mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-30 16:10:53 +00:00
5fb28d7c38
And add a unary op macro. Having VectorCompOp makes it easy to write macros that work for multiple data widths, which is why it and its users now use (dst, ...) instead of (..., dst) as in the past. I'll sort out the other macros later now that I know the compiler handily gives messages about the switched order (uninitialized vars etc).
229 lines
6.2 KiB
C
229 lines
6.2 KiB
C
/*
|
|
mathlib.h
|
|
|
|
Vector math library
|
|
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to:
|
|
|
|
Free Software Foundation, Inc.
|
|
59 Temple Place - Suite 330
|
|
Boston, MA 02111-1307, USA
|
|
|
|
*/
|
|
|
|
#ifndef __QF_math_vector_h
|
|
#define __QF_math_vector_h
|
|
|
|
/** \defgroup mathlib_vector Vector functions
|
|
\ingroup mathlib
|
|
*/
|
|
///@{
|
|
|
|
#include "QF/qtypes.h"
|
|
|
|
extern const vec_t *const vec3_origin;
|
|
|
|
#define VectorCompUop(b, op, a) \
|
|
do { \
|
|
(b)[0] = op ((a)[0]); \
|
|
(b)[1] = op ((a)[1]); \
|
|
(b)[2] = op ((a)[2]); \
|
|
} while (0)
|
|
#define VectorCompOp(c, a, op, b) \
|
|
do { \
|
|
(c)[0] = (a)[0] op (b)[0]; \
|
|
(c)[1] = (a)[1] op (b)[1]; \
|
|
(c)[2] = (a)[2] op (b)[2]; \
|
|
} while (0)
|
|
#define VectorCompAdd(c,a,b) VectorCompOp (c, a, +, b)
|
|
#define VectorCompSub(c,a,b) VectorCompOp (c, a, -, b)
|
|
#define VectorCompMult(c,a,b) VectorCompOp (c, a, *, b)
|
|
#define VectorCompDiv(c,a,b) VectorCompOp (c, a, /, b)
|
|
|
|
#define DotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2])
|
|
#define VectorSubtract(a,b,c) VectorCompSub (c, a, b)
|
|
#define VectorNegate(a,b) VectorCompUop (b, -, a)
|
|
#define VectorAdd(a,b,c) VectorCompAdd (c, a, b)
|
|
#define VectorCopy(a,b) \
|
|
do { \
|
|
(b)[0] = (a)[0]; \
|
|
(b)[1] = (a)[1]; \
|
|
(b)[2] = (a)[2]; \
|
|
} while (0)
|
|
#define VectorMultAdd(a,s,b,c) \
|
|
do { \
|
|
(c)[0] = (a)[0] + (s) * (b)[0]; \
|
|
(c)[1] = (a)[1] + (s) * (b)[1]; \
|
|
(c)[2] = (a)[2] + (s) * (b)[2]; \
|
|
} while (0)
|
|
#define VectorMultSub(a,s,b,c) \
|
|
do { \
|
|
(c)[0] = (a)[0] - (s) * (b)[0]; \
|
|
(c)[1] = (a)[1] - (s) * (b)[1]; \
|
|
(c)[2] = (a)[2] - (s) * (b)[2]; \
|
|
} while (0)
|
|
#define VectorCompMultAdd(a,b,c,d) \
|
|
do { \
|
|
(d)[0] = (a)[0] + (b)[0] * (c)[0]; \
|
|
(d)[1] = (a)[1] + (b)[1] * (c)[1]; \
|
|
(d)[2] = (a)[2] + (b)[2] * (c)[2]; \
|
|
} while (0)
|
|
#define VectorCompMultSub(a,b,c,d) \
|
|
do { \
|
|
(d)[0] = (a)[0] - (b)[0] * (c)[0]; \
|
|
(d)[1] = (a)[1] - (b)[1] * (c)[1]; \
|
|
(d)[2] = (a)[2] - (b)[2] * (c)[2]; \
|
|
} while (0)
|
|
#define VectorLength(a) sqrt(DotProduct(a, a))
|
|
|
|
#define VectorScale(a,b,c) \
|
|
do { \
|
|
(c)[0] = (a)[0] * (b); \
|
|
(c)[1] = (a)[1] * (b); \
|
|
(c)[2] = (a)[2] * (b); \
|
|
} while (0)
|
|
/** Shear vector \a b by vector \a a.
|
|
|
|
Vector a represents the shear factors XY, XZ, YZ, ie in matrix form:
|
|
[ 1 0 0 ] [ b0 ]
|
|
[ a0 1 0 ] [ b1 ]
|
|
[ a1 a2 1 ] [ b2 ]
|
|
|
|
The reason for this particular scheme is that is how Mat4Decompose
|
|
calculates the shear from a matrix.
|
|
|
|
\note The order of calculations is important for when b and c refer to
|
|
the same vector.
|
|
*/
|
|
#define VectorShear(a,b,c) \
|
|
do { \
|
|
(c)[2] = (b)[0] * (a)[1] + (b)[1] * (a)[2] + (b)[2]; \
|
|
(c)[1] = (b)[0] * (a)[0] + (b)[1]; \
|
|
(c)[0] = (b)[0]; \
|
|
} while (0)
|
|
#define VectorUnshear(a,b,c) \
|
|
do { \
|
|
(c)[2] = (b)[2] - (b)[1] * (a)[2] - (b)[0] * ((a)[1]-(a)[0]*(a)[2]); \
|
|
(c)[1] = (b)[1] - (b)[0] * (a)[0]; \
|
|
(c)[0] = (b)[0]; \
|
|
} while (0)
|
|
#define VectorCompCompare(c, m, a, op, b) \
|
|
do { \
|
|
(c)[0] = m((a)[0] op (b)[0]); \
|
|
(c)[1] = m((a)[1] op (b)[1]); \
|
|
(c)[2] = m((a)[2] op (b)[2]); \
|
|
} while (0)
|
|
#define VectorCompCompareAll(x, op, y) \
|
|
(((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) && ((x)[2] op (y)[2]))
|
|
#define VectorCompare(x, y) VectorCompCompareAll (x, ==, y)
|
|
#define VectorCompMin(a, b, c) \
|
|
do { \
|
|
(c)[0] = min ((a)[0], (b)[0]); \
|
|
(c)[1] = min ((a)[1], (b)[1]); \
|
|
(c)[2] = min ((a)[2], (b)[2]); \
|
|
} while (0)
|
|
#define VectorCompMax(a, b, c) \
|
|
do { \
|
|
(c)[0] = max ((a)[0], (b)[0]); \
|
|
(c)[1] = max ((a)[1], (b)[1]); \
|
|
(c)[2] = max ((a)[2], (b)[2]); \
|
|
} while (0)
|
|
#define VectorCompBound(a, b, c, d) \
|
|
do { \
|
|
(d)[0] = bound ((a)[0], (b)[0], (c)[0]); \
|
|
(d)[1] = bound ((a)[1], (b)[1], (c)[1]); \
|
|
(d)[2] = bound ((a)[2], (b)[2], (c)[2]); \
|
|
} while (0)
|
|
|
|
#define VectorIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2])
|
|
#define VectorZero(a) \
|
|
do { \
|
|
(a)[0] = 0; \
|
|
(a)[1] = 0; \
|
|
(a)[2] = 0; \
|
|
} while (0)
|
|
#define VectorSet(a,b,c,d) \
|
|
do { \
|
|
(d)[0] = a; \
|
|
(d)[1] = b; \
|
|
(d)[2] = c; \
|
|
} while (0)
|
|
|
|
#define VectorBlend(v1,v2,b,v) \
|
|
do { \
|
|
(v)[0] = (v1)[0] * (1 - (b)) + (v2)[0] * (b); \
|
|
(v)[1] = (v1)[1] * (1 - (b)) + (v2)[1] * (b); \
|
|
(v)[2] = (v1)[2] * (1 - (b)) + (v2)[2] * (b); \
|
|
} while (0)
|
|
|
|
//For printf etc
|
|
#define VectorExpand(v) (v)[0], (v)[1], (v)[2]
|
|
//For scanf etc
|
|
#define VectorExpandAddr(v) &(v)[0], &(v)[1], &(v)[2]
|
|
|
|
/*
|
|
* VectorDistance, the distance between two points.
|
|
* Yes, this is the same as sqrt(VectorSubtract then DotProduct),
|
|
* however that way would involve more vars, this is cheaper.
|
|
*/
|
|
#define VectorDistance_fast(a, b) \
|
|
((((a)[0] - (b)[0]) * ((a)[0] - (b)[0])) + \
|
|
(((a)[1] - (b)[1]) * ((a)[1] - (b)[1])) + \
|
|
(((a)[2] - (b)[2]) * ((a)[2] - (b)[2])))
|
|
#define VectorDistance(a, b) sqrt(VectorDistance_fast(a, b))
|
|
|
|
vec_t _DotProduct (const vec3_t v1, const vec3_t v2) __attribute__((pure));
|
|
void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out);
|
|
void _VectorCopy (const vec3_t in, vec3_t out);
|
|
int _VectorCompare (const vec3_t v1, const vec3_t v2) __attribute__((pure)); // uses EQUAL_EPSILON
|
|
vec_t _VectorLength (const vec3_t v) __attribute__((pure));
|
|
void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb,
|
|
vec3_t vecc);
|
|
void _VectorScale (const vec3_t in, vec_t scale, vec3_t out);
|
|
void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out);
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross);
|
|
vec_t _VectorNormalize (vec3_t v); // returns vector length
|
|
|
|
GNU89INLINE inline float VectorNormalize (vec3_t v); // returns vector length
|
|
|
|
#ifndef IMPLEMENT_VectorNormalize
|
|
GNU89INLINE inline
|
|
#else
|
|
VISIBLE
|
|
#endif
|
|
float
|
|
VectorNormalize (vec3_t v)
|
|
{
|
|
float length;
|
|
|
|
length = DotProduct (v, v);
|
|
if (length) {
|
|
float ilength;
|
|
|
|
length = sqrt (length);
|
|
ilength = 1.0 / length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
///@}
|
|
|
|
#endif // __QF_math_vector_h
|