jedioutcast/utils/Radiant/Quake3/cbrush.cpp

1344 lines
28 KiB
C++
Raw Permalink Normal View History

2013-04-04 18:02:27 +00:00
#include "stdafx.h"
#include "..\qe3.h"
#define CBLOCK_SUBDIVISIONS 4
/*
treat CONTENTS_DETAIL like the curve flags
get / set textures should not change any of the curve flags
setting a curved texture should set all of the curved faces
*/
typedef float vec5_t[5];
typedef enum {
CS_FLAT, CS_CURVE, CS_SPLIT
} cubeSide_t;
typedef struct {
int points[4];
int neighbors[4];
cubeSide_t type;
face_t *brushFace;
} cubeFace_t;
typedef struct {
vec5_t points[8];
cubeFace_t faces[6];
qboolean negativeCurve;
} curveBlock_t;
float STfromUXYZ[2][5];
float STfromXYZ[2][4];
FILE *curveFile = NULL;
brush_t *bevelBrush = NULL;
void Write1DMatrix (FILE *f, int x, float *m);
void Write2DMatrix (FILE *f, int y, int x, float *m);
void Write3DMatrix (FILE *f, int y, int x, int z, float *m);
bool g_bCamPaint = false;
const float fFullBright = 1.0;
const float fLowerLimit = .70;
const float fDec = .06;
void SetColor(face_t* f, float fColor[3])
{
return;
if (g_bCamPaint)
{
fColor[0] = f->d_color[0];
fColor[1] = f->d_color[1];
fColor[2] = f->d_color[2];
qglColor3fv(fColor);
}
}
void DecColor(float fColor[3])
{
return;
if (g_bCamPaint)
{
fColor[0] -= fDec;
fColor[1] -= fDec ;
fColor[2] -= fDec;
for (int i = 0; i < 3; i++)
{
if (fColor[i] <= fLowerLimit)
fColor[i] = fFullBright;
}
qglColor3fv(fColor);
}
}
/*
===================
CurveTextureMatrix
===================
*/
void CurveTextureMatrix (face_t *f, vec3_t top, vec3_t bottom, float STfromUXYZ[2][5]) {
texdef_t *td;
vec3_t dir;
int i, j;
float sinv, cosv;
float ang;
float temp[2][4];
float ns, nt;
float max;
td = &f->texdef;
if (!td->scale[0])
td->scale[0] = 1;
if (!td->scale[1])
td->scale[1] = 1;
temp[0][0] = 64; // assume 64 wide
temp[0][1] = 0;
temp[0][2] = 0;
temp[0][3] = 0;
// calculate the T vector
VectorSubtract (top, bottom, dir);
VectorNormalize (dir);
max = 0;
j = 0;
for (i = 0 ; i < 3 ; i++) {
if (fabs(dir[i]) > max) {
max = fabs(dir[i]);
j = i;
}
}
if (dir[j] > 0) {
VectorSubtract (vec3_origin, dir, dir);
}
temp[1][0] = 0;
temp[1][1] = dir[0];
temp[1][2] = dir[1];
temp[1][3] = dir[2];
// rotate axis
if (td->rotate == 0)
{ sinv = 0 ; cosv = 1; }
else if (td->rotate == 90)
{ sinv = 1 ; cosv = 0; }
else if (td->rotate == 180)
{ sinv = 0 ; cosv = -1; }
else if (td->rotate == 270)
{ sinv = -1 ; cosv = 0; }
else
{
ang = td->rotate / 180 * Q_PI;
sinv = sin(ang);
cosv = cos(ang);
}
for (i=0 ; i<4 ; i++) {
ns = cosv * temp[0][i] - sinv * temp[1][i];
nt = sinv * temp[0][i] + cosv * temp[1][i];
STfromUXYZ[0][i] = ns;
STfromUXYZ[1][i] = nt;
}
// scale
for (i=0 ; i<2 ; i++)
for (j=0 ; j<4 ; j++)
STfromUXYZ[i][j] /= td->scale[i];
// shift
STfromUXYZ[0][4] = td->shift[0];
STfromUXYZ[1][4] = td->shift[1];
// scale by texture
for (i = 0 ; i < 5 ; i++) {
STfromUXYZ[0][i] /= f->d_texture->width;
}
for (i = 0 ; i < 5 ; i++) {
STfromUXYZ[1][i] /= f->d_texture->height;
}
}
/*
===================
OppositeFace
===================
*/
int OppositeFace (curveBlock_t *cb, int face) {
int i;
qboolean neighbor[6];
memset (neighbor, 0, sizeof(neighbor));
for (i = 0 ; i < 4 ; i++) {
neighbor[cb->faces[face].neighbors[i]] = true;
}
for (i = 0 ; i < 6 ; i++) {
if (i == face) {
continue;
}
if (!neighbor[i]) {
return i;
}
}
return 0; // should never happen
}
/*
================
BrushToCurveBlock
================
*/
curveBlock_t *BrushToCurveBlock(brush_t *b) {
curveBlock_t *cb;
face_t *f;
int i, j, k, l;
winding_t *w;
int side;
int point;
int p1, p2;
cb = reinterpret_cast<curveBlock_t*>(malloc(sizeof(*cb)));
memset (cb, 0, sizeof(*cb));
side = 0;
point = 0;
// see if it is a negative curve
for (f = b->brush_faces ; f ; f = f->next) {
if (f->texdef.contents & CONTENTS_NEGATIVE_CURVE) {
cb->negativeCurve = true;
break;
}
}
// find all the shared points
for (f = b->brush_faces ; f ; f = f->next) {
if (side >= 6) {
free(cb);
return NULL; // must be six sided
}
if (f->texdef.flags & SURF_CURVE_FAKE) {
continue;
}
cb->faces[side].brushFace = f;
if (f->texdef.flags & SURF_CURVE) {
cb->faces[side].type = CS_CURVE;
} else {
cb->faces[side].type = CS_FLAT;
}
w = f->face_winding;
if (!w ) {
continue;
}
if (w->numpoints != 4) {
free(cb);
return NULL; // must be four sided
}
for (i = 0 ; i < w->numpoints ; i++) {
for (j = 0 ; j < point ; j++) {
if (fabs(w->points[i][0] - cb->points[j][0]) < 0.1
&& fabs(w->points[i][1] - cb->points[j][1]) < 0.1
&& fabs(w->points[i][2] - cb->points[j][2]) < 0.1 ) {
break;
}
}
if (j == 8) {
free(cb);
return NULL; // must have eight points
}
VectorCopy (w->points[i], cb->points[j]);
cb->faces[side].points[i] = j;
if (j == point) {
point++;
}
}
side++;
}
// find all the neighbor relations
for (i = 0 ; i < 6 ; i++) {
for (j = 0 ; j < 4 ; j++) {
p1 = cb->faces[i].points[j];
p2 = cb->faces[i].points[(j+1)&3];
// find the other face that matches this edge
for (k = 0 ; k < 6 ; k++) {
for (l = 0 ; l < 4 ; l++) {
if (cb->faces[k].points[l] == p2 &&
cb->faces[k].points[(l+1)&3] == p1) {
cb->faces[i].neighbors[j] = k;
break;
}
}
if (l < 4) {
break;
}
}
if (k == 6) {
free(cb);
return NULL; // couldn't match neighbor
}
}
}
return cb;
}
//====================================================================
/*
================
DrawFullFace
================
*/
void DrawFullFace (curveBlock_t *cb, cubeFace_t *cf) {
int k;
float *next;
if (bevelBrush) {
return;
}
// set the texturing matrix
FaceTextureVectors (cf->brushFace, STfromXYZ);
if (curveFile) {
vec3_t vecs[4];
for (k = 0 ; k < 4 ; k++) {
VectorCopy (cb->points[cf->points[k]], vecs[k]);
}
fprintf (curveFile, "FACE {\n");
fprintf (curveFile, "4\n");
fprintf (curveFile, "textures/%s\n", cf->brushFace->texdef.name);
Write2DMatrix (curveFile, 2, 4, (float *)STfromXYZ);
Write2DMatrix (curveFile, 4, 3, (float *)vecs);
fprintf (curveFile, "}\n");
return;
}
qglBindTexture (GL_TEXTURE_2D, cf->brushFace->d_texture->texture_number);
float fColor[3];
SetColor(cf->brushFace, fColor);
qglBegin (GL_POLYGON);
for (k = 0 ; k < 4 ; k++) {
next = cb->points[cf->points[k]];
qglTexCoord2f (DotProduct(next, STfromXYZ[0]) + STfromXYZ[0][3],
DotProduct(next, STfromXYZ[1]) + STfromXYZ[1][3]);
qglVertex3fv (next);
DecColor(fColor);
}
qglEnd ();
}
/*
===============
DrawCurveFan
Draws a curve as part of a flat surface
===============
*/
void DrawCurveFan (face_t *cf, vec5_t opposite, vec5_t prev, vec5_t peak, vec5_t next) {
int i, k, l;
float coef[5][3];
// write it out
if (curveFile) {
vec5_t vecs[4];
for ( i = 0 ; i < 5 ; i++ ) {
vecs[0][i] = opposite[i];
vecs[1][i] = prev[i];
vecs[2][i] = peak[i];
vecs[3][i] = next[i];
}
fprintf (curveFile, "CURVEFAN {\n");
fprintf (curveFile, "textures/%s\n", cf->texdef.name);
Write2DMatrix (curveFile, 4, 5, (float *)vecs);
fprintf (curveFile, "}\n");
return;
}
// calculate the coefficients
for (l = 0 ; l < 5 ; l++) {
float a, b, c;
a = prev[l];
b = peak[l];
c = next[l];
coef[l][0] = a;
coef[l][1] = 2 * b - 2 * a;
coef[l][2] = a - 2 * b + c;
}
// draw it
qglBindTexture (GL_TEXTURE_2D, cf->d_texture->texture_number);
float fColor[3];
SetColor(cf, fColor);
qglBegin (GL_TRIANGLE_FAN);
qglTexCoord2fv( opposite + 3 );
qglVertex3fv( opposite );
for ( k = 0 ; k <= CBLOCK_SUBDIVISIONS ; k++ ) {
vec5_t curve;
float f;
f = (float)k / CBLOCK_SUBDIVISIONS;
for ( l = 0 ; l < 5 ; l++ ) {
curve[l] = coef[l][2]*f*f + coef[l][1]*f + coef[l][0];
}
qglTexCoord2fv( curve + 3 );
qglVertex3fv( curve );
DecColor(fColor);
}
qglEnd ();
}
/*
===============
DrawRuledSurface
===============
*/
void DrawRuledSurface (face_t *cf, float ctrl[2][3][5] ) {
int j, k, l;
vec5_t curve[2][CBLOCK_SUBDIVISIONS+1];
//float u;
float *v;
if (curveFile) {
fprintf (curveFile, "RULED {\n");
fprintf (curveFile, "textures/%s\n", cf->texdef.name);
Write3DMatrix (curveFile, 2, 3, 5, (float *)ctrl);
fprintf (curveFile, "}\n");
return;
}
for (j = 0 ; j < 2 ; j++) {
for (l = 0 ; l < 5 ; l++) {
float a, b, c;
float qA, qB, qC;
float f;
int k;
a = ctrl[j][0][l];
b = ctrl[j][1][l];
c = ctrl[j][2][l];
qA = a - 2 * b + c;
qB = 2 * b - 2 * a;
qC = a;
for (k = 0 ; k <= CBLOCK_SUBDIVISIONS ; k++) {
f = (float)k / CBLOCK_SUBDIVISIONS;
curve[j][k][l] = qA*f*f + qB*f + qC;
}
}
}
if ( bevelBrush ) {
face_t *f;
for (k = 0 ; k < CBLOCK_SUBDIVISIONS ; k++) {
f = Face_Clone( bevelBrush->brush_faces );
f->texdef.flags |= SURF_CURVE_FAKE;
f->next = bevelBrush->brush_faces;
bevelBrush->brush_faces = f;
VectorCopy( curve[0][k], f->planepts[0] );
VectorCopy( curve[1][k], f->planepts[1] );
VectorCopy( curve[0][k+1], f->planepts[2] );
Brush_MakeFacePlane( f );
}
return;
}
qglBindTexture (GL_TEXTURE_2D, cf->d_texture->texture_number);
float fColor[3];
SetColor(cf, fColor);
qglBegin (GL_QUAD_STRIP);
for (k = 0 ; k <= CBLOCK_SUBDIVISIONS ; k++) {
v = curve[0][k];
qglTexCoord2fv( v + 3 );
qglVertex3fv( v );
v = curve[1][k];
qglTexCoord2fv( v + 3 );
qglVertex3fv( v );
}
qglEnd ();
}
/*
===============
SamplePatch
===============
*/
void SamplePatch (float ctrl[3][3][5], float u, float v, float out[5]) {
float vCtrl[3][5];
int vPoint;
int axis;
// find the control points for the v coordinate
for (vPoint = 0 ; vPoint < 3 ; vPoint++) {
for (axis = 0 ; axis < 5 ; axis++) {
float a, b, c;
float qA, qB, qC;
a = ctrl[0][vPoint][axis];
b = ctrl[1][vPoint][axis];
c = ctrl[2][vPoint][axis];
qA = a - 2 * b + c;
qB = 2 * b - 2 * a;
qC = a;
vCtrl[vPoint][axis] = qA * u * u + qB * u + qC;
}
}
// interpolate the v value
for (axis = 0 ; axis < 5 ; axis++) {
float a, b, c;
float qA, qB, qC;
a = vCtrl[0][axis];
b = vCtrl[1][axis];
c = vCtrl[2][axis];
qA = a - 2 * b + c;
qB = 2 * b - 2 * a;
qC = a;
out[axis] = qA * v * v + qB * v + qC;
}
}
/*
===================
DrawPatch
===================
*/
void DrawPatch (face_t *cf, float ctrl[3][3][5]) {
int i, j;
float u, v;
vec5_t verts[CBLOCK_SUBDIVISIONS+1][CBLOCK_SUBDIVISIONS+1];
if (curveFile) {
fprintf (curveFile, "PATCH {\n");
fprintf (curveFile, "textures/%s\n", cf->texdef.name);
Write3DMatrix (curveFile, 3, 3, 5, (float *)ctrl);
fprintf (curveFile, "}\n");
return;
}
for (i = 0 ; i <= CBLOCK_SUBDIVISIONS ; i++) {
for (j = 0 ; j <= CBLOCK_SUBDIVISIONS ; j++) {
u = (float)i / CBLOCK_SUBDIVISIONS;
v = (float)j / CBLOCK_SUBDIVISIONS;
SamplePatch (ctrl, u, v, verts[i][j]);
}
}
if ( bevelBrush ) {
face_t *f;
vec3_t v0, v1, v2;
vec3_t d1, d2, cross;
for (i = 0 ; i < CBLOCK_SUBDIVISIONS ; i++) {
for (j = 0 ; j < CBLOCK_SUBDIVISIONS ; j++) {
VectorCopy( verts[i][j], v0 );
VectorCopy( verts[i][j+1], v1 );
VectorCopy( verts[i+1][j], v2 );
VectorSubtract( v0, v1, d1 );
VectorSubtract( v2, v1, d2 );
CrossProduct( d1, d2, cross );
if ( VectorLength( cross ) == 0 ) {
continue; // degenerate
}
f = Face_Clone( bevelBrush->brush_faces );
f->texdef.flags |= SURF_CURVE_FAKE;
VectorCopy( v0, f->planepts[0] );
VectorCopy( v1, f->planepts[1] );
VectorCopy( v2, f->planepts[2] );
Brush_MakeFacePlane( f );
f->next = bevelBrush->brush_faces;
bevelBrush->brush_faces = f;
}
}
return;
}
qglBindTexture (GL_TEXTURE_2D, cf->d_texture->texture_number);
float fColor[3];
SetColor(cf, fColor);
for (i = 0 ; i < CBLOCK_SUBDIVISIONS ; i++) {
qglBegin (GL_QUAD_STRIP);
for (j = 0 ; j <= CBLOCK_SUBDIVISIONS ; j++) {
qglTexCoord2fv( verts[i+1][j] + 3 );
qglVertex3fv( verts[i+1][j] );
qglTexCoord2fv( verts[i][j] + 3 );
qglVertex3fv( verts[i][j] );
DecColor(fColor);
}
qglEnd ();
}
}
//====================================================================
/*
===================
DrawCurveBlock
===================
*/
void DrawCurveBlock (curveBlock_t *cb) {
qboolean curveDrawn;
cubeFace_t *cf, *side;
int cfNum, j, k;
float *prev, *peak, *next, *opposite;
float *tTop, *tBottom;
float ctrl[3][3][5];
// the brush has only two or three curve sides, so draw it
curveDrawn = false;
for (cfNum = 0 ; cfNum < 6 ; cfNum++) {
cf = &cb->faces[cfNum];
if (cf->type == CS_SPLIT) {
// split sides are never drawn
// cf->type = CS_FLAT;
continue;
}
if (cf->type == CS_FLAT) {
drawFlat:
// the neighbors of flat sides determine the outline
// find the neighbor curve sode
for (j = 0 ; j < 4 ; j++) {
side = &cb->faces[cf->neighbors[j]];
if (side->type == CS_CURVE) {
break;
}
}
// make sure the first curve didn't start at the last slot
if (j == 0) {
if (cb->faces[cf->neighbors[3]].type == CS_CURVE) {
j = 3;
side = &cb->faces[cf->neighbors[j]];
}
}
if ( j == 4 || cb->faces[cf->neighbors[(j+1)&3]].type != CS_CURVE) {
// no double curves
if (!cb->negativeCurve) {
DrawFullFace (cb, cf);
}
continue;
}
// set the texture coordinates for all control points
FaceTextureVectors (cf->brushFace, STfromXYZ);
for ( k = 0 ; k < 4 ; k++ ) {
float *v;
v = cb->points[cf->points[k]];
v[3] = DotProduct( v, STfromXYZ[0] ) + STfromXYZ[0][3];
v[4] = DotProduct( v, STfromXYZ[1] ) + STfromXYZ[1][3];
}
// draw the curve first
if (cb->negativeCurve) {
next = cb->points[cf->points[j]];
peak = cb->points[cf->points[(j+1)&3]];
prev = cb->points[cf->points[(j+2)&3]];
// opposite corner first
DrawCurveFan (cf->brushFace, peak, prev, peak, next);
} else {
prev = cb->points[cf->points[j]];
peak = cb->points[cf->points[(j+1)&3]];
next = cb->points[cf->points[(j+2)&3]];
// opposite corner first
opposite = cb->points[cf->points[(j+3)&3]];
DrawCurveFan (cf->brushFace, opposite, prev, peak, next);
}
continue;
}
memset( ctrl, 0, sizeof(ctrl) );
if (cf->type != CS_CURVE) {
continue;
}
if (cb->negativeCurve) {
FaceTextureVectors (cf->brushFace, STfromXYZ);
qglBindTexture (GL_TEXTURE_2D, cf->brushFace->d_texture->texture_number);
DrawFullFace (cb, cf);
}
if (curveDrawn) {
continue;
}
curveDrawn = true;
// find the neighboring curved side
for (j = 0 ; j < 4 ; j++) {
side = &cb->faces[cf->neighbors[j]];
if (side->type == CS_CURVE) {
break;
}
}
// make sure the first curve didn't start at the last slot
if (j == 0) {
if (cb->faces[cf->neighbors[3]].type == CS_CURVE) {
j = 3;
side = &cb->faces[cf->neighbors[j]];
}
}
// there should never be a curve without a neighboring
// curve unless a designer has manually messed it up
if (j == 4) {
goto drawFlat;
}
//
// if three sides are curved, draw a sphere section
//
if (cb->faces[cf->neighbors[(j+1)&3]].type == CS_CURVE
|| cb->faces[cf->neighbors[(j+3)&3]].type == CS_CURVE ){
VectorCopy (cb->points[cf->points[(j+3)&3]], ctrl[0][0]);
VectorCopy (cb->points[cf->points[(j+3)&3]], ctrl[1][0]);
VectorCopy (cb->points[cf->points[(j+3)&3]], ctrl[2][0]);
VectorCopy (cb->points[cf->points[(j+0)&3]], ctrl[0][1]);
VectorCopy (cb->points[cf->points[(j+1)&3]], ctrl[1][1]);
VectorCopy (cb->points[cf->points[(j+2)&3]], ctrl[2][1]);
for (k = 0 ; k < 4 ; k++) {
if (side->points[k] == cf->points[j]) {
break;
}
}
VectorCopy (cb->points[side->points[(k+1)&3]], ctrl[0][2]);
VectorCopy (cb->points[side->points[(k+2)&3]], ctrl[1][2]);
side = &cb->faces[cf->neighbors[(j+1)&3]];
for (k = 0 ; k < 4 ; k++) {
if (side->points[k] == cf->points[(j+2)&3]) {
break;
}
}
VectorCopy (cb->points[side->points[(k+3)&3]], ctrl[2][2]);
if (cb->negativeCurve) {
vec3_t temp;
for (j = 0 ; j < 3 ; j++) {
VectorCopy (ctrl[j][0], temp);
VectorCopy (ctrl[j][2], ctrl[j][0]);
VectorCopy (temp, ctrl[j][2]);
}
}
// calculate texture coordinates for the control points
FaceTextureVectors (cf->brushFace, STfromXYZ);
for ( j = 0 ; j < 3 ; j++ ) {
for ( k = 0 ; k < 3 ; k++ ) {
ctrl[j][k][3] = DotProduct( ctrl[j][k], STfromXYZ[0] )
+ STfromUXYZ[0][3];
ctrl[j][k][4] = DotProduct( ctrl[j][k], STfromXYZ[1] )
+ STfromUXYZ[1][3];
}
}
// draw it
DrawPatch (cf->brushFace, ctrl);
continue;
}
//
// the curve is a cylinder section
//
// prev
VectorCopy (cb->points[cf->points[(j+2)&3]], ctrl[0][0]);
VectorCopy (cb->points[cf->points[(j+3)&3]], ctrl[1][0]);
// peak
VectorCopy (cb->points[cf->points[(j+1)&3]], ctrl[0][1]);
VectorCopy (cb->points[cf->points[(j+0)&3]], ctrl[1][1]);
// next
for (k = 0 ; k < 4 ; k++) {
if (side->points[k] == cf->points[j]) {
break;
}
}
VectorCopy (cb->points[side->points[(k+2)&3]], ctrl[0][2]);
VectorCopy (cb->points[side->points[(k+1)&3]], ctrl[1][2]);
if (cb->negativeCurve) {
vec3_t temp;
for (k = 0 ; k < 2 ; k++) {
VectorCopy (ctrl[k][0], temp);
VectorCopy (ctrl[k][2], ctrl[k][0]);
VectorCopy (temp, ctrl[k][2]);
}
}
// find the edge opposite peak to use as the T texture axis
side = &cb->faces[cf->neighbors[(j+3)&3]];
for (k = 0 ; k < 4 ; k++) {
if (side->points[k] == cf->points[j]) {
break;
}
}
tTop = cb->points[side->points[(k+2)&3]];
side = &cb->faces[cf->neighbors[(j+1)&3]];
for (k = 0 ; k < 4 ; k++) {
if (side->points[k] == cf->points[(j+1)&3]) {
break;
}
}
tBottom = cb->points[side->points[(k+2)&3]];
// set the texturing matrix
CurveTextureMatrix (cf->brushFace, tTop, tBottom, STfromUXYZ);
// calculate texture coordinates at control points
for ( j = 0 ; j < 2 ; j++ ) {
for ( k = 0 ; k < 3 ; k++ ) {
ctrl[j][k][3] = DotProduct( ctrl[j][k], (STfromUXYZ[0]+1) )
+ STfromUXYZ[0][0] * (k / 2.0) + STfromUXYZ[0][4];
ctrl[j][k][4] = DotProduct( ctrl[j][k], (STfromUXYZ[1]+1) )
+ STfromUXYZ[1][0] * (k / 2.0) + STfromUXYZ[1][4];
}
}
DrawRuledSurface (cf->brushFace, ctrl);
}
}
/*
===================
SubdivideCurveBlock
The curve block will be freed before return.
===================
*/
void SubdivideCurveBlock (curveBlock_t *cb) {
int i, j, k, l;
curveBlock_t *b1, *b2;
cubeFace_t *cf, *side;
int p1, p2;
// if any curved side has curves on both
// sides, it must be subdivided
for (i = 0 ; i < 6 ; i++) {
cf = &cb->faces[i];
if (cf->type != CS_CURVE) {
continue;
}
for (j = 0 ; j < 2 ; j++) {
if (cb->faces[cf->neighbors[j]].type == CS_CURVE
&& cb->faces[cf->neighbors[j+2]].type == CS_CURVE) {
break;
}
}
if (j == 2) {
continue;
}
// subdivide it
b1 = reinterpret_cast<curveBlock_t*>(malloc(sizeof(*b1)));
*b1 = *cb;
b2 = reinterpret_cast<curveBlock_t*>(malloc(sizeof(*b2)));
*b2 = *cb;
b1->faces[cf->neighbors[j+2]].type = CS_SPLIT;
b2->faces[cf->neighbors[j]].type = CS_SPLIT;
p1 = cf->points[(j+3)&3];
p2 = cf->points[j];
for (k = 0 ; k < 3 ; k++) {
b1->points[p1][k] = b2->points[p2][k] =
0.5*(cb->points[p1][k] + cb->points[p2][k]);
}
side = &cb->faces[cf->neighbors[(j+3)&3]];
for (l = 0 ; l < 4 ; l++) {
if (side->points[l] == p2 && side->points[(l+1)&3] == p1) {
break;
}
}
p2 = side->points[(l+3)&3];
p1 = side->points[(l+2)&3];
for (k = 0 ; k < 3 ; k++) {
b1->points[p1][k] = b2->points[p2][k] =
0.5*(cb->points[p1][k] + cb->points[p2][k]);
}
p1 = cf->points[(j+2)&3];
p2 = cf->points[(j+1)&3];
for (k = 0 ; k < 3 ; k++) {
b1->points[p1][k] = b2->points[p2][k] =
0.5*(cb->points[p1][k] + cb->points[p2][k]);
}
side = &cb->faces[cf->neighbors[(j+1)&3]];
for (l = 0 ; l < 4 ; l++) {
if (side->points[l] == p1 && side->points[(l+1)&3] == p2) {
break;
}
}
p2 = side->points[(l+2)&3];
p1 = side->points[(l+3)&3];
for (k = 0 ; k < 3 ; k++) {
b1->points[p1][k] = b2->points[p2][k] =
0.5*(cb->points[p1][k] + cb->points[p2][k]);
}
free (cb);
SubdivideCurveBlock (b1);
SubdivideCurveBlock (b2);
return;
}
// the cb is in canonical form
DrawCurveBlock (cb);
free (cb);
}
/*
===============
Curve_Invert
===============
*/
void Curve_Invert (void) {
brush_t *b;
face_t *f;
qboolean curve, negative;
if (!QE_SingleBrush())
return;
b = selected_brushes.next;
curve = false;
negative = false;
for (f = b->brush_faces ; f ; f = f->next) {
if (f->texdef.contents & CONTENTS_NEGATIVE_CURVE) {
negative = true;
}
if (f->texdef.flags & SURF_CURVE) {
curve = true;
}
}
if (!curve) {
return;
}
negative ^= 1;
for (f = b->brush_faces ; f ; f = f->next) {
if (negative) {
f->texdef.contents |= CONTENTS_NEGATIVE_CURVE;
} else {
f->texdef.contents &= ~CONTENTS_NEGATIVE_CURVE;
}
}
Curve_BuildPoints (b);
Sys_UpdateWindows (W_ALL);
}
/*
===================
Curve_MakeCurvedBrush
===================
*/
void Curve_MakeCurvedBrush (qboolean negative, qboolean top, qboolean bottom,
qboolean s1, qboolean s2, qboolean s3, qboolean s4) {
brush_t *b;
curveBlock_t *cb;
cubeFace_t *cf;
int i;
float best;
int bestFace;
int opposite;
face_t *f;
if (!QE_SingleBrush())
return;
b = selected_brushes.next;
cb = BrushToCurveBlock(b);
if (!cb) {
return;
}
// set as detail and clear all curve flags
for (f = b->brush_faces ; f ; f = f->next ) {
f->texdef.flags &= ~SURF_KEEP;
f->texdef.contents |= CONTENTS_DETAIL;
if (negative) {
f->texdef.contents |= CONTENTS_NEGATIVE_CURVE;
} else {
f->texdef.contents &= ~CONTENTS_NEGATIVE_CURVE;
}
}
// find the top face
best = MIN_WORLD_COORD;
bestFace = 0;
for (i = 0 ; i < 6 ; i++) {
if (cb->faces[i].brushFace->plane.normal[2] > best) {
best = cb->faces[i].brushFace->plane.normal[2];
bestFace = i;
}
}
cf = &cb->faces[bestFace];
if (top) {
cf->brushFace->texdef.flags |= SURF_CURVE;
}
if (bottom) {
opposite = OppositeFace(cb, bestFace);
cb->faces[opposite].brushFace->texdef.flags |= SURF_CURVE;
}
if (s1) {
cb->faces[cf->neighbors[0]].brushFace->texdef.flags |= SURF_CURVE;
}
if (s2) {
cb->faces[cf->neighbors[1]].brushFace->texdef.flags |= SURF_CURVE;
}
if (s3) {
cb->faces[cf->neighbors[2]].brushFace->texdef.flags |= SURF_CURVE;
}
if (s4) {
cb->faces[cf->neighbors[3]].brushFace->texdef.flags |= SURF_CURVE;
}
Curve_BuildPoints (b);
Sys_UpdateWindows (W_ALL);
}
/*
================
Curve_AddFakePlanes
Call before saving the map to generate the extra clipping planes
the game uses for collision testing
================
*/
void Curve_AddFakePlanes( brush_t *b ) {
curveBlock_t *cb;
// generate CURVE_FAKE faces
bevelBrush = b;
cb = BrushToCurveBlock(b);
if ( !cb ) {
b->curveBrush = false;
bevelBrush = NULL;
return;
}
SubdivideCurveBlock (cb);
bevelBrush = NULL;
}
/*
================
Curve_StripFakePlanes
Strips out any fakeplanes
================
*/
void Curve_StripFakePlanes( brush_t *b ) {
face_t *f;
face_t **ptr; //, **next;
// remove any CURVE_FAKE faces
for ( ptr = &b->brush_faces ; *ptr ; ) {
f = *ptr;
if ( f->texdef.flags & SURF_CURVE_FAKE ) {
*ptr = f->next;
Face_Free( f );
} else {
ptr = &f->next;
}
}
}
/*
================
Curve_BuildPoints
================
*/
void Curve_BuildPoints (brush_t *b) {
face_t *f;
b->curveBrush = false;
for (f=b->brush_faces ; f ; f=f->next) {
if (f->texdef.flags & SURF_CURVE) {
b->curveBrush = true;
break;
}
}
if (!b->curveBrush) {
return;
}
// FIXME: build display list here?
}
//=================================================================
/*
===============
Curve_CameraDraw
===============
*/
void Curve_CameraDraw (brush_t *b) {
curveBlock_t *cb;
cb = BrushToCurveBlock(b);
if (!cb) {
b->curveBrush = false;
return;
}
g_bCamPaint = true;
qglColor3f (1,1,1);
SubdivideCurveBlock (cb);
}
/*
===============
Curve_XYDraw
===============
*/
void Curve_XYDraw (brush_t *b) {
curveBlock_t *cb;
cb = BrushToCurveBlock(b);
if (!cb) {
b->curveBrush = false;
return;
}
g_bCamPaint = false;
qglPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
SubdivideCurveBlock (cb);
qglPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
}
//================================================================
void Write1DMatrix (FILE *f, int x, float *m) {
int i;
fprintf (f, "( ");
for (i = 0 ; i < x ; i++) {
if (m[i] == (int)m[i] ) {
fprintf (f, "%i ", (int)m[i]);
} else {
fprintf (f, "%f ", m[i]);
}
}
fprintf (f, ")");
}
void Write2DMatrix (FILE *f, int y, int x, float *m) {
int i;
fprintf (f, "( ");
for (i = 0 ; i < y ; i++) {
Write1DMatrix (f, x, m + i*x);
fprintf (f, " ");
}
fprintf (f, ")\n");
}
void Write3DMatrix (FILE *f, int z, int y, int x, float *m) {
int i;
fprintf (f, "(\n");
for (i = 0 ; i < z ; i++) {
Write2DMatrix (f, y, x, m + i*(x*y) );
}
fprintf (f, ")\n");
}
void Write1DMatrix (CMemFile *f, int x, float *m) {
int i;
MemFile_fprintf (f, "( ");
for (i = 0 ; i < x ; i++) {
if (m[i] == (int)m[i] ) {
MemFile_fprintf (f, "%i ", (int)m[i]);
} else {
MemFile_fprintf (f, "%f ", m[i]);
}
}
MemFile_fprintf (f, ")");
}
void Write2DMatrix (CMemFile *f, int y, int x, float *m) {
int i;
MemFile_fprintf (f, "( ");
for (i = 0 ; i < y ; i++) {
Write1DMatrix (f, x, m + i*x);
MemFile_fprintf (f, " ");
}
MemFile_fprintf (f, ")\n");
}
void Write3DMatrix (CMemFile *f, int z, int y, int x, float *m) {
int i;
MemFile_fprintf (f, "(\n");
for (i = 0 ; i < z ; i++) {
Write2DMatrix (f, y, x, m + i*(x*y) );
}
MemFile_fprintf (f, ")\n");
}
/*
===============
Curve_WriteFile
===============
*/
void Curve_WriteFile (char *name) {
char curveName[1024];
brush_t *b;
curveBlock_t *cb;
time_t ltime;
strcpy(curveName, name);
StripExtension (curveName);
strcat (curveName, ".bnd");
curveFile = fopen(curveName, "w");
if (!curveFile) {
return;
}
time(&ltime);
fprintf (curveFile, "// %s saved on %s\n", name, ctime(&ltime) );
for (b=world_entity->brushes.onext ; b != &world_entity->brushes
; b=b->onext) {
if (!b->curveBrush) {
continue; // only write curve brushes
}
cb = BrushToCurveBlock(b);
SubdivideCurveBlock (cb);
}
fclose (curveFile);
curveFile = NULL;
}
#if 0
void Curve_BevelBrush( brush_t *b ) {
curveBlock_t *cb;
face_t *f;
// make a copy without any curve flags, but keeping the negative flag
bevelBrush = Brush_Clone( b );
for (f = bevelBrush->brush_faces ; f ; f = f->next) {
f->texdef.flags &= ~SURF_CURVE;
}
bevelBrush->curveBrush = false;
cb = BrushToCurveBlock(b);
SubdivideCurveBlock (cb);
Brush_Build( bevelBrush );
Brush_AddToList( bevelBrush, &active_brushes );
Entity_LinkBrush( b->owner, bevelBrush );
Sys_UpdateWindows (W_ALL);
bevelBrush = NULL;
}
#endif