UltimateZoneBuilder/Source/Core/Geometry/Angle2D.cs

134 lines
3.7 KiB
C#
Executable file

#region ================== Copyright (c) 2007 Pascal vd Heiden
/*
* Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com
* This program is released under GNU General Public License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#endregion
#region ================== Namespaces
using System;
#endregion
namespace CodeImp.DoomBuilder.Geometry
{
public struct Angle2D
{
#region ================== Constants
public const double PI = Math.PI;
public const double PIHALF = Math.PI * 0.5;
public const double PI2 = Math.PI * 2;
public const double PIDEG = 57.295779513082320876798154814105;
public const double SQRT2 = 1.4142135623730950488016887242097;
#endregion
#region ================== Methods
// This converts doom angle to real angle
public static double DoomToReal(int doomangle)
{
return Math.Round(Normalized(DegToRad((doomangle + 90))), 4);
}
// This converts real angle to doom angle
public static int RealToDoom(double realangle)
{
return (int)Math.Round(RadToDeg(Normalized(realangle - PIHALF)));
}
// This converts degrees to radians
public static double DegToRad(double deg)
{
return deg / PIDEG;
}
// This converts radians to degrees
public static double RadToDeg(double rad)
{
return rad * PIDEG;
}
// This normalizes an angle
public static double Normalized(double a)
{
while(a < 0f) a += PI2;
while(a >= PI2) a -= PI2;
return a;
}
// This returns the difference between two angles
public static double Difference(double a, double b)
{
// Calculate delta angle
double d = Normalized(a) - Normalized(b);
// Make corrections for zero barrier
if(d < 0f) d += PI2;
if(d > PI) d = PI2 - d;
// Return result
return d;
}
//mxd. Slade 3 MathStuff::angle2DRad ripoff...
//Returns the angle between the 2d points [p1], [p2] and [p3]
public static double GetAngle(Vector2D p1, Vector2D p2, Vector2D p3)
{
// From: http://stackoverflow.com/questions/3486172/angle-between-3-points
// modified not to bother converting to degrees
Vector2D ab = new Vector2D(p2.x - p1.x, p2.y - p1.y);
Vector2D cb = new Vector2D(p2.x - p3.x, p2.y - p3.y);
// dot product
double dot = (ab.x * cb.x + ab.y * cb.y);
// length square of both vectors
double abSqr = ab.x * ab.x + ab.y * ab.y;
double cbSqr = cb.x * cb.x + cb.y * cb.y;
// square of cosine of the needed angle
double cosSqr = dot * dot / abSqr / cbSqr;
// this is a known trigonometric equality:
// cos(alpha * 2) = [ cos(alpha) ]^2 * 2 - 1
double cos2 = 2.0f * cosSqr - 1.0f;
// Here's the only invocation of the heavy function.
// It's a good idea to check explicitly if cos2 is within [-1 .. 1] range
double alpha2 =
(cos2 <= -1) ? PI :
(cos2 >= 1) ? 0.0 :
Math.Acos(cos2);
double rs = alpha2 * 0.5;
// Now revolve the ambiguities.
// 1. If dot product of two vectors is negative - the angle is definitely
// above 90 degrees. Still we have no information regarding the sign of the angle.
// NOTE: This ambiguity is the consequence of our method: calculating the cosine
// of the double angle. This allows us to get rid of calling sqrt.
if(dot < 0) rs = PI - rs;
// 2. Determine the sign. For this we'll use the Determinant of two vectors.
double det = (ab.x * cb.y - ab.y * cb.x);
if(det < 0) rs = (2.0 * PI) - rs;
return rs;
}
#endregion
}
}