/* =========================================================================== Copyright (C) 1999 - 2005, Id Software, Inc. Copyright (C) 2000 - 2013, Raven Software, Inc. Copyright (C) 2001 - 2013, Activision, Inc. Copyright (C) 2013 - 2015, OpenJK contributors This file is part of the OpenJK source code. OpenJK is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . =========================================================================== */ #include "q_math.h" #include #include #include #include /////////////////////////////////////////////////////////////////////////// // // DIRECTION ENCODING // /////////////////////////////////////////////////////////////////////////// #define NUMVERTEXNORMALS 162 static const vec3_t bytedirs[NUMVERTEXNORMALS] = { {-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f}, {-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f}, {-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f}, {0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f}, {0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f}, {0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f}, {0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f}, {0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f}, {-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f}, {-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f}, {-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f}, {-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f}, {-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f}, {-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f}, {0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f}, {0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f}, {0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f}, {-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f}, {0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f}, {0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f}, {0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f}, {0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f}, {0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f}, {0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f}, {0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f}, {0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f}, {1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f}, {0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f}, {0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f}, {0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f}, {0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f}, {0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f}, {0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f}, {0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f}, {0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f}, {0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f}, {0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f}, {0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f}, {0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f}, {-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f}, {-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f}, {-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f}, {0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f}, {0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f}, {-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f}, {0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f}, {0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f}, {0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f}, {0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f}, {0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f}, {0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f}, {0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f}, {0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f}, {0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f}, {0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f}, {0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f}, {0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f}, {-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f}, {-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f}, {-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f}, {-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f}, {-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f}, {-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f}, {-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f}, {-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f}, {-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f}, {-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f}, {0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f}, {0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f}, {0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f}, {0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f}, {-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f}, {-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f}, {-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f}, {-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f}, {-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f}, {-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f}, {-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f}, {-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f}, {-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f}, {-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f} }; // this isn't a real cheap function to call! int DirToByte( vec3_t dir ) { int i, best; float d, bestd; if ( !dir ) { return 0; } bestd = 0; best = 0; for (i=0 ; i bestd) { bestd = d; best = i; } } return best; } void ByteToDir( int b, vec3_t dir ) { if ( b < 0 || b >= NUMVERTEXNORMALS ) { VectorCopy( vec3_origin, dir ); return; } VectorCopy(bytedirs[b], dir); } /* ** NormalToLatLong ** ** We use two byte encoded normals in some space critical applications. ** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format ** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format ** */ //rwwRMG - added void NormalToLatLong( const vec3_t normal, byte bytes[2] ) { // check for singularities if (!normal[0] && !normal[1]) { if ( normal[2] > 0.0f ) { bytes[0] = 0; bytes[1] = 0; // lat = 0, long = 0 } else { bytes[0] = 128; bytes[1] = 0; // lat = 0, long = 128 } } else { int a, b; a = (int)(RAD2DEG( (float)atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f )); a &= 0xff; b = (int)(RAD2DEG( (float)acos( normal[2] ) ) * ( 255.0f / 360.0f )); b &= 0xff; bytes[0] = b; // longitude bytes[1] = a; // lattitude } } /////////////////////////////////////////////////////////////////////////// // // RANDOM NUMBER GENERATION // /////////////////////////////////////////////////////////////////////////// int Q_rand( int *seed ) { *seed = (69069 * *seed + 1); return *seed; } float Q_random( int *seed ) { return (Q_rand(seed) & 0xffff) / (float)0x10000; } float Q_crandom( int *seed ) { return 2.0f * (Q_random(seed) - 0.5f); } // This is the VC libc version of rand() without multiple seeds per thread or 12 levels // of subroutine calls. // Both calls have been designed to minimise the inherent number of float <--> int // conversions and the additional math required to get the desired value. // eg the typical tint = (rand() * 255) / 32768 // becomes tint = irand(0, 255) static uint32_t holdrand = 0x89abcdef; void Rand_Init( int seed ) { holdrand = seed; } // Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max) float flrand(float min, float max) { float result; holdrand = (holdrand * 214013L) + 2531011L; result = (float)(holdrand >> 17); // 0 - 32767 range result = ((result * (max - min)) / (float)QRAND_MAX) + min; return(result); } float Q_flrand( float min, float max ) { return flrand(min, max); } // Returns an integer min <= x <= max (ie inclusive) int irand( int min, int max ) { int result; assert((max - min) < QRAND_MAX); max++; holdrand = (holdrand * 214013L) + 2531011L; result = holdrand >> 17; result = ((result * (max - min)) >> 15) + min; return result; } int Q_irand( int value1, int value2 ) { return irand(value1, value2); } /* erandom This function produces a random number with a exponential distribution and the specified mean value. */ float erandom( float mean ) { float r; do { r = Q_flrand(0.0f, 1.0f); } while ( r == 0.0 ); return -mean * logf( r ); } /////////////////////////////////////////////////////////////////////////// // // MATH UTILITIES // /////////////////////////////////////////////////////////////////////////// signed char ClampChar( int i ) { if ( i < -128 ) { return -128; } if ( i > 127 ) { return 127; } return i; } signed short ClampShort( int i ) { if ( i < -32768 ) { return -32768; } if ( i > 0x7fff ) { return 0x7fff; } return i; } int Com_Clampi( int min, int max, int value ) { if ( value < min ) { return min; } if ( value > max ) { return max; } return value; } float Com_Clamp( float min, float max, float value ) { if ( value < min ) { return min; } if ( value > max ) { return max; } return value; } int Com_AbsClampi( int min, int max, int value ) { if( value < 0 ) { return Com_Clampi( -max, -min, value ); } else { return Com_Clampi( min, max, value ); } } float Com_AbsClamp( float min, float max, float value ) { if( value < 0.0f ) { return Com_Clamp( -max, -min, value ); } else { return Com_Clamp( min, max, value ); } } float Q_rsqrt( float number ) { byteAlias_t t; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; t.f = number; t.i = 0x5f3759df - ( t.i >> 1 ); // what the fuck? y = t.f; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed assert( !Q_isnan(y) ); return y; } float Q_fabs( float f ) { byteAlias_t fi; fi.f = f; fi.i &= 0x7FFFFFFF; return fi.f; } /* ===================== Q_acos the msvc acos doesn't always return a value between -PI and PI: int i; i = 1065353246; acos(*(float*) &i) == -1.#IND0 This should go in q_math but it is too late to add new traps to game and ui ===================== */ float Q_acos(float c) { float angle; angle = acosf(c); if (angle > M_PI) { return (float)M_PI; } if (angle < -M_PI) { return (float)M_PI; } return angle; } float Q_asin(float c) { float angle; angle = asinf(c); if (angle > M_PI) { return (float)M_PI; } if (angle < -M_PI) { return (float)M_PI; } return angle; } float Q_powf ( float x, int y ) { float r = x; for ( y--; y>0; y-- ) r *= x; return r; } qboolean Q_isnan (float f) { #ifdef _MSC_VER return (qboolean)(_isnan (f) != 0); #else return (qboolean)(isnan (f) != 0); #endif } int Q_log2( int val ) { int answer; answer = 0; while ( ( val>>=1 ) != 0 ) { answer++; } return answer; } float LerpAngle(float from, float to, float frac) { float a; if ( to - from > 180 ) { to -= 360; } if ( to - from < -180 ) { to += 360; } a = from + frac * (to - from); return a; } /* ================= AngleSubtract Always returns a value from -180 to 180 ================= */ float AngleSubtract( float a1, float a2 ) { float a; a = a1 - a2; a=fmodf(a,360);//chop it down quickly, then level it out while ( a > 180 ) { a -= 360; } while ( a < -180 ) { a += 360; } return a; } void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) { v3[0] = AngleSubtract( v1[0], v2[0] ); v3[1] = AngleSubtract( v1[1], v2[1] ); v3[2] = AngleSubtract( v1[2], v2[2] ); } float AngleMod(float a) { a = (360.0f/65536) * ((int)(a*(65536/360.0f)) & 65535); return a; } /* ================= AngleNormalize360 returns angle normalized to the range [0 <= angle < 360] ================= */ float AngleNormalize360 ( float angle ) { return (360.0f / 65536) * ((int)(angle * (65536 / 360.0f)) & 65535); } /* ================= AngleNormalize180 returns angle normalized to the range [-180 < angle <= 180] ================= */ float AngleNormalize180 ( float angle ) { angle = AngleNormalize360( angle ); if ( angle > 180.0 ) { angle -= 360.0; } return angle; } /* ================= AngleDelta returns the normalized delta from angle1 to angle2 ================= */ float AngleDelta ( float angle1, float angle2 ) { return AngleNormalize180( angle1 - angle2 ); } /////////////////////////////////////////////////////////////////////////// // // GEOMETRIC UTILITIES // /////////////////////////////////////////////////////////////////////////// /* ===================== PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } /* =============== RotatePointAroundVector From q3mme =============== */ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float c, s, t; degrees = -DEG2RAD( degrees ); s = sinf( degrees ); c = cosf( degrees ); t = 1 - c; m[0][0] = t*dir[0]*dir[0] + c; m[0][1] = t*dir[0]*dir[1] + s*dir[2]; m[0][2] = t*dir[0]*dir[2] - s*dir[1]; m[1][0] = t*dir[0]*dir[1] - s*dir[2]; m[1][1] = t*dir[1]*dir[1] + c; m[1][2] = t*dir[1]*dir[2] + s*dir[0]; m[2][0] = t*dir[0]*dir[2] + s*dir[1]; m[2][1] = t*dir[1]*dir[2] - s*dir[0]; m[2][2] = t*dir[2]*dir[2] + c; VectorRotate( point, m, dst ); } void RotateAroundDirection( matrix3_t axis, float yaw ) { // create an arbitrary axis[1] PerpendicularVector( axis[1], axis[0] ); // rotate it around axis[0] by yaw if ( yaw ) { vec3_t temp; VectorCopy( axis[1], temp ); RotatePointAroundVector( axis[1], axis[0], temp, yaw ); } // cross to get axis[2] CrossProduct( axis[0], axis[1], axis[2] ); } void vectoangles( const vec3_t value1, vec3_t angles ) { float forward; float yaw, pitch; if ( value1[1] == 0 && value1[0] == 0 ) { yaw = 0; if ( value1[2] > 0 ) { pitch = 90; } else { pitch = 270; } } else { if ( value1[0] ) { yaw = ( atan2f ( value1[1], value1[0] ) * 180 / M_PI ); } else if ( value1[1] > 0 ) { yaw = 90; } else { yaw = 270; } if ( yaw < 0 ) { yaw += 360; } forward = sqrtf ( value1[0]*value1[0] + value1[1]*value1[1] ); pitch = ( atan2f(value1[2], forward) * 180 / M_PI ); if ( pitch < 0 ) { pitch += 360; } } angles[PITCH] = -pitch; angles[YAW] = yaw; angles[ROLL] = 0; } vec_t GetYawForDirection( const vec3_t p1, const vec3_t p2 ) { vec3_t v, angles; VectorSubtract( p2, p1, v ); vectoangles( v, angles ); return angles[YAW]; } void GetAnglesForDirection( const vec3_t p1, const vec3_t p2, vec3_t out ) { vec3_t v; VectorSubtract( p2, p1, v ); vectoangles( v, out ); } void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = DotProduct( normal, normal ); assert( Q_fabs(inv_denom) != 0.0f ); inv_denom = 1.0f / inv_denom; d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result ) { vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From; float distEnd2From, distEnd2Result, theta, cos_theta, dot; //Find the perpendicular vector to vec from start to end VectorSubtract( from, start, vecStart2From); VectorSubtract( end, start, vecStart2End); dot = DotProductNormalize( vecStart2From, vecStart2End ); if ( dot <= 0 ) { //The perpendicular would be beyond or through the start point VectorCopy( start, result ); return qfalse; } if ( dot == 1 ) { //parallel, closer of 2 points will be the target if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) ) { VectorCopy( from, result ); } else { VectorCopy( end, result ); } return qfalse; } //Try other end VectorSubtract( from, end, vecEnd2From); VectorSubtract( start, end, vecEnd2Start); dot = DotProductNormalize( vecEnd2From, vecEnd2Start ); if ( dot <= 0 ) {//The perpendicular would be beyond or through the start point VectorCopy( end, result ); return qfalse; } if ( dot == 1 ) {//parallel, closer of 2 points will be the target if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start ))) { VectorCopy( from, result ); } else { VectorCopy( end, result ); } return qfalse; } // /| // c / | // / |a // theta /)__| // b //cos(theta) = b / c //solve for b //b = cos(theta) * c //angle between vecs end2from and end2start, should be between 0 and 90 theta = 90 * (1 - dot);//theta //Get length of side from End2Result using sine of theta distEnd2From = VectorLength( vecEnd2From );//c cos_theta = cosf(DEG2RAD(theta));//cos(theta) distEnd2Result = cos_theta * distEnd2From;//b //Extrapolate to find result VectorNormalize( vecEnd2Start ); VectorMA( end, distEnd2Result, vecEnd2Start, result ); //perpendicular intersection is between the 2 endpoints return qtrue; } float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from ) { vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection; float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta, dot; //Find the perpendicular vector to vec from start to end VectorSubtract( from, start, vecStart2From); VectorSubtract( end, start, vecStart2End); VectorSubtract( from, end, vecEnd2From); VectorSubtract( start, end, vecEnd2Start); dot = DotProductNormalize( vecStart2From, vecStart2End ); distStart2From = Distance( start, from ); distEnd2From = Distance( end, from ); if ( dot <= 0 ) { //The perpendicular would be beyond or through the start point return distStart2From; } if ( dot == 1 ) { //parallel, closer of 2 points will be the target return ((distStart2From b ? a : b; } return VectorLength (corner); } void ClearBounds( vec3_t mins, vec3_t maxs ) { mins[0] = mins[1] = mins[2] = 100000; maxs[0] = maxs[1] = maxs[2] = -100000; } void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) { if ( v[0] < mins[0] ) { mins[0] = v[0]; } if ( v[0] > maxs[0]) { maxs[0] = v[0]; } if ( v[1] < mins[1] ) { mins[1] = v[1]; } if ( v[1] > maxs[1]) { maxs[1] = v[1]; } if ( v[2] < mins[2] ) { mins[2] = v[2]; } if ( v[2] > maxs[2]) { maxs[2] = v[2]; } } /////////////////////////////////////////////////////////////////////////// // // PLANE // /////////////////////////////////////////////////////////////////////////// void SetPlaneSignbits( cplane_t *out ) { int bits, j; // for fast box on planeside test bits = 0; for (j=0 ; j<3 ; j++) { if (out->normal[j] < 0) { bits |= 1<signbits = bits; } int PlaneTypeForNormal( vec3_t normal ) { if ( normal[0] == 1.0 ) return PLANE_X; if ( normal[1] == 1.0 ) return PLANE_Y; if ( normal[2] == 1.0 ) return PLANE_Z; return PLANE_NON_AXIAL; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, cplane_t *p) { float dist[2]; int sides, b, i; // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } // general case dist[0] = dist[1] = 0; if (p->signbits < 8) // >= 8: default case is original code (dist[0]=dist[1]=0) { for (i=0 ; i<3 ; i++) { b = (p->signbits >> i) & 1; dist[ b] += p->normal[i]*emaxs[i]; dist[!b] += p->normal[i]*emins[i]; } } sides = 0; if (dist[0] >= p->dist) sides = 1; if (dist[1] < p->dist) sides |= 2; return sides; } /////////////////////////////////////////////////////////////////////////// // // AXIS // /////////////////////////////////////////////////////////////////////////// matrix3_t axisDefault = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; void AxisClear( matrix3_t axis ) { axis[0][0] = 1; axis[0][1] = 0; axis[0][2] = 0; axis[1][0] = 0; axis[1][1] = 1; axis[1][2] = 0; axis[2][0] = 0; axis[2][1] = 0; axis[2][2] = 1; } void AxisCopy( matrix3_t in, matrix3_t out ) { VectorCopy( in[0], out[0] ); VectorCopy( in[1], out[1] ); VectorCopy( in[2], out[2] ); } void AnglesToAxis( const vec3_t angles, matrix3_t axis ) { vec3_t right; // angle vectors returns "right" instead of "y axis" AngleVectors( angles, axis[0], right, axis[2] ); VectorSubtract( vec3_origin, right, axis[1] ); } /////////////////////////////////////////////////////////////////////////// // // VEC2 // /////////////////////////////////////////////////////////////////////////// vec2_t vec2_zero = {0,0}; void VectorAdd2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut ) { vecOut[0] = vec1[0]+vec2[0]; vecOut[1] = vec1[1]+vec2[1]; } void VectorSubtract2( const vec2_t vec1, const vec2_t vec2, vec2_t vecOut ) { vecOut[0] = vec1[0]-vec2[0]; vecOut[1] = vec1[1]-vec2[1]; } void VectorScale2( const vec2_t vecIn, float scale, vec2_t vecOut ) { vecOut[0] = vecIn[0]*scale; vecOut[1] = vecIn[1]*scale; } void VectorMA2( const vec2_t vec1, float scale, const vec2_t vec2, vec2_t vecOut ) { vecOut[0] = vec1[0] + scale*vec2[0]; vecOut[1] = vec1[1] + scale*vec2[1]; } void VectorSet2( vec2_t vec, float x, float y ) { vec[0]=x; vec[1]=y; } void VectorClear2( vec2_t vec ) { vec[0] = vec[1] = 0.0f; } void VectorCopy2( const vec2_t vecIn, vec2_t vecOut ) { vecOut[0] = vecIn[0]; vecOut[1] = vecIn[1]; } /////////////////////////////////////////////////////////////////////////// // // VEC3 // /////////////////////////////////////////////////////////////////////////// vec3_t vec3_origin = {0,0,0}; void VectorAdd( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut ) { vecOut[0] = vec1[0]+vec2[0]; vecOut[1] = vec1[1]+vec2[1]; vecOut[2] = vec1[2]+vec2[2]; } void VectorSubtract( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut ) { vecOut[0] = vec1[0]-vec2[0]; vecOut[1] = vec1[1]-vec2[1]; vecOut[2] = vec1[2]-vec2[2]; } void VectorScale( const vec3_t vecIn, float scale, vec3_t vecOut ) { vecOut[0] = vecIn[0]*scale; vecOut[1] = vecIn[1]*scale; vecOut[2] = vecIn[2]*scale; } void VectorMA( const vec3_t vec1, float scale, const vec3_t vec2, vec3_t vecOut ) { vecOut[0] = vec1[0] + scale*vec2[0]; vecOut[1] = vec1[1] + scale*vec2[1]; vecOut[2] = vec1[2] + scale*vec2[2]; } void VectorSet( vec3_t vec, float x, float y, float z ) { vec[0]=x; vec[1]=y; vec[2]=z; } void VectorClear( vec3_t vec ) { vec[0] = vec[1] = vec[2] = 0.0f; } void VectorCopy( const vec3_t vecIn, vec3_t vecOut ) { vecOut[0] = vecIn[0]; vecOut[1] = vecIn[1]; vecOut[2] = vecIn[2]; } float VectorLength( const vec3_t vec ) { return (float)sqrt( vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2] ); } float VectorLengthSquared( const vec3_t vec ) { return (vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]); } float Distance( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract( p2, p1, v ); return VectorLength( v ); } float DistanceSquared( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract( p2, p1, v ); return v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; } // fast vector normalize routine that does not check to make sure // that length != 0, nor does it return length, uses rsqrt approximation void VectorNormalizeFast( vec3_t vec ) { float ilength; ilength = Q_rsqrt( DotProduct( vec, vec ) ); vec[0] *= ilength; vec[1] *= ilength; vec[2] *= ilength; } float VectorNormalize( vec3_t vec ) { float length, ilength; length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]; length = sqrtf( length ); if ( length ) { ilength = 1/length; vec[0] *= ilength; vec[1] *= ilength; vec[2] *= ilength; } return length; } float VectorNormalize2( const vec3_t vec, vec3_t vecOut ) { float length, ilength; length = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]; length = sqrtf( length ); if ( length ) { ilength = 1/length; vecOut[0] = vec[0]*ilength; vecOut[1] = vec[1]*ilength; vecOut[2] = vec[2]*ilength; } else VectorClear( vecOut ); return length; } void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + (scale * (vecb[0] - veca[0])); vecc[1] = veca[1] + (scale * (vecb[1] - veca[1])); vecc[2] = veca[2] + (scale * (vecb[2] - veca[2])); } void VectorInc( vec3_t vec ) { vec[0] += 1.0f; vec[1] += 1.0f; vec[2] += 1.0f; } void VectorDec( vec3_t vec ) { vec[0] -= 1.0f; vec[1] -= 1.0f; vec[2] -= 1.0f; } void VectorInverse( vec3_t vec ) { vec[0] = -vec[0]; vec[1] = -vec[1]; vec[2] = -vec[2]; } void CrossProduct( const vec3_t vec1, const vec3_t vec2, vec3_t vecOut ) { vecOut[0] = vec1[1]*vec2[2] - vec1[2]*vec2[1]; vecOut[1] = vec1[2]*vec2[0] - vec1[0]*vec2[2]; vecOut[2] = vec1[0]*vec2[1] - vec1[1]*vec2[0]; } float DotProduct( const vec3_t vec1, const vec3_t vec2 ) { return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2]; } qboolean VectorCompare( const vec3_t vec1, const vec3_t vec2 ) { return (qboolean)(vec1[0] == vec2[0] && vec1[1] == vec2[1] && vec1[2] == vec2[2]); } qboolean VectorCompare2( const vec3_t v1, const vec3_t v2 ) { if ( v1[0] > (v2[0] + 0.0001f) || v1[0] < (v2[0] - 0.0001f) || v1[1] > (v2[1] + 0.0001f) || v1[1] < (v2[1] + 0.0001f) || v1[2] > (v2[2] + 0.0001f) || v1[2] < (v2[2] + 0.0001f) ) { return qfalse; } return qtrue; } void SnapVector( float *v ) { #if defined(_MSC_VER) && !defined(idx64) // pitiful attempt to reduce _ftol2 calls -rww static int i; static float f; f = *v; __asm fld f __asm fistp i *v = (float)i; v++; f = *v; __asm fld f __asm fistp i *v = (float)i; v++; f = *v; __asm fld f __asm fistp i *v = (float)i; #else // mac, linux, mingw v[0] = (int)v[0]; v[1] = (int)v[1]; v[2] = (int)v[2]; #endif } float DistanceHorizontal( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract( p2, p1, v ); return sqrtf( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component } float DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract( p2, p1, v ); return v[0]*v[0] + v[1]*v[1]; //Leave off the z component } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct(right, forward); VectorMA(right, -d, forward, right); VectorNormalize (right); CrossProduct (right, forward, up); } void VectorRotate( const vec3_t in, matrix3_t matrix, vec3_t out ) { out[0] = DotProduct( in, matrix[0] ); out[1] = DotProduct( in, matrix[1] ); out[2] = DotProduct( in, matrix[2] ); } void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360); sy = sinf(angle); cy = cosf(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sinf(angle); cp = cosf(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sinf(angle); cr = cosf(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabsf( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 ) { vec3_t v1, v2; VectorNormalize2( inVec1, v1 ); VectorNormalize2( inVec2, v2 ); return DotProduct(v1, v2); } /////////////////////////////////////////////////////////////////////////// // // VEC4 // /////////////////////////////////////////////////////////////////////////// void VectorScale4( const vec4_t vecIn, float scale, vec4_t vecOut ) { vecOut[0] = vecIn[0]*scale; vecOut[1] = vecIn[1]*scale; vecOut[2] = vecIn[2]*scale; vecOut[3] = vecIn[3]*scale; } void VectorCopy4( const vec4_t vecIn, vec4_t vecOut ) { vecOut[0] = vecIn[0]; vecOut[1] = vecIn[1]; vecOut[2] = vecIn[2]; vecOut[3] = vecIn[3]; } void VectorSet4( vec4_t vec, float x, float y, float z, float w ) { vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w; } void VectorClear4( vec4_t vec ) { vec[0] = vec[1] = vec[2] = vec[3] = 0; } /////////////////////////////////////////////////////////////////////////// // // VEC5 // /////////////////////////////////////////////////////////////////////////// void VectorSet5( vec5_t vec, float x, float y, float z, float w, float u ) { vec[0]=x; vec[1]=y; vec[2]=z; vec[3]=w; vec[4]=u; }