Kart-Public/src/r_draw8.c

1391 lines
38 KiB
C
Raw Normal View History

2014-03-15 16:59:03 +00:00
// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2016 by Sonic Team Junior.
2014-03-15 16:59:03 +00:00
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file r_draw8.c
/// \brief 8bpp span/column drawer functions
/// \note no includes because this is included as part of r_draw.c
// ==========================================================================
// COLUMNS
// ==========================================================================
// A column is a vertical slice/span of a wall texture that uses
// a has a constant z depth from top to bottom.
//
/** \brief The R_DrawColumn_8 function
Experiment to make software go faster. Taken from the Boom source
*/
void R_DrawColumn_8(void)
{
INT32 count;
register UINT8 *dest;
register fixed_t frac;
fixed_t fracstep;
count = dc_yh - dc_yl;
if (count < 0) // Zero length, column does not exceed a pixel.
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
return;
#endif
// Framebuffer destination address.
// Use ylookup LUT to avoid multiply with ScreenWidth.
// Use columnofs LUT for subwindows?
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
count++;
// Determine scaling, which is the only mapping to be done.
fracstep = dc_iscale;
//frac = dc_texturemid + (dc_yl - centery)*fracstep;
frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires);
// Inner loop that does the actual texture mapping, e.g. a DDA-like scaling.
// This is as fast as it gets.
{
register const UINT8 *source = dc_source;
register const lighttable_t *colormap = dc_colormap;
register INT32 heightmask = dc_texheight-1;
if (dc_texheight & heightmask) // not a power of 2 -- killough
{
heightmask++;
heightmask <<= FRACBITS;
if (frac < 0)
while ((frac += heightmask) < 0);
else
while (frac >= heightmask)
frac -= heightmask;
do
{
// Re-map color indices from wall texture column
// using a lighting/special effects LUT.
// heightmask is the Tutti-Frutti fix
*dest = colormap[source[frac>>FRACBITS]];
dest += vid.width;
// Avoid overflow.
if (fracstep > 0x7FFFFFFF - frac)
frac += fracstep - heightmask;
else
frac += fracstep;
while (frac >= heightmask)
frac -= heightmask;
} while (--count);
}
else
{
while ((count -= 2) >= 0) // texture height is a power of 2
{
*dest = colormap[source[(frac>>FRACBITS) & heightmask]];
dest += vid.width;
frac += fracstep;
*dest = colormap[source[(frac>>FRACBITS) & heightmask]];
dest += vid.width;
frac += fracstep;
}
if (count & 1)
*dest = colormap[source[(frac>>FRACBITS) & heightmask]];
}
}
}
#define TRANSPARENTPIXEL 247
void R_Draw2sMultiPatchColumn_8(void)
{
INT32 count;
register UINT8 *dest;
register fixed_t frac;
fixed_t fracstep;
count = dc_yh - dc_yl;
if (count < 0) // Zero length, column does not exceed a pixel.
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
return;
#endif
// Framebuffer destination address.
// Use ylookup LUT to avoid multiply with ScreenWidth.
// Use columnofs LUT for subwindows?
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
count++;
// Determine scaling, which is the only mapping to be done.
fracstep = dc_iscale;
//frac = dc_texturemid + (dc_yl - centery)*fracstep;
frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires);
// Inner loop that does the actual texture mapping, e.g. a DDA-like scaling.
// This is as fast as it gets.
{
register const UINT8 *source = dc_source;
register const lighttable_t *colormap = dc_colormap;
register INT32 heightmask = dc_texheight-1;
register UINT8 val;
if (dc_texheight & heightmask) // not a power of 2 -- killough
{
heightmask++;
heightmask <<= FRACBITS;
if (frac < 0)
while ((frac += heightmask) < 0);
else
while (frac >= heightmask)
frac -= heightmask;
do
{
// Re-map color indices from wall texture column
// using a lighting/special effects LUT.
// heightmask is the Tutti-Frutti fix
val = source[frac>>FRACBITS];
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest += vid.width;
// Avoid overflow.
if (fracstep > 0x7FFFFFFF - frac)
frac += fracstep - heightmask;
else
frac += fracstep;
while (frac >= heightmask)
frac -= heightmask;
} while (--count);
}
else
{
while ((count -= 2) >= 0) // texture height is a power of 2
{
val = source[(frac>>FRACBITS) & heightmask];
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest += vid.width;
frac += fracstep;
val = source[(frac>>FRACBITS) & heightmask];
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest += vid.width;
frac += fracstep;
}
if (count & 1)
{
val = source[(frac>>FRACBITS) & heightmask];
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
}
}
}
}
/** \brief The R_DrawShadeColumn_8 function
Experiment to make software go faster. Taken from the Boom source
*/
void R_DrawShadeColumn_8(void)
{
register INT32 count;
register UINT8 *dest;
register fixed_t frac, fracstep;
// check out coords for src*
if ((dc_yl < 0) || (dc_x >= vid.width))
return;
count = dc_yh - dc_yl;
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
I_Error("R_DrawShadeColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x);
#endif
// FIXME. As above.
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
// Looks familiar.
fracstep = dc_iscale;
//frac = dc_texturemid + (dc_yl - centery)*fracstep;
frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires);
// Here we do an additional index re-mapping.
do
{
*dest = colormaps[(dc_source[frac>>FRACBITS] <<8) + (*dest)];
dest += vid.width;
frac += fracstep;
} while (count--);
}
/** \brief The R_DrawTranslucentColumn_8 function
I've made an asm routine for the transparency, because it slows down
a lot in 640x480 with big sprites (bfg on all screen, or transparent
walls on fullscreen)
*/
void R_DrawTranslucentColumn_8(void)
{
register INT32 count;
register UINT8 *dest;
register fixed_t frac, fracstep;
count = dc_yh - dc_yl + 1;
if (count <= 0) // Zero length, column does not exceed a pixel.
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
I_Error("R_DrawTranslucentColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x);
#endif
// FIXME. As above.
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
// Looks familiar.
fracstep = dc_iscale;
//frac = dc_texturemid + (dc_yl - centery)*fracstep;
frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires);
// Inner loop that does the actual texture mapping, e.g. a DDA-like scaling.
// This is as fast as it gets.
{
register const UINT8 *source = dc_source;
register const UINT8 *transmap = dc_transmap;
register const lighttable_t *colormap = dc_colormap;
register INT32 heightmask = dc_texheight - 1;
if (dc_texheight & heightmask)
{
heightmask++;
heightmask <<= FRACBITS;
if (frac < 0)
while ((frac += heightmask) < 0)
;
else
while (frac >= heightmask)
frac -= heightmask;
do
{
// Re-map color indices from wall texture column
// using a lighting/special effects LUT.
// heightmask is the Tutti-Frutti fix
*dest = colormap[*(transmap + (source[frac>>FRACBITS]<<8) + (*dest))];
dest += vid.width;
if ((frac += fracstep) >= heightmask)
frac -= heightmask;
}
while (--count);
}
else
{
while ((count -= 2) >= 0) // texture height is a power of 2
{
*dest = colormap[*(transmap + ((source[(frac>>FRACBITS)&heightmask]<<8)) + (*dest))];
dest += vid.width;
frac += fracstep;
*dest = colormap[*(transmap + ((source[(frac>>FRACBITS)&heightmask]<<8)) + (*dest))];
dest += vid.width;
frac += fracstep;
}
if (count & 1)
*dest = colormap[*(transmap + ((source[(frac>>FRACBITS)&heightmask]<<8)) + (*dest))];
}
}
}
/** \brief The R_DrawTranslatedTranslucentColumn_8 function
Spiffy function. Not only does it colormap a sprite, but does translucency as well.
Uber-kudos to Cyan Helkaraxe
*/
void R_DrawTranslatedTranslucentColumn_8(void)
{
register INT32 count;
register UINT8 *dest;
register fixed_t frac, fracstep;
count = dc_yh - dc_yl + 1;
if (count <= 0) // Zero length, column does not exceed a pixel.
return;
// FIXME. As above.
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
// Looks familiar.
fracstep = dc_iscale;
//frac = dc_texturemid + (dc_yl - centery)*fracstep;
frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires);
// Inner loop that does the actual texture mapping, e.g. a DDA-like scaling.
// This is as fast as it gets.
{
register INT32 heightmask = dc_texheight - 1;
if (dc_texheight & heightmask)
{
heightmask++;
heightmask <<= FRACBITS;
if (frac < 0)
while ((frac += heightmask) < 0)
;
else
while (frac >= heightmask)
frac -= heightmask;
do
{
// Re-map color indices from wall texture column
// using a lighting/special effects LUT.
// heightmask is the Tutti-Frutti fix
*dest = dc_colormap[*(dc_transmap
+ (dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]]<<8) + (*dest))];
dest += vid.width;
if ((frac += fracstep) >= heightmask)
frac -= heightmask;
}
while (--count);
}
else
{
while ((count -= 2) >= 0) // texture height is a power of 2
{
*dest = dc_colormap[*(dc_transmap
+ (dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]]<<8) + (*dest))];
dest += vid.width;
frac += fracstep;
*dest = dc_colormap[*(dc_transmap
+ (dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]]<<8) + (*dest))];
dest += vid.width;
frac += fracstep;
}
if (count & 1)
*dest = dc_colormap[*(dc_transmap + (dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]] <<8) + (*dest))];
}
}
}
/** \brief The R_DrawTranslatedColumn_8 function
Draw columns up to 128 high but remap the green ramp to other colors
\warning STILL NOT IN ASM, TO DO..
*/
void R_DrawTranslatedColumn_8(void)
{
register INT32 count;
register UINT8 *dest;
register fixed_t frac, fracstep;
count = dc_yh - dc_yl;
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
I_Error("R_DrawTranslatedColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x);
#endif
// FIXME. As above.
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
// Looks familiar.
fracstep = dc_iscale;
//frac = dc_texturemid + (dc_yl-centery)*fracstep;
frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires);
// Here we do an additional index re-mapping.
do
{
// Translation tables are used
// to map certain colorramps to other ones,
// used with PLAY sprites.
// Thus the "green" ramp of the player 0 sprite
// is mapped to gray, red, black/indigo.
*dest = dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]];
dest += vid.width;
frac += fracstep;
} while (count--);
}
// ==========================================================================
// SPANS
// ==========================================================================
/** \brief The R_DrawSpan_8 function
Draws the actual span.
*/
void R_DrawSpan_8 (void)
{
UINT32 xposition;
UINT32 yposition;
UINT32 xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
size_t count;
// SoM: we only need 6 bits for the integer part (0 thru 63) so the rest
// can be used for the fraction part. This allows calculation of the memory address in the
// texture with two shifts, an OR and one AND. (see below)
// for texture sizes > 64 the amount of precision we can allow will decrease, but only by one
// bit per power of two (obviously)
// Ok, because I was able to eliminate the variable spot below, this function is now FASTER
// than the original span renderer. Whodathunkit?
xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup;
xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
count = ds_x2 - ds_x1 + 1;
if (dest+8 > deststop)
return;
while (count >= 8)
{
// SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't
// have the uber complicated math to calculate it now, so that was a memory write we didn't
// need!
dest[0] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[1] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[2] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[3] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[4] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[5] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[6] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest[7] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
dest += 8;
count -= 8;
}
while (count-- && dest <= deststop)
{
*dest++ = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
xposition += xstep;
yposition += ystep;
}
}
2015-04-20 07:10:14 +00:00
#ifdef ESLOPE
// R_CalcTiltedLighting
// Exactly what it says on the tin. I wish I wasn't too lazy to explain things properly.
static INT32 tiltlighting[MAXVIDWIDTH];
void R_CalcTiltedLighting(fixed_t start, fixed_t end)
{
// ZDoom uses a different lighting setup to us, and I couldn't figure out how to adapt their version
// of this function. Here's my own.
INT32 left = ds_x1, right = ds_x2;
fixed_t step = (end-start)/(ds_x2-ds_x1+1);
INT32 i;
// I wanna do some optimizing by checking for out-of-range segments on either side to fill in all at once,
// but I'm too bad at coding to not crash the game trying to do that. I guess this is fast enough for now...
for (i = left; i <= right; i++) {
tiltlighting[i] = (start += step) >> FRACBITS;
if (tiltlighting[i] < 0)
tiltlighting[i] = 0;
else if (tiltlighting[i] >= MAXLIGHTSCALE)
tiltlighting[i] = MAXLIGHTSCALE-1;
}
}
2015-04-20 07:10:14 +00:00
/** \brief The R_DrawTiltedSpan_8 function
Draw slopes! Holy sheit!
*/
void R_DrawTiltedSpan_8(void)
{
// x1, x2 = ds_x1, ds_x2
int width = ds_x2 - ds_x1;
double iz, uz, vz;
UINT32 u, v;
2015-04-20 07:10:14 +00:00
int i;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
double startz, startu, startv;
double izstep, uzstep, vzstep;
double endz, endu, endv;
UINT32 stepu, stepv;
2015-04-20 07:10:14 +00:00
iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx);
// Lighting is simple. It's just linear interpolation from start to end
{
2015-05-14 02:57:47 +00:00
float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f;
float lightstart, lightend;
lightend = (iz + ds_sz.x*width) * planelightfloat;
lightstart = iz * planelightfloat;
R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend));
2015-05-14 02:57:47 +00:00
//CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf);
}
2015-04-20 07:10:14 +00:00
uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx);
vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx);
dest = ylookup[ds_y] + columnofs[ds_x1];
source = ds_source;
//colormap = ds_colormap;
2015-04-20 07:10:14 +00:00
2015-04-29 06:36:18 +00:00
#if 0 // The "perfect" reference version of this routine. Pretty slow.
// Use it only to see how things are supposed to look.
2015-04-20 07:10:14 +00:00
i = 0;
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
2015-04-20 07:10:14 +00:00
*dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
dest++;
iz += ds_sz.x;
uz += ds_su.x;
vz += ds_sv.x;
} while (--width >= 0);
2015-04-29 06:36:18 +00:00
#else
#define SPANSIZE 16
#define INVSPAN 0.0625f
startz = 1.f/iz;
startu = uz*startz;
startv = vz*startz;
2015-04-29 06:36:18 +00:00
izstep = ds_sz.x * SPANSIZE;
uzstep = ds_su.x * SPANSIZE;
vzstep = ds_sv.x * SPANSIZE;
//x1 = 0;
width++;
while (width >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
2015-04-29 06:36:18 +00:00
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
2015-04-29 06:36:18 +00:00
*dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
dest++;
u += stepu;
v += stepv;
}
startu = endu;
startv = endv;
width -= SPANSIZE;
}
if (width > 0)
{
if (width == 1)
{
u = (INT64)(startu);
v = (INT64)(startv);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
2015-04-29 06:36:18 +00:00
*dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
}
else
{
double left = width;
iz += ds_sz.x * left;
uz += ds_su.x * left;
vz += ds_sv.x * left;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
2015-04-29 06:36:18 +00:00
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
2015-04-29 06:36:18 +00:00
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
2015-04-29 06:36:18 +00:00
*dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
2015-05-17 17:24:20 +00:00
dest++;
u += stepu;
v += stepv;
}
}
}
#endif
}
/** \brief The R_DrawTiltedTranslucentSpan_8 function
Like DrawTiltedSpan, but translucent
*/
void R_DrawTiltedTranslucentSpan_8(void)
{
// x1, x2 = ds_x1, ds_x2
int width = ds_x2 - ds_x1;
double iz, uz, vz;
UINT32 u, v;
int i;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
double startz, startu, startv;
double izstep, uzstep, vzstep;
double endz, endu, endv;
UINT32 stepu, stepv;
2015-05-17 17:24:20 +00:00
iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx);
// Lighting is simple. It's just linear interpolation from start to end
{
float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f;
float lightstart, lightend;
lightend = (iz + ds_sz.x*width) * planelightfloat;
lightstart = iz * planelightfloat;
R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend));
//CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf);
}
uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx);
vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx);
dest = ylookup[ds_y] + columnofs[ds_x1];
source = ds_source;
//colormap = ds_colormap;
#if 0 // The "perfect" reference version of this routine. Pretty slow.
// Use it only to see how things are supposed to look.
i = 0;
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
2015-05-17 17:24:20 +00:00
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
*dest = colormap[*(ds_transmap + (source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)] << 8) + dest[0])];
dest++;
iz += ds_sz.x;
uz += ds_su.x;
vz += ds_sv.x;
} while (--width >= 0);
#else
#define SPANSIZE 16
#define INVSPAN 0.0625f
startz = 1.f/iz;
startu = uz*startz;
startv = vz*startz;
2015-05-17 17:24:20 +00:00
izstep = ds_sz.x * SPANSIZE;
uzstep = ds_su.x * SPANSIZE;
vzstep = ds_sv.x * SPANSIZE;
//x1 = 0;
width++;
while (width >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
2015-05-17 17:24:20 +00:00
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
*dest = colormap[*(ds_transmap + (source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)] << 8) + dest[0])];
dest++;
u += stepu;
v += stepv;
}
startu = endu;
startv = endv;
width -= SPANSIZE;
}
if (width > 0)
{
if (width == 1)
{
u = (INT64)(startu);
v = (INT64)(startv);
2015-05-17 17:24:20 +00:00
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
*dest = colormap[*(ds_transmap + (source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)] << 8) + dest[0])];
}
else
{
double left = width;
iz += ds_sz.x * left;
uz += ds_su.x * left;
vz += ds_sv.x * left;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
2015-05-17 17:24:20 +00:00
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
2015-05-17 17:24:20 +00:00
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
*dest = colormap[*(ds_transmap + (source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)] << 8) + dest[0])];
dest++;
u += stepu;
v += stepv;
}
}
}
#endif
}
void R_DrawTiltedSplat_8(void)
{
// x1, x2 = ds_x1, ds_x2
int width = ds_x2 - ds_x1;
double iz, uz, vz;
UINT32 u, v;
int i;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
UINT8 val;
double startz, startu, startv;
double izstep, uzstep, vzstep;
double endz, endu, endv;
UINT32 stepu, stepv;
iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx);
// Lighting is simple. It's just linear interpolation from start to end
{
float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f;
float lightstart, lightend;
lightend = (iz + ds_sz.x*width) * planelightfloat;
lightstart = iz * planelightfloat;
R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend));
//CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf);
}
uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx);
vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx);
dest = ylookup[ds_y] + columnofs[ds_x1];
source = ds_source;
//colormap = ds_colormap;
#if 0 // The "perfect" reference version of this routine. Pretty slow.
// Use it only to see how things are supposed to look.
i = 0;
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
val = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
if (val != TRANSPARENTPIXEL)
*dest = val;
dest++;
iz += ds_sz.x;
uz += ds_su.x;
vz += ds_sv.x;
} while (--width >= 0);
#else
#define SPANSIZE 16
#define INVSPAN 0.0625f
startz = 1.f/iz;
startu = uz*startz;
startv = vz*startz;
izstep = ds_sz.x * SPANSIZE;
uzstep = ds_su.x * SPANSIZE;
vzstep = ds_sv.x * SPANSIZE;
//x1 = 0;
width++;
while (width >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
val = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
if (val != TRANSPARENTPIXEL)
*dest = val;
dest++;
u += stepu;
v += stepv;
}
startu = endu;
startv = endv;
width -= SPANSIZE;
}
if (width > 0)
{
if (width == 1)
{
u = (INT64)(startu);
v = (INT64)(startv);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
val = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
if (val != TRANSPARENTPIXEL)
*dest = val;
}
else
{
double left = width;
iz += ds_sz.x * left;
uz += ds_su.x * left;
vz += ds_sv.x * left;
endz = 1.f/iz;
endu = uz*endz;
endv = vz*endz;
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
val = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]];
if (val != TRANSPARENTPIXEL)
*dest = val;
2015-04-29 06:36:18 +00:00
dest++;
u += stepu;
v += stepv;
}
}
}
#endif
}
2015-04-20 07:10:14 +00:00
#endif // ESLOPE
2014-03-15 16:59:03 +00:00
/** \brief The R_DrawSplat_8 function
Just like R_DrawSpan_8, but skips transparent pixels.
*/
void R_DrawSplat_8 (void)
{
UINT32 xposition;
UINT32 yposition;
UINT32 xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
size_t count;
UINT32 val;
// SoM: we only need 6 bits for the integer part (0 thru 63) so the rest
// can be used for the fraction part. This allows calculation of the memory address in the
// texture with two shifts, an OR and one AND. (see below)
// for texture sizes > 64 the amount of precision we can allow will decrease, but only by one
// bit per power of two (obviously)
// Ok, because I was able to eliminate the variable spot below, this function is now FASTER
// than the original span renderer. Whodathunkit?
xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup;
xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
count = ds_x2 - ds_x1 + 1;
while (count >= 8)
{
// SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't
// have the uber complicated math to calculate it now, so that was a memory write we didn't
// need!
//
// <Callum> 4194303 = (2048x2048)-1 (2048x2048 is maximum flat size)
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[0] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[1] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[2] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[3] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[4] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[5] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[6] = colormap[val];
xposition += xstep;
yposition += ystep;
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
dest[7] = colormap[val];
xposition += xstep;
yposition += ystep;
dest += 8;
count -= 8;
}
while (count--)
{
val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift);
val &= 4194303;
val = source[val];
if (val != TRANSPARENTPIXEL)
*dest = colormap[val];
dest++;
xposition += xstep;
yposition += ystep;
}
}
/** \brief The R_DrawTranslucentSplat_8 function
Just like R_DrawSplat_8, but is translucent!
*/
void R_DrawTranslucentSplat_8 (void)
{
UINT32 xposition;
UINT32 yposition;
UINT32 xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
size_t count;
UINT8 val;
// SoM: we only need 6 bits for the integer part (0 thru 63) so the rest
// can be used for the fraction part. This allows calculation of the memory address in the
// texture with two shifts, an OR and one AND. (see below)
// for texture sizes > 64 the amount of precision we can allow will decrease, but only by one
// bit per power of two (obviously)
// Ok, because I was able to eliminate the variable spot below, this function is now FASTER
// than the original span renderer. Whodathunkit?
xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup;
xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
count = ds_x2 - ds_x1 + 1;
while (count >= 8)
{
// SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't
// have the uber complicated math to calculate it now, so that was a memory write we didn't
// need!
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[0] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[0])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[1] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[1])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[2] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[2])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[3] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[3])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[4] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[4])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[5] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[5])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[6] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[6])];
xposition += xstep;
yposition += ystep;
val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)];
if (val != TRANSPARENTPIXEL)
dest[7] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[7])];
xposition += xstep;
yposition += ystep;
dest += 8;
count -= 8;
}
while (count--)
{
val =colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]];
if (val != TRANSPARENTPIXEL)
*dest = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + *dest)];
dest++;
xposition += xstep;
yposition += ystep;
}
}
/** \brief The R_DrawTranslucentSpan_8 function
Draws the actual span with translucent.
*/
void R_DrawTranslucentSpan_8 (void)
{
UINT32 xposition;
UINT32 yposition;
UINT32 xstep, ystep;
UINT8 *source;
UINT8 *colormap;
UINT8 *dest;
size_t count;
// SoM: we only need 6 bits for the integer part (0 thru 63) so the rest
// can be used for the fraction part. This allows calculation of the memory address in the
// texture with two shifts, an OR and one AND. (see below)
// for texture sizes > 64 the amount of precision we can allow will decrease, but only by one
// bit per power of two (obviously)
// Ok, because I was able to eliminate the variable spot below, this function is now FASTER
// than the original span renderer. Whodathunkit?
xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup;
xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup;
source = ds_source;
colormap = ds_colormap;
dest = ylookup[ds_y] + columnofs[ds_x1];
count = ds_x2 - ds_x1 + 1;
while (count >= 8)
{
// SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't
// have the uber complicated math to calculate it now, so that was a memory write we didn't
// need!
dest[0] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[0])];
xposition += xstep;
yposition += ystep;
dest[1] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[1])];
xposition += xstep;
yposition += ystep;
dest[2] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[2])];
xposition += xstep;
yposition += ystep;
dest[3] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[3])];
xposition += xstep;
yposition += ystep;
dest[4] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[4])];
xposition += xstep;
yposition += ystep;
dest[5] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[5])];
xposition += xstep;
yposition += ystep;
dest[6] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[6])];
xposition += xstep;
yposition += ystep;
dest[7] = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + dest[7])];
xposition += xstep;
yposition += ystep;
dest += 8;
count -= 8;
}
while (count--)
{
*dest = colormap[*(ds_transmap + (source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)] << 8) + *dest)];
dest++;
xposition += xstep;
yposition += ystep;
}
}
/** \brief The R_DrawFogSpan_8 function
Draws the actual span with fogging.
*/
void R_DrawFogSpan_8(void)
{
UINT8 *colormap;
UINT8 *dest;
size_t count;
colormap = ds_colormap;
//dest = ylookup[ds_y] + columnofs[ds_x1];
dest = &topleft[ds_y *vid.width + ds_x1];
count = ds_x2 - ds_x1 + 1;
while (count >= 4)
{
dest[0] = colormap[dest[0]];
dest[1] = colormap[dest[1]];
dest[2] = colormap[dest[2]];
dest[3] = colormap[dest[3]];
dest += 4;
count -= 4;
}
while (count--)
{
*dest = colormap[*dest];
dest++;
}
}
/** \brief The R_DrawFogColumn_8 function
Fog wall.
*/
void R_DrawFogColumn_8(void)
{
INT32 count;
UINT8 *dest;
count = dc_yh - dc_yl;
// Zero length, column does not exceed a pixel.
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
I_Error("R_DrawFogColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x);
#endif
// Framebuffer destination address.
// Use ylookup LUT to avoid multiply with ScreenWidth.
// Use columnofs LUT for subwindows?
//dest = ylookup[dc_yl] + columnofs[dc_x];
dest = &topleft[dc_yl*vid.width + dc_x];
// Determine scaling, which is the only mapping to be done.
do
{
// Simple. Apply the colormap to what's already on the screen.
*dest = dc_colormap[*dest];
dest += vid.width;
} while (count--);
}
/** \brief The R_DrawShadeColumn_8 function
This is for 3D floors that cast shadows on walls.
This function just cuts the column up into sections and calls R_DrawColumn_8
*/
void R_DrawColumnShadowed_8(void)
{
INT32 count, realyh, i, height, bheight = 0, solid = 0;
realyh = dc_yh;
count = dc_yh - dc_yl;
// Zero length, column does not exceed a pixel.
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height)
I_Error("R_DrawColumnShadowed_8: %d to %d at %d", dc_yl, dc_yh, dc_x);
#endif
// This runs through the lightlist from top to bottom and cuts up the column accordingly.
for (i = 0; i < dc_numlights; i++)
{
// If the height of the light is above the column, get the colormap
// anyway because the lighting of the top should be affected.
solid = dc_lightlist[i].flags & FF_CUTSOLIDS;
height = dc_lightlist[i].height >> LIGHTSCALESHIFT;
if (solid)
bheight = dc_lightlist[i].botheight >> LIGHTSCALESHIFT;
if (height <= dc_yl)
{
dc_colormap = dc_lightlist[i].rcolormap;
if (solid && dc_yl < bheight)
dc_yl = bheight;
continue;
}
// Found a break in the column!
dc_yh = height;
if (dc_yh > realyh)
dc_yh = realyh;
basecolfunc(); // R_DrawColumn_8 for the appropriate architecture
if (solid)
dc_yl = bheight;
else
dc_yl = dc_yh + 1;
dc_colormap = dc_lightlist[i].rcolormap;
}
dc_yh = realyh;
if (dc_yl <= realyh)
walldrawerfunc(); // R_DrawWallColumn_8 for the appropriate architecture
}