Such nodes are unreachable code (ie, dead blocks), but the dead block
removal code failed to remove them (current known cause: miscounted label
userrs). As such blocks cause problems for data flow analysis, ignoring
them is not a good idea. Thus make them an internal error.
vectors, quaternions and structs are a little tricky. I need to think about
how to get them working, but I also want qfcc to get through as much code
as possible.
It really should be impossible, but I'm not sure where the bug is yet
(though there are uninitialized variables that are false positives that
most definitely are initialized, might be related)
Pointing to aliases of the var causes all sorts of problems, but this time
it was causing the uninitialized variable detector to miss certain
parameters.
.return and .param_N are not classed as global variables for data flow
analysis. .return is taken care of by return statements, and .param_N by
call statements.
With this, the menus work up to attempting to load the menu plist.
Something is corrupting zmalloc's blocks.
While things are quite broken now (very incorrect code is being generated),
the dag is much easier to work with. The dag is now stored in an array of
nodes (the children pointers are still used for dagnode operands), and sets
are used for marking node parents, attached identifiers and (when done,
extra edges).
flow_analyze_statement uses the statement type to quickly determin which
operands are inputs and which are outputs. It takes (optional) sets for
used variables, defined variables and killed variables (only partially
working, but I don't actually use kill sets yet). It also takes an optional
array for storing the operands: index 0 is the output, 1-3 are the inputs.
flow_analyze_statement clears any given sets on entry.
Live variable analysis now uses the sets rather than individual vars. Much
cleaner code :).
Dags are completely broken.
An instruction that both reads and writes the same variable will read the
variable before writing to it, so the instruction uses the variable rather
than defines it (for live-variable purposes).
First, it turns out using daglabels wasn't such a workable plan (due to
labels being flushed every sblock). Instead, flowvars are used. Each actual
variable (whether normal or temp) has a pointer to the flowvar attached to
that variable.
For each variable, the statements that use or define the variable are
recorded in the appropriate set attached to each (flow)variable.
The flow graph nodes are now properly separated from the graph, and edge
information is stored in the graph struct. This actually made for much
cleaner code (partly thanks to the use of sets and set iterators).
Flow graph reduction has been (temporarily) ripped out as the entire
approach was wrong. There was also a bug in that I didn't really understand
the dragon book about selecting nodes and thus messed things up. The
depth-first search tree "fixed" the problem, but was really the wrong
solution (sledge hammer :P).
Also, now that I understand that dot's directed graphs must be acyclic, I
now have much better control over the graphs (back edges need to be
flipped).
The reduction is performed itteratively until the graph is irreducible, but
such that each reduction wraps the previous graph. Unfortunately, due
depth-first searching not being implemented, graphs that should be reduced
(ie, those with natural loops).
set_first() now returns a pointer to a setstate_t struct that holds the
state necessary for scanning a set. set_next() will automatically delete
the state block when the end of the set is reached. set_delstate() is also
provided to allow early termination of the scan.
Much of the data recently added to sblock_t has been moved to flownode_t.
No graph reduction is carried out yet, but the initial (innermost level)
graph has been built.