quakeforge/libs/video/renderer/vulkan/vulkan_lighting.c
Bill Currie afa84afc79 [vulkan] Abandon light splats
They were an interesting idea and might be useful in the future, but
they don't work as well as I had hoped for quake's maps due to the
overlapping light volumes causing contention while doing the additive
blends in the frame buffer. The cause was made obvious when testing in
the marcher map: most of its over 400 lights have infinite radius thus
require full screen passes: all those passes fighting for the frame
buffer did very nasty things to performance. However, light splats might be
useful for many small, non-overlapping light volumes, thus the code is
being kept (and I like the cleanups that came with it).
2023-06-28 13:26:37 +09:00

1044 lines
29 KiB
C

/*
vulkan_lighting.c
Vulkan lighting pass pipeline
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/2/23
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/dstring.h"
#include "QF/heapsort.h"
#include "QF/plist.h"
#include "QF/progs.h"
#include "QF/script.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/scene/scene.h"
#include "QF/ui/view.h"
#include "QF/Vulkan/qf_draw.h"
#include "QF/Vulkan/qf_lighting.h"
#include "QF/Vulkan/qf_matrices.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/descriptor.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/projection.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/staging.h"
#include "compat.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#include "vkparse.h"
#define ico_verts 12
#define cone_verts 7
static int ico_inds[] = {
0, 4, 6, 9, 2, 8, 4, -1,
3, 1, 10, 5, 7, 11, 1, -1,
1, 11, 6, 4, 10, -1,
9, 6, 11, 7, 2, -1,
5, 10, 8, 2, 7, -1,
4, 8, 10,
};
#define num_ico_inds (sizeof (ico_inds) / sizeof (ico_inds[0]))
static int cone_inds[] = {
0, 1, 2, 3, 4, 5, 6, 1, -1,
1, 6, 5, 4, 3, 2,
};
#define num_cone_inds (sizeof (cone_inds) / sizeof (cone_inds[0]))
#if 0
static void
lighting_draw_maps (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
if (rFrame->subpassCmdSets[0].size) {
__auto_type sets = &rFrame->subpassCmdSets[0];
dfunc->vkFreeCommandBuffers (device->dev, lctx->cmdpool,
sets->size, sets->a);
sets->size = 0;
}
if (!lctx->ldata || !lctx->ldata->lights.size) {
return;
}
if (!lctx->light_renderers.a[0].renderPass) {
//FIXME goes away when lighting implemented properly
return;
}
__auto_type bufferset = QFV_AllocCommandBufferSet (1, alloca);
QFV_AllocateCommandBuffers (device, lctx->cmdpool, 0, bufferset);
VkCommandBuffer cmd = bufferset->a[0];
QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER,
cmd, va (ctx->va_ctx, "lighting:%d", ctx->curFrame));
VkCommandBufferBeginInfo beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
__auto_type rp = rFrame->renderpass;
QFV_CmdBeginLabel (device, cmd, rp->name, rp->color);
__auto_type lr = &lctx->light_renderers.a[0];
VkRenderPassBeginInfo renderPassInfo = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderArea = { {0, 0}, {lr->size, lr->size} },
.framebuffer = lr->framebuffer,
.renderPass = lr->renderPass,
.pClearValues = lctx->qfv_renderpass->clearValues->a,
};
__auto_type subpassContents = VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS;
if (renderPassInfo.renderPass) {
dfunc->vkCmdBeginRenderPass (cmd, &renderPassInfo, subpassContents);
//...
dfunc->vkCmdEndRenderPass (cmd);
}
QFV_CmdEndLabel (device, cmd);
dfunc->vkEndCommandBuffer (cmd);
DARRAY_APPEND (&rFrame->subpassCmdSets[0], cmd);
}
void
Vulkan_Lighting_CreateRenderPasses (vulkan_ctx_t *ctx)
{
// extents are dynamic and filled in for each light
// frame buffers are highly dynamic
__auto_type rp = QFV_RenderPass_New (ctx, "shadow", lighting_draw_maps);
QFV_RenderPass_CreateRenderPass (rp);
rp->primary_commands = 1;
rp->order = QFV_rp_shadowmap;
DARRAY_APPEND (&ctx->renderPasses, rp);
lctx->qfv_renderpass = rp;
}
#endif
static void
lighting_update_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
lframe->ico_count = 0;
lframe->cone_count = 0;
lframe->flat_count = 0;
if (!lctx->scene || !lctx->scene->lights) {
return;
}
lightingdata_t *ldata = lctx->ldata;
Light_FindVisibleLights (ldata);
dlight_t *lights[MaxLights];
auto packet = QFV_PacketAcquire (ctx->staging);
qfv_light_buffer_t *light_data = QFV_PacketExtend (packet,
sizeof (*light_data));
float style_intensities[NumStyles];
for (int i = 0; i < NumStyles; i++) {
style_intensities[i] = d_lightstylevalue[i] / 65536.0;
}
uint32_t ico_ids[MaxLights];
uint32_t cone_ids[MaxLights];
uint32_t flat_ids[MaxLights];
light_data->lightCount = 0;
R_FindNearLights (r_refdef.frame.position, MaxLights - 1, lights);
for (int i = 0; i < MaxLights - 1; i++) {
if (!lights[i]) {
break;
}
ico_ids[lframe->ico_count++] = light_data->lightCount++;
VectorCopy (lights[i]->color, light_data->lights[i].color);
// dynamic lights seem a tad faint, so 16x map lights
light_data->lights[i].color[3] = lights[i]->radius / 16;
VectorCopy (lights[i]->origin, light_data->lights[i].position);
// dlights are local point sources
light_data->lights[i].position[3] = 1;
light_data->lights[i].attenuation =
(vec4f_t) { 0, 0, 1, 1/lights[i]->radius };
// full sphere, normal light (not ambient)
light_data->lights[i].direction = (vec4f_t) { 0, 0, 1, 1 };
}
for (size_t i = 0; (i < ldata->lightvis.size
&& light_data->lightCount < MaxLights); i++) {
if (ldata->lightvis.a[i]) {
uint32_t id = light_data->lightCount++;
auto light = &light_data->lights[id];
*light = ldata->lights.a[i];
light->color[3] *= style_intensities[ldata->lightstyles.a[i]];
if (light->position[3] && !VectorIsZero (light->direction)
&& light->attenuation[3]) {
if (light->direction[3] < 0) {
cone_ids[lframe->cone_count++] = id;
} else {
ico_ids[lframe->ico_count++] = id;
}
} else {
flat_ids[lframe->flat_count++] = id;
}
}
}
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 8,
va (ctx->va_ctx, "%3d", light_data->lightCount),
ctx);
}
QFV_PacketCopyBuffer (packet, lframe->data_buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
if (0) {
packet = QFV_PacketAcquire (ctx->staging);
uint32_t id_count = lframe->ico_count + lframe->cone_count
+ lframe->flat_count;
uint32_t *ids = QFV_PacketExtend (packet, id_count * sizeof (uint32_t));
memcpy (ids, ico_ids, lframe->ico_count * sizeof (uint32_t));
ids += lframe->ico_count;
memcpy (ids, cone_ids, lframe->cone_count * sizeof (uint32_t));
ids += lframe->cone_count;
memcpy (ids, flat_ids, lframe->flat_count * sizeof (uint32_t));
QFV_PacketCopyBuffer (packet, lframe->id_buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
}
}
static VkDescriptorBufferInfo base_buffer_info = {
0, 0, VK_WHOLE_SIZE
};
static VkDescriptorImageInfo base_image_info = {
0, 0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
};
static VkWriteDescriptorSet base_buffer_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0, 0, 0
};
static VkWriteDescriptorSet base_attachment_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
0, 0, 0
};
static VkWriteDescriptorSet base_image_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0, 0, 0
};
static void
lighting_update_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto fb = &taskctx->renderpass->framebuffer;
lframe->bufferInfo[0].buffer = lframe->data_buffer;
lframe->attachInfo[0].imageView = fb->views[QFV_attachDepth];
lframe->attachInfo[1].imageView = fb->views[QFV_attachColor];
lframe->attachInfo[2].imageView = fb->views[QFV_attachEmission];
lframe->attachInfo[3].imageView = fb->views[QFV_attachNormal];
lframe->attachInfo[4].imageView = fb->views[QFV_attachPosition];
dfunc->vkUpdateDescriptorSets (device->dev,
LIGHTING_DESCRIPTORS,
lframe->descriptors, 0, 0);
}
static void
lighting_bind_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto layout = taskctx->pipeline->layout;
auto lframe = &lctx->frames.a[ctx->curFrame];
VkDescriptorSet sets[] = {
Vulkan_Matrix_Descriptors (ctx, ctx->curFrame),
lframe->bufferWrite[0].dstSet,
lframe->attachWrite[0].dstSet,
lframe->shadowWrite.dstSet,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 3, sets, 0, 0);
if (0) {
VkBuffer buffers[] = {
lframe->id_buffer,
lctx->splat_verts,
};
VkDeviceSize offsets[] = { 0, 0 };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 2, buffers, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, lctx->splat_inds, 0,
VK_INDEX_TYPE_UINT32);
}
}
static void
lighting_draw_splats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (lframe->ico_count) {
dfunc->vkCmdDrawIndexed (cmd, num_ico_inds, lframe->ico_count, 0, 0, 0);
}
if (lframe->cone_count) {
dfunc->vkCmdDrawIndexed (cmd, num_cone_inds, lframe->cone_count,
num_ico_inds, 12, lframe->ico_count);
}
}
static void
lighting_draw_flats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!lframe->flat_count) {
return;
}
uint32_t splat_count = lframe->ico_count + lframe->cone_count;
dfunc->vkCmdDraw (cmd, 3, lframe->flat_count, 0, splat_count);
}
static void
lighting_draw_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!(lframe->ico_count + lframe->cone_count + lframe->flat_count)) {
return;
}
dfunc->vkCmdDraw (cmd, 3, 1, 0, 0);
}
static exprfunc_t lighting_update_lights_func[] = {
{ .func = lighting_update_lights },
{}
};
static exprfunc_t lighting_update_descriptors_func[] = {
{ .func = lighting_update_descriptors },
{}
};
static exprfunc_t lighting_bind_descriptors_func[] = {
{ .func = lighting_bind_descriptors },
{}
};
static exprfunc_t lighting_draw_splats_func[] = {
{ .func = lighting_draw_splats },
{}
};
static exprfunc_t lighting_draw_flats_func[] = {
{ .func = lighting_draw_flats },
{}
};
static exprfunc_t lighting_draw_lights_func[] = {
{ .func = lighting_draw_lights },
{}
};
static exprsym_t lighting_task_syms[] = {
{ "lighting_update_lights", &cexpr_function, lighting_update_lights_func },
{ "lighting_update_descriptors", &cexpr_function,
lighting_update_descriptors_func },
{ "lighting_bind_descriptors", &cexpr_function,
lighting_bind_descriptors_func },
{ "lighting_draw_splats", &cexpr_function, lighting_draw_splats_func },
{ "lighting_draw_flats", &cexpr_function, lighting_draw_flats_func },
{ "lighting_draw_lights", &cexpr_function, lighting_draw_lights_func },
{}
};
void
Vulkan_Lighting_Init (vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t));
ctx->lighting_context = lctx;
QFV_Render_AddTasks (ctx, lighting_task_syms);
}
static void
make_ico (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[ico_verts]));
float p = (sqrt(5) + 1) / 2;
float a = sqrt (3) / p;
float b = a / p;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
float my = j & 1 ? a : -a;
float mz = j & 2 ? b : -b;
int vind = i * 4 + j;
int ix = i;
int iy = (i + 1) % 3;
int iz = (i + 2) % 3;
verts[vind][ix] = 0;
verts[vind][iy] = my;
verts[vind][iz] = mz;
}
}
}
static void
make_cone (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[cone_verts]));
float a = 2 / sqrt (3);
float b = 1 / sqrt (3);
VectorSet ( 0, 0, 0, verts[0]);
VectorSet ( a, 0, -1, verts[1]);
VectorSet ( b, 1, -1, verts[2]);
VectorSet (-b, 1, -1, verts[3]);
VectorSet (-a, 0, -1, verts[4]);
VectorSet (-b, -1, -1, verts[5]);
VectorSet ( b, -1, -1, verts[6]);
}
static void
write_inds (qfv_packet_t *packet)
{
uint32_t *inds = QFV_PacketExtend (packet, sizeof (ico_inds)
+ sizeof (cone_inds));
memcpy (inds, ico_inds, sizeof (ico_inds));
inds += num_ico_inds;
memcpy (inds, cone_inds, sizeof (cone_inds));
}
void
Vulkan_Lighting_Setup (vulkan_ctx_t *ctx)
{
qfvPushDebug (ctx, "lighting init");
auto device = ctx->device;
auto lctx = ctx->lighting_context;
lctx->sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
Vulkan_Script_SetOutput (ctx,
&(qfv_output_t) { .format = VK_FORMAT_X8_D24_UNORM_PACK32 });
#if 0
plitem_t *rp_def = lctx->qfv_renderpass->renderpassDef;
plitem_t *rp_cfg = PL_ObjectForKey (rp_def, "renderpass_6");
lctx->renderpass_6 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
rp_cfg = PL_ObjectForKey (rp_def, "renderpass_4");
lctx->renderpass_4 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
rp_cfg = PL_ObjectForKey (rp_def, "renderpass_1");
lctx->renderpass_1 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
#endif
DARRAY_INIT (&lctx->light_mats, 16);
DARRAY_INIT (&lctx->light_images, 16);
DARRAY_INIT (&lctx->light_renderers, 16);
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&lctx->frames, frames);
DARRAY_RESIZE (&lctx->frames, frames);
lctx->frames.grow = 0;
lctx->light_resources = malloc (sizeof (qfv_resource_t)
// splat vertices
+ sizeof (qfv_resobj_t)
// splat indices
+ sizeof (qfv_resobj_t)
// light data
+ sizeof (qfv_resobj_t[frames])
// light indices
+ sizeof (qfv_resobj_t[frames]));
auto splat_verts = (qfv_resobj_t *) &lctx->light_resources[1];
auto splat_inds = &splat_verts[1];
auto light_data = &splat_inds[1];
auto light_ids = &light_data[frames];
lctx->light_resources[0] = (qfv_resource_t) {
.name = "lights",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 + 2 * frames,
.objects = splat_verts,
};
splat_verts[0] = (qfv_resobj_t) {
.name = "splat:vertices",
.type = qfv_res_buffer,
.buffer = {
.size = (20 + 7) * sizeof (vec3_t),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
},
};
splat_inds[0] = (qfv_resobj_t) {
.name = "splat:indices",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (ico_inds) + sizeof (cone_inds),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
},
};
for (size_t i = 0; i < frames; i++) {
light_data[i] = (qfv_resobj_t) {
.name = "data",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (qfv_light_buffer_t),
.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_ids[i] = (qfv_resobj_t) {
.name = "ids",
.type = qfv_res_buffer,
.buffer = {
.size = 2 * MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
}
QFV_CreateResource (ctx->device, lctx->light_resources);
lctx->splat_verts = splat_verts[0].buffer.buffer;
lctx->splat_inds = splat_inds[0].buffer.buffer;
auto attach_mgr = QFV_Render_DSManager (ctx, "lighting_attach");
auto lights_mgr = QFV_Render_DSManager (ctx, "lighting_lights");
auto shadow_mgr = QFV_Render_DSManager (ctx, "lighting_shadow");
for (size_t i = 0; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
*lframe = (lightingframe_t) {
.data_buffer = light_data[i].buffer.buffer,
.id_buffer = light_ids[i].buffer.buffer,
};
auto attach = QFV_DSManager_AllocSet (attach_mgr);
auto lights = QFV_DSManager_AllocSet (lights_mgr);
auto shadow = QFV_DSManager_AllocSet (shadow_mgr);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, attach,
va (ctx->va_ctx, "lighting:attach_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, lights,
va (ctx->va_ctx, "lighting:lights_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, shadow,
va (ctx->va_ctx, "lighting:shadow_set:%zd", i));
for (int j = 0; j < LIGHTING_BUFFER_INFOS; j++) {
lframe->bufferInfo[j] = base_buffer_info;
lframe->bufferWrite[j] = base_buffer_write;
lframe->bufferWrite[j].dstSet = lights;
lframe->bufferWrite[j].dstBinding = j;
lframe->bufferWrite[j].pBufferInfo = &lframe->bufferInfo[j];
}
for (int j = 0; j < LIGHTING_ATTACH_INFOS; j++) {
lframe->attachInfo[j] = base_image_info;
lframe->attachInfo[j].sampler = 0;
lframe->attachWrite[j] = base_attachment_write;
lframe->attachWrite[j].dstSet = attach;
lframe->attachWrite[j].dstBinding = j;
lframe->attachWrite[j].pImageInfo = &lframe->attachInfo[j];
}
for (int j = 0; j < LIGHTING_SHADOW_INFOS; j++) {
lframe->shadowInfo[j] = base_image_info;
lframe->shadowInfo[j].sampler = lctx->sampler;
lframe->shadowInfo[j].imageView = ctx->default_black->view;
}
lframe->shadowWrite = base_image_write;
lframe->shadowWrite.dstSet = shadow;
lframe->shadowWrite.dstBinding = 0;
lframe->shadowWrite.descriptorCount = LIGHTING_SHADOW_INFOS;
lframe->shadowWrite.pImageInfo = lframe->shadowInfo;
}
auto packet = QFV_PacketAcquire (ctx->staging);
make_ico (packet);
make_cone (packet);
QFV_PacketCopyBuffer (packet, splat_verts[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
write_inds (packet);
QFV_PacketCopyBuffer (packet, splat_inds[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
qfvPopDebug (ctx);
}
static void
clear_shadows (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
for (size_t i = 0; i < lctx->light_renderers.size; i++) {
__auto_type lr = &lctx->light_renderers.a[i];
dfunc->vkDestroyFramebuffer (device->dev, lr->framebuffer, 0);
dfunc->vkDestroyImageView (device->dev, lr->view, 0);
}
if (lctx->shadow_resources) {
QFV_DestroyResource (device, lctx->shadow_resources);
free (lctx->shadow_resources);
lctx->shadow_resources = 0;
}
lctx->light_images.size = 0;
lctx->light_renderers.size = 0;
}
void
Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
clear_shadows (ctx);
dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_6, 0);
dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_4, 0);
dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_1, 0);
QFV_DestroyResource (device, lctx->light_resources);
free (lctx->light_resources);
DARRAY_CLEAR (&lctx->light_mats);
DARRAY_CLEAR (&lctx->light_images);
DARRAY_CLEAR (&lctx->light_renderers);
free (lctx->frames.a);
free (lctx);
}
static vec4f_t ref_direction = { 0, 0, 1, 0 };
static void
create_light_matrices (lightingctx_t *lctx)
{
lightingdata_t *ldata = lctx->ldata;
DARRAY_RESIZE (&lctx->light_mats, ldata->lights.size);
for (size_t i = 0; i < ldata->lights.size; i++) {
light_t *light = &ldata->lights.a[i];
mat4f_t view;
mat4f_t proj;
int mode = ST_NONE;
if (!light->position[3]) {
mode = ST_CASCADE;
} else {
if (light->direction[3] > -0.5) {
mode = ST_CUBE;
} else {
mode = ST_PLANE;
}
}
switch (mode) {
default:
case ST_NONE:
case ST_CUBE:
mat4fidentity (view);
break;
case ST_CASCADE:
case ST_PLANE:
//FIXME will fail for -ref_direction
vec4f_t dir = light->direction;
dir[3] = 0;
mat4fquat (view, qrotf (dir, ref_direction));
break;
}
VectorNegate (light->position, view[3]);
switch (mode) {
case ST_NONE:
mat4fidentity (proj);
break;
case ST_CUBE:
QFV_PerspectiveTan (proj, 1, 1);
break;
case ST_CASCADE:
// dependent on view fustrum and cascade level
mat4fidentity (proj);
break;
case ST_PLANE:
QFV_PerspectiveCos (proj, -light->direction[3]);
break;
}
mmulf (lctx->light_mats.a[i], proj, view);
}
}
static int
light_compare (const void *_li2, const void *_li1, void *_ldata)
{
const int *li1 = _li1;
const int *li2 = _li2;
lightingdata_t *ldata = _ldata;
const light_t *l1 = &ldata->lights.a[*li1];
const light_t *l2 = &ldata->lights.a[*li2];
int s1 = abs ((int) l1->color[3]);
int s2 = abs ((int) l2->color[3]);
if (s1 == s2) {
return (l1->position[3] == l2->position[3])
&& (l1->direction[3] > -0.5) == (l2->direction[3] > -0.5);
}
return s1 - s2;
}
static VkImageView
create_view (const light_renderer_t *lr, int id, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
VkImageViewType type = 0;
const char *viewtype = 0;
switch (lr->mode) {
case ST_NONE:
return 0;
case ST_PLANE:
type = VK_IMAGE_VIEW_TYPE_2D;
viewtype = "plane";
break;
case ST_CASCADE:
type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewtype = "cascade";
break;
case ST_CUBE:
type = VK_IMAGE_VIEW_TYPE_CUBE;
viewtype = "cube";
break;
}
VkImageViewCreateInfo createInfo = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0,
0,
lr->image, type, VK_FORMAT_X8_D24_UNORM_PACK32,
{
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
},
{ VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, lr->layer, lr->numLayers }
};
VkImageView view;
dfunc->vkCreateImageView (device->dev, &createInfo, 0, &view);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, view,
va (ctx->va_ctx, "iview:shadowmap:%s:%d",
viewtype, id));
(void) viewtype;//silence unused warning when vulkan debug disabled
return view;
}
static VkFramebuffer
create_framebuffer (const light_renderer_t *lr, vulkan_ctx_t *ctx)
{
return 0;//FIXME
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
VkFramebuffer framebuffer;
VkFramebufferCreateInfo cInfo = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = lr->renderPass,
.attachmentCount = 1,
.pAttachments = &lr->view,
.width = lr->size,
.height = lr->size,
.layers = 1,
};
dfunc->vkCreateFramebuffer (device->dev, &cInfo, 0, &framebuffer);
return framebuffer;
}
static void
build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
typedef struct {
int size;
int layers;
int cube;
} mapdesc_t;
qfv_device_t *device = ctx->device;
qfv_physdev_t *physDev = device->physDev;
int maxLayers = physDev->properties->limits.maxImageArrayLayers;
lightingdata_t *ldata = lctx->ldata;
light_t *lights = ldata->lights.a;
int numLights = ldata->lights.size;
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int *imageMap = alloca (numLights * sizeof (int));
int *lightMap = alloca (numLights * sizeof (int));
int numMaps = 0;
mapdesc_t *maps = alloca (numLights * sizeof (mapdesc_t));
for (int i = 0; i < numLights; i++) {
lightMap[i] = i;
}
heapsort_r (lightMap, numLights, sizeof (int), light_compare, ldata);
DARRAY_RESIZE (&lctx->light_renderers, numLights);
for (int i = 0; i < numLights; i++) {
int layers = 1;
int li = lightMap[i];
__auto_type lr = &lctx->light_renderers.a[li];
*lr = (light_renderer_t) {};
if (!lights[li].position[3]) {
if (!VectorIsZero (lights[li].direction)) {
lr->mode = ST_CASCADE;
}
} else {
if (lights[li].direction[3] > -0.5) {
lr->mode = ST_CUBE;
} else {
lr->mode = ST_PLANE;
}
}
if (lr->mode == ST_CASCADE || lr->mode == ST_NONE) {
// cascade shadows will be handled separately, and "none" has no
// shadow map at all
imageMap[li] = -1;
continue;
}
if (lr->mode == ST_CUBE) {
layers = 6;
}
if (size != abs ((int) lights[li].color[3])
|| numLayers + layers > maxLayers) {
if (numLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 1,
};
numLayers = 0;
}
size = abs ((int) lights[li].color[3]);
}
imageMap[li] = numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 1,
};
}
numLayers = 0;
size = 1024;
for (int i = 0; i < numLights; i++) {
int layers = 4;
int li = lightMap[i];
__auto_type lr = &lctx->light_renderers.a[li];
if (lr->mode != ST_CASCADE) {
continue;
}
if (numLayers + layers > maxLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 0,
};
numLayers = 0;
}
imageMap[li] = numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 0,
};
}
if (numMaps) {
qfv_resource_t *shad = calloc (1, sizeof (qfv_resource_t)
+ numMaps * sizeof (qfv_resobj_t));
lctx->shadow_resources = shad;
*shad = (qfv_resource_t) {
.name = "shadow",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = numMaps,
.objects = (qfv_resobj_t *) &shad[1],
};
for (int i = 0; i < numMaps; i++) {
int cube = maps[i].layers < 6 ? 0 : maps[i].cube;
shad->objects[i] = (qfv_resobj_t) {
.name = "map",
.type = qfv_res_image,
.image = {
.flags = cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { maps[i].size, maps[i].size, 1 },
.num_mipmaps = 1,
.num_layers = maps[i].layers,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
}
QFV_CreateResource (device, shad);
for (int i = 0; i < numMaps; i++) {
DARRAY_APPEND (&lctx->light_images, shad->objects[i].image.image);
}
}
for (int i = 0; i < numLights; i++) {
int li = lightMap[i];
__auto_type lr = &lctx->light_renderers.a[li];
if (imageMap[li] == -1) {
continue;
}
switch (lr->numLayers) {
case 6:
lr->renderPass = lctx->renderpass_6;
break;
case 4:
lr->renderPass = lctx->renderpass_4;
break;
case 1:
lr->renderPass = lctx->renderpass_1;
break;
default:
Sys_Error ("build_shadow_maps: invalid light layer count: %u",
lr->numLayers);
}
lr->image = lctx->light_images.a[imageMap[li]];
lr->view = create_view (lr, li, ctx);
lr->framebuffer = create_framebuffer(lr, ctx);
}
Sys_MaskPrintf (SYS_vulkan,
"shadow maps: %d layers in %zd images: %"PRId64"\n",
totalLayers, lctx->light_images.size,
lctx->shadow_resources->size);
}
void
Vulkan_LoadLights (scene_t *scene, vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = ctx->lighting_context;
lctx->scene = scene;
lctx->ldata = scene ? scene->lights : 0;
clear_shadows (ctx);
if (lctx->ldata && lctx->ldata->lights.size) {
build_shadow_maps (lctx, ctx);
create_light_matrices (lctx);
}
}