mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-17 18:30:58 +00:00
214 lines
5.5 KiB
C
214 lines
5.5 KiB
C
/*
|
|
trace.c
|
|
|
|
BSP line tracing
|
|
|
|
Copyright (C) 2004 Bill Currie
|
|
|
|
Author: Bill Currie <bill@taniwha.org>
|
|
Date: 2004/9/25
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to:
|
|
|
|
Free Software Foundation, Inc.
|
|
59 Temple Place - Suite 330
|
|
Boston, MA 02111-1307, USA
|
|
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
# include "config.h"
|
|
#endif
|
|
|
|
static __attribute__ ((used)) const char rcsid[] =
|
|
"$Id$";
|
|
|
|
#ifdef HAVE_STRING_H
|
|
# include <string.h>
|
|
#endif
|
|
#ifdef HAVE_STRINGS_H
|
|
# include <strings.h>
|
|
#endif
|
|
|
|
#include "QF/model.h"
|
|
#include "QF/sys.h"
|
|
|
|
#include "compat.h"
|
|
#include "world.h"
|
|
|
|
/* LINE TESTING IN HULLS */
|
|
|
|
typedef struct {
|
|
vec3_t end;
|
|
int side;
|
|
int num;
|
|
mplane_t *plane;
|
|
} tracestack_t;
|
|
|
|
static inline void
|
|
calc_impact (trace_t *trace, const vec3_t start, const vec3_t end,
|
|
mplane_t *plane)
|
|
{
|
|
vec_t t1, t2, frac, offset;
|
|
vec3_t dist;
|
|
|
|
t1 = PlaneDiff (start, plane);
|
|
t2 = PlaneDiff (end, plane);
|
|
offset = 0;
|
|
if (trace->isbox) {
|
|
if (plane->type < 3)
|
|
offset = trace->extents[plane->type];
|
|
else
|
|
offset = (fabs (trace->extents[0] * plane->normal[0])
|
|
+ fabs (trace->extents[1] * plane->normal[1])
|
|
+ fabs (trace->extents[2] * plane->normal[2]));
|
|
}
|
|
|
|
if (t1 < 0) {
|
|
frac = (t1 + offset + DIST_EPSILON) / (t1 - t2);
|
|
// invert plane paramterers
|
|
VectorNegate (plane->normal, trace->plane.normal);
|
|
trace->plane.dist = -plane->dist;
|
|
} else {
|
|
frac = (t1 - offset - DIST_EPSILON) / (t1 - t2);
|
|
VectorCopy (plane->normal, trace->plane.normal);
|
|
trace->plane.dist = plane->dist;
|
|
}
|
|
frac = bound (0, frac, 1);
|
|
trace->fraction = frac;
|
|
VectorSubtract (end, start, dist);
|
|
VectorMultAdd (start, frac, dist, trace->endpos);
|
|
}
|
|
|
|
VISIBLE qboolean
|
|
MOD_TraceLine (hull_t *hull, int num,
|
|
const vec3_t start_point, const vec3_t end_point,
|
|
trace_t *trace)
|
|
{
|
|
vec_t start_dist, end_dist, offset, frac;
|
|
vec3_t start, end, dist;
|
|
int side, empty, solid;
|
|
tracestack_t *tstack;
|
|
tracestack_t tracestack[256];
|
|
dclipnode_t *node;
|
|
mplane_t *plane, *split_plane;
|
|
|
|
VectorCopy (start_point, start);
|
|
VectorCopy (end_point, end);
|
|
|
|
tstack = tracestack;
|
|
empty = 0;
|
|
solid = 0;
|
|
split_plane = 0;
|
|
|
|
while (1) {
|
|
while (num < 0) {
|
|
if (!solid && num != CONTENTS_SOLID) {
|
|
empty = 1;
|
|
if (num == CONTENTS_EMPTY)
|
|
trace->inopen = true;
|
|
else
|
|
trace->inwater = true;
|
|
} else if (!empty && num == CONTENTS_SOLID) {
|
|
solid = 1;
|
|
} else if (empty/* || solid*/) {//FIXME not sure what I want
|
|
// DONE!
|
|
trace->allsolid = solid & (num == CONTENTS_SOLID);
|
|
trace->startsolid = solid;
|
|
calc_impact (trace, start_point, end_point, split_plane);
|
|
return false;
|
|
}
|
|
|
|
// pop up the stack for a back side
|
|
if (tstack-- == tracestack) {
|
|
trace->allsolid = solid & (num == CONTENTS_SOLID);
|
|
trace->startsolid = solid;
|
|
return true;
|
|
}
|
|
|
|
// set the hit point for this plane
|
|
VectorCopy (end, start);
|
|
|
|
// go down the back side
|
|
VectorCopy (tstack->end, end);
|
|
side = tstack->side;
|
|
split_plane = tstack->plane;
|
|
|
|
num = hull->clipnodes[tstack->num].children[side ^ 1];
|
|
}
|
|
|
|
node = hull->clipnodes + num;
|
|
plane = hull->planes + node->planenum;
|
|
|
|
offset = 0;
|
|
start_dist = PlaneDiff (start, plane);
|
|
end_dist = PlaneDiff (end, plane);
|
|
if (trace->isbox) {
|
|
if (plane->type < 3)
|
|
offset = trace->extents[plane->type];
|
|
else
|
|
offset = (fabs (trace->extents[0] * plane->normal[0])
|
|
+ fabs (trace->extents[1] * plane->normal[1])
|
|
+ fabs (trace->extents[2] * plane->normal[2]));
|
|
}
|
|
|
|
/* when offset is 0, the following is equivalent to:
|
|
if (start_dist >= 0 && end_dist >= 0) ...
|
|
if (start_dist < 0 && end_dist < 0) ...
|
|
due to the order of operations
|
|
however, when (start_dist == offset && end_dist == offset) or
|
|
(start_dist == -offset && end_dist == -offset), the trace will go
|
|
down the /correct/ side of the plane: ie, the side the box is
|
|
actually on
|
|
*/
|
|
if (start_dist >= offset && end_dist >= offset) {
|
|
// entirely in front of the plane
|
|
num = node->children[0];
|
|
continue;
|
|
}
|
|
//if (start_dist <= -offset && end_dist <= -offset) {
|
|
//XXX not so equivalent, it seems.
|
|
if (start_dist < -offset && end_dist < -offset) {
|
|
// entirely behind the plane
|
|
num = node->children[1];
|
|
continue;
|
|
}
|
|
// when offset is 0, equvalent to (start_dist >= 0 && end_dist < 0) and
|
|
// (start_dist < 0 && end_dist >= 0) due to the above tests.
|
|
if (start_dist >= offset && end_dist <= -offset) {
|
|
side = 0;
|
|
frac = (start_dist - offset) / (start_dist - end_dist);
|
|
} else if (start_dist <= offset && end_dist >= offset) {
|
|
side = 1;
|
|
frac = (start_dist + offset) / (start_dist - end_dist);
|
|
} else {
|
|
// get here only when offset is non-zero
|
|
Sys_Printf ("foo\n");
|
|
frac = 1;
|
|
side = start_dist < end_dist;
|
|
}
|
|
frac = bound (0, frac, 1);
|
|
|
|
tstack->num = num;
|
|
tstack->side = side;
|
|
tstack->plane = plane;
|
|
VectorCopy (end, tstack->end);
|
|
tstack++;
|
|
|
|
VectorSubtract (end, start, dist);
|
|
VectorMultAdd (start, frac, dist, end);
|
|
|
|
num = node->children[side];
|
|
}
|
|
}
|