float value ) {
if ( value < min ) {
return min;
}
if ( value > max ) {
return max;
}
return value;
}
int Com_AbsClampi( int min, int max, int value )
{
if( value < 0 )
{
return Com_Clampi( -max, -min, value );
}
else
{
return Com_Clampi( min, max, value );
}
}
float Com_AbsClamp( float min, float max, float value )
{
if( value < 0.0f )
{
return Com_Clamp( -max, -min, value );
}
else
{
return Com_Clamp( min, max, value );
}
}
float Q_rsqrt( float number )
{
byteAlias_t t;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
t.f = number;
t.i = 0x5f3759df - ( t.i >> 1 ); // what the fuck?
y = t.f;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
assert( !Q_isnan(y) );
return y;
}
float Q_fabs( float f )
{
byteAlias_t fi;
fi.f = f;
fi.i &= 0x7FFFFFFF;
return fi.f;
}
/*
=====================
Q_acos
the msvc acos doesn't always return a value between -PI and PI:
int i;
i = 1065353246;
acos(*(float*) &i) == -1.#IND0
This should go in q_math but it is too late to add new traps
to game and ui
=====================
*/
float Q_acos(float c) {
float angle;
angle = acosf(c);
if (angle > M_PI) {
return (float)M_PI;
}
if (angle < -M_PI) {
return (float)M_PI;
}
return angle;
}
float Q_asin(float c)
{
float angle;
angle = asinf(c);
if (angle > M_PI) {
return (float)M_PI;
}
if (angle < -M_PI) {
return (float)M_PI;
}
return angle;
}
float Q_powf ( float x, int y )
{
float r = x;
for ( y--; y>0; y-- )
r *= x;
return r;
}
qboolean Q_isnan (float f)
{
#ifdef _MSC_VER
return (qboolean)(_isnan (f) != 0);
#else
return (qboolean)(isnan (f) != 0);
#endif
}
int Q_log2( int val )
{
int answer;
answer = 0;
while ( ( val>>=1 ) != 0 ) {
answer++;
}
return answer;
}
float LerpAngle(float from, float to, float frac)
{
float a;
if ( to - from > 180 ) {
to -= 360;
}
if ( to - from < -180 ) {
to += 360;
}
a = from + frac * (to - from);
return a;
}
/*
=================
AngleSubtract
Always returns a value from -180 to 180
=================
*/
float AngleSubtract( float a1, float a2 ) {
float a;
a = a1 - a2;
a=fmodf(a,360);//chop it down quickly, then level it out
while ( a > 180 ) {
a -= 360;
}
while ( a < -180 ) {
a += 360;
}
return a;
}
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
v3[0] = AngleSubtract( v1[0], v2[0] );
v3[1] = AngleSubtract( v1[1], v2[1] );
v3[2] = AngleSubtract( v1[2], v2[2] );
}
float AngleMod(float a) {
a = (360.0f/65536) * ((int)(a*(65536/360.0f)) & 65535);
return a;
}
/*
=================
AngleNormalize360
returns angle normalized to the range [0 <= angle < 360]
=================
*/
float AngleNormalize360 ( float angle ) {
return (360.0f / 65536) * ((int)(angle * (65536 / 360.0f)) & 65535);
}
/*
=================
AngleNormalize180
returns angle normalized to the range [-180 < angle <= 180]
=================
*/
float AngleNormalize180 ( float angle ) {
angle = AngleNormalize360( angle );
if ( angle > 180.0 ) {
angle -= 360.0;
}
return angle;
}
/*
=================
AngleDelta
returns the normalized delta from angle1 to angle2
=================
*/
float AngleDelta ( float angle1, float angle2 ) {
return AngleNormalize180( angle1 - angle2 );
}
///////////////////////////////////////////////////////////////////////////
//
// GEOMETRIC UTILITIES
//
///////////////////////////////////////////////////////////////////////////
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
===============
RotatePointAroundVector
From q3mme
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) {
float m[3][3];
float c, s, t;
degrees = -DEG2RAD( degrees );
s = sinf( degrees );
c = cosf( degrees );
t = 1 - c;
m[0][0] = t*dir[0]*dir[0] + c;
m[0][1] = t*dir[0]*dir[1] + s*dir[2];
m[0][2] = t*dir[0]*dir[2] - s*dir[1];
m[1][0] = t*dir[0]*dir[1] - s*dir[2];
m[1][1] = t*dir[1]*dir[1] + c;
m[1][2] = t*dir[1]*dir[2] + s*dir[0];
m[2][0] = t*dir[0]*dir[2] + s*dir[1];
m[2][1] = t*dir[1]*dir[2] - s*dir[0];
m[2][2] = t*dir[2]*dir[2] + c;
VectorRotate( point, m, dst );
}
void RotateAroundDirection( matrix3_t axis, float yaw ) {
// create an arbitrary axis[1]
PerpendicularVector( axis[1], axis[0] );
// rotate it around axis[0] by yaw
if ( yaw ) {
vec3_t temp;
VectorCopy( axis[1], temp );
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
}
// cross to get axis[2]
CrossProduct( axis[0], axis[1], axis[2] );
}
void vectoangles( const vec3_t value1, vec3_t angles ) {
float forward;
float yaw, pitch;
if ( value1[1] == 0 && value1[0] == 0 ) {
yaw = 0;
if ( value1[2] > 0 ) {
pitch = 90;
}
else {
pitch = 270;
}
}
else {
if ( value1[0] ) {
yaw = ( atan2f ( value1[1], value1[0] ) * 180 / M_PI );
}
else if ( value1[1] > 0 ) {
yaw = 90;
}
else {
yaw = 270;
}
if ( yaw < 0 ) {
yaw += 360;
}
forward = sqrtf ( value1[0]*value1[0] + value1[1]*value1[1] );
pitch = ( atan2f(value1[2], forward) * 180 / M_PI );
if ( pitch < 0 ) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
vec_t GetYawForDirection( const vec3_t p1, const vec3_t p2 ) {
vec3_t v, angles;
VectorSubtract( p2, p1, v );
vectoangles( v, angles );
return angles[YAW];
}
void GetAnglesForDirection( const vec3_t p1, const vec3_t p2, vec3_t out ) {
vec3_t v;
VectorSubtract( p2, p1, v );
vectoangles( v, out );
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = DotProduct( normal, normal );
assert( Q_fabs(inv_denom) != 0.0f );
inv_denom = 1.0f / inv_denom;
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
{
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
float distEnd2From, distEnd2Result, theta, cos_theta, dot;
//Find the perpendicular vector to vec from start to end
VectorSubtract( from, start, vecStart2From);
VectorSubtract( end, start, vecStart2End);
dot = DotProductNormalize( vecStart2From, vecStart2End );
if ( dot <= 0 )
{
//The perpendicular would be beyond or through the start point
VectorCopy( start, result );
return qfalse;
}
if ( dot == 1 )
{
//parallel, closer of 2 points will be the target
if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
{
VectorCopy( from, result );
}
else
{
VectorCopy( end, result );
}
return qfalse;
}
//Try other end
VectorSubtract( from, end, vecEnd2From);
VectorSubtract( start, end, vecEnd2Start);
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
if ( dot <= 0 )
{//The perpendicular would be beyond or through the start point
VectorCopy( end, result );
return qfalse;
}
if ( dot == 1 )
{//parallel, closer of 2 points will be the target
if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
{
VectorCopy( from, result );
}
else
{
VectorCopy( end, result );
}
return qfalse;
}
// /|
// c / |
// / |a
// theta /)__|
// b
//cos(theta) = b / c
//solve for b
//b = cos(theta) * c
//angle between vecs end2from and end2start, should be between 0 and 90
theta = 90 * (1 - dot);//theta
//Get length of side from End2Result using sine of theta
distEnd2From = VectorLength( vecEnd2From );//c
cos_theta = cosf(DEG2RAD(theta));//cos(theta)
distEnd2Result = cos_theta * distEnd2From;//b
//Extrapolate to find result
VectorNormalize( vecEnd2Start );
VectorMA( end, distEnd2Result, vecEnd2Start, result );
//perpendicular intersection is between the 2 endpoints
return qtrue;
}
float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
{
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta, dot;
//Find the perpendicular vector to vec from start to end
VectorSubtract( from, start, vecStart2From);
VectorSubtract( end, start, vecStart2End);
VectorSubtract( from, end, vecEnd2From);
VectorSubtract( start, end, vecEnd2Start);
dot = DotProductNormalize( vecStart2From, vecStart2End );
distStart2From = Distance( start, from );
distEnd2From = Distance( end, from );
if ( dot <= 0 )
{
//The perpendicular would be beyond or through the start point
return distStart2From;
}
if ( dot == 1 )
{
//parallel, closer of 2 points will be the target
return ((distStart2From b ? a : b;
}
return VectorLength (corner);
}
void ClearBounds( vec3_t mins, vec3_t maxs ) {
mins[0] = mins[1] = mins[2] = 100000;
maxs[0] = maxs[1] = maxs[2] = -100000;
}
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
if ( v[0] < mins[0] ) {
mins[0] = v[0];
}
if ( v[0] > maxs[0]) {
maxs[0] = v[0];
}
if ( v[1] < mins[1] ) {
mins[1] = v[1];
}
if ( v[1] > maxs[1]) {
maxs[1] = v[1];
}
if ( v[2] < mins[2] ) {
mins[2] = v[2];
}
if ( v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
///////////////////////////////////////////////////////////////////////////
//
// PLANE
//
///////////////////////////////////////////////////////////////////////////
void SetPlaneSignbits( cplane_t *out )
{
int bits, j;
// for fast box on planeside test
bits = 0;
for (j=0 ; j<3 ; j++) {
if (out->normal[j] < 0) {
bits |= 1<signbits = bits;
}
int PlaneTypeForNormal( vec3_t normal )
{
if ( normal[0] == 1.0 )
return PLANE_X;
if ( normal[1] == 1.0 )
return PLANE_Y;
if ( normal[2] == 1.0 )
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
==================
*/
int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, cplane_t *p)
{
float dist[2];
int sides, b, i;
// fast axial cases
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
dist[0] = dist[1] = 0;
if (p->signbits < 8) // >= 8: default case is original code (dist[0]=dist[1]=0)
{
for (i=0 ; i<3 ; i++)
{
b = (p->signbits >> i) & 1;
dist[ b] += p->normal[i]*emaxs[i];
dist[!b] += p->normal[i]*emins[i];
}
}
sides = 0;
if (dist[0] >= p->dist)
sides = 1;
if (dist[1] < p->dist)
sides |= 2;
return sides;
}
///////////////////////////////////////////////////////////////////////////
//
// AXIS
//
///////////////////////////////////////////////////////////////////////////
matrix3_t axisDefault = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
void AxisClear( matrix3_t axis ) {
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
void AxisCopy( matrix3_t in, matrix3_t out ) {
VectorCopy( in[0], out[0] );
VectorCopy( in[1], out[1] );
VectorCopy( in[2], out[2] );
}
void AnglesToAxis( const vec3_t angles, matrix3_t axis ) {
vec3_t right;
// angle vectors returns "right" instead of "y axis"
AngleVectors( angles, axis[0], right, axis[2] );
VectorSubtract( vec3_origin, right, axis[1] );
}
///////////////////////////////////////////////////////////////////////////
//
// VEC2
//
///////////////////////////////////////////////////////////////////////////
vec2_t vec2_zero = {0,0};
void VectorAdd2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut )
{
vecOut[0] = vec1[0]+vec2[0];
vecOut[1] = vec1[1]+vec2[1];
}
void VectorSubtract2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut )
{
vecOut[0] = vec1[0]-vec2[0];
vecOut[1] = vec1[1]-vec2[1];
}
void VectorScale2( const vec2_t vecIn, float scale, vec2_t vecOut )
{
vecOut[0] = vecIn[0]*scale;
vecOut[1] = vecIn[1]*scale;
}
void VectorMA2( const vec2_t vec1, float scale, const vec2_t vec2, vec2_t vecOut )
{
vecOut[0] = vec1[0] + scale*vec2[0];
vecOut[1] = vec1[1] + scale*vec2[1];
}
void VectorSet2( vec2_t vec, float x, float y )
{
vec[0]=x; vec[1]=y;
}
void VectorClear2( vec2_t vec )
{
vec[0] = vec[1] = 0.0f;
}
void VectorCopy2( const vec2_t vecIn, vec2_t vecOut )
{
vecOut[0] = vecIn[0];
vecOut[1] = vecIn[1];
}
///////////////////////////////////////////////////////////////////////////
//
// VEC3
//
///////////////////////////////////////////////////////////////////////////
vec3_t vec3_origin = {0,0,0};
void VectorAdd( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut )
{
vecOut[0] = vec1[0]+vec2[0];
vecOut[1] = vec1[1]+vec2[1];
vecOut[2] = vec1[2]+vec2[2];
}
void VectorSubtract( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut )
{
vecOut[0] = vec1[0]-vec2[0];
vecOut[1] = vec1[1]-vec2[1];
vecOut[2] = vec1[2]-vec2[2];
}
void VectorScale( const vec3_t vecIn, float scale, vec3_t vecOut )
{
vecOut[0] = vecIn[0]*scale;
vecOut[1] = vecIn[1]*scale;
vecOut[2] = vecIn[2]*scale;
}
void VectorMA( const vec3_t vec1, float scale, const vec3_t vec2, vec3_t vecOut )
{
vecOut[0] = vec1[0] + scale*vec2[0];
vecOut[1] = vec1[1] + scale*vec2[1];
vecOut[2] = vec1[2] + scale*vec2[2];
}
void VectorSet( vec3_t vec, float x, float y, float z )
{
vec[0]=x; vec[1]=y; vec[2]=z;
}
void VectorClear( vec3_t vec )
{
vec[0] = vec[1] = vec[2] = 0.0f;
}
void VectorCopy( const vec3_t vecIn, vec3_t vecOut )
{
vecOut[0] = vecIn[0];
vecOut[1] = vecIn[1];
vecOut[2] = vecIn[2];
}
float VectorLength( const vec3_t vec )
{
return (float)sqrt( vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2] );
}
float VectorLengthSquared( const vec3_t vec )
{
return (vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
}
float Distance( const vec3_t p1, const vec3_t p2 )
{
vec3_t v;
VectorSubtract( p2, p1, v );
return VectorLength( v );
}
float DistanceSquared( const vec3_t p1, const vec3_t p2 )
{
vec3_t v;
VectorSubtract( p2, p1, v );
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}
// fast vector normalize routine that does not check to make sure
// that length != 0, nor does it return length, uses rsqrt approximation
void VectorNormalizeFast( vec3_t vec )
{
float ilength;
ilength = Q_rsqrt( DotProduct( vec, vec ) );
vec[0] *= ilength;
vec[1] *= ilength;
vec[2] *= ilength;
}
float VectorNormalize( vec3_t vec )
{
float length, ilength;
length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
length = sqrtf( length );
if ( length ) {
ilength = 1/length;
vec[0] *= ilength;
vec[1] *= ilength;
vec[2] *= ilength;
}
return length;
}
float VectorNormalize2( const vec3_t vec, vec3_t vecOut )
{
float length, ilength;
length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
length = sqrtf( length );
if ( length ) {
ilength = 1/length;
vecOut[0] = vec[0]*ilength;
vecOut[1] = vec[1]*ilength;
vecOut[2] = vec[2]*ilength;
}
else
VectorClear( vecOut );
return length;
}
void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
{
vecc[0] = veca[0] + (scale * (vecb[0] - veca[0]));
vecc[1] = veca[1] + (scale * (vecb[1] - veca[1]));
vecc[2] = veca[2] + (scale * (vecb[2] - veca[2]));
}
void VectorInc( vec3_t vec ) {
vec[0] += 1.0f; vec[1] += 1.0f; vec[2] += 1.0f;
}
void VectorDec( vec3_t vec ) {
vec[0] -= 1.0f; vec[1] -= 1.0f; vec[2] -= 1.0f;
}
void VectorInverse( vec3_t vec ) {
vec[0] = -vec[0]; vec[1] = -vec[1]; vec[2] = -vec[2];
}
void CrossProduct( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut ) {
vecOut[0] = vec1[1]*vec2[2] - vec1[2]*vec2[1];
vecOut[1] = vec1[2]*vec2[0] - vec1[0]*vec2[2];
vecOut[2] = vec1[0]*vec2[1] - vec1[1]*vec2[0];
}
float DotProduct( const vec3_t vec1, const vec3_t vec2 ) {
return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
}
qboolean VectorCompare( const vec3_t vec1, const vec3_t vec2 )
{
return (qboolean)(vec1[0] == vec2[0] && vec1[1] == vec2[1] && vec1[2] == vec2[2]);
}
qboolean VectorCompare2( const vec3_t v1, const vec3_t v2 )
{
if ( v1[0] > (v2[0] + 0.0001f) || v1[0] < (v2[0] - 0.0001f) ||
v1[1] > (v2[1] + 0.0001f) || v1[1] < (v2[1] + 0.0001f) ||
v1[2] > (v2[2] + 0.0001f) || v1[2] < (v2[2] + 0.0001f) )
{
return qfalse;
}
return qtrue;
}
void SnapVector( float *v )
{
#if defined(_MSC_VER) && !defined(idx64)
// pitiful attempt to reduce _ftol2 calls -rww
static int i;
static float f;
f = *v;
__asm fld f
__asm fistp i
*v = (float)i;
v++;
f = *v;
__asm fld f
__asm fistp i
*v = (float)i;
v++;
f = *v;
__asm fld f
__asm fistp i
*v = (float)i;
#else // mac, linux, mingw
v[0] = (int)v[0];
v[1] = (int)v[1];
v[2] = (int)v[2];
#endif
}
float DistanceHorizontal( const vec3_t p1, const vec3_t p2 )
{
vec3_t v;
VectorSubtract( p2, p1, v );
return sqrtf( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
}
float DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 )
{
vec3_t v;
VectorSubtract( p2, p1, v );
return v[0]*v[0] + v[1]*v[1]; //Leave off the z component
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct(right, forward);
VectorMA(right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
void VectorRotate( const vec3_t in, matrix3_t matrix, vec3_t out )
{
out[0] = DotProduct( in, matrix[0] );
out[1] = DotProduct( in, matrix[1] );
out[2] = DotProduct( in, matrix[2] );
}
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI*2 / 360);
sy = sinf(angle);
cy = cosf(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sinf(angle);
cp = cosf(angle);
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sinf(angle);
cr = cosf(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
right[1] = (-1*sr*sp*sy+-1*cr*cy);
right[2] = -1*sr*cp;
}
if (up)
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = fabsf( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
{
vec3_t v1, v2;
VectorNormalize2( inVec1, v1 );
VectorNormalize2( inVec2, v2 );
return DotProduct(v1, v2);
}
///////////////////////////////////////////////////////////////////////////
//
// VEC4
//
///////////////////////////////////////////////////////////////////////////
void VectorScale4( const vec4_t vecIn, float scale, vec4_t vecOut )
{
vecOut[0] = vecIn[0]*scale;
vecOut[1] = vecIn[1]*scale;
vecOut[2] = vecIn[2]*scale;
vecOut[3] = vecIn[3]*scale;
}
void VectorCopy4( const vec4_t vecIn, vec4_t vecOut )
{
vecOut[0] = vecIn[0];
vecOut[1] = vecIn[1];
vecOut[2] = vecIn[2];
vecOut[3] = vecIn[3];
}
void VectorSet4( vec4_t vec, float x, float y, float z, float w )
{
vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w;
}
void VectorClear4( vec4_t vec )
{
vec[0] = vec[1] = vec[2] = vec[3] = 0;
}
///////////////////////////////////////////////////////////////////////////
//
// VEC5
//
///////////////////////////////////////////////////////////////////////////
void VectorSet5( vec5_t vec, float x, float y, float z, float w, float u ) {
vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w; vec[4]=u;
}