Perform graph reduction on the function's flow graph.

The reduction is performed itteratively until the graph is irreducible, but
such that each reduction wraps the previous graph. Unfortunately, due
depth-first searching not being implemented, graphs that should be reduced
(ie, those with natural loops).
This commit is contained in:
Bill Currie 2012-11-01 15:01:51 +09:00
parent 388b6e6e8f
commit 53622dbb99
2 changed files with 109 additions and 0 deletions

View file

@ -63,6 +63,7 @@ typedef struct flownode_s {
int num_succ;
unsigned *successors; //< indices into siblings
unsigned num_nodes; //< number of nodes or sblocks
unsigned region; //< the region of which this node is a member
/// \name Node pointers.
/// Only one of \a sblocks or \a nodes will be non-null. If \a sblocks is
/// non-null, then this is an innermost flow-node, otherwise \a nodes

View file

@ -362,6 +362,112 @@ flow_find_loops (flownode_t **node_list, unsigned num_nodes)
return loop_list;
}
static int
is_predecessor (unsigned m, set_t *I, flownode_t *graph)
{
flownode_t *node = graph->siblings[m];
int i;
for (i = 0; i < node->num_pred; i++)
if (!set_is_member (I, node->predecessors[i]))
return 0;
return 1;
}
static set_t *
select_nodes (flownode_t *graph, set_t *G, unsigned n)
{
set_t *I;
setstate_t *m;
I = set_new ();
set_add (I, n);
set_remove (G, n);
for (m = set_first (G); m; m = set_next (m)) {
if (m->member == n || !is_predecessor (m->member, I, graph))
continue;
set_remove (G, m->member);
set_add (I, m->member);
}
return I;
}
static flownode_t *
flow_reduce (flownode_t *graph)
{
set_t *G;
set_t **I;
unsigned i, j, count = 0;
int k;
flownode_t **node_list = 0;
flownode_t *node;
setstate_t *m;
if (graph->num_siblings < 2)
return 0;
G = set_new ();
// Initialize G to be the set of all nodes in graph
for (i = 0; i < graph->num_siblings; i++)
set_add (G, i);
// allocate space for the interval sets. There will never be more intervals
// than nodes in graph.
I = malloc (graph->num_siblings * sizeof (set_t *));
I[count++] = select_nodes (graph, G, 0);
for (m = set_first (G); m; m = set_first (G)) {
I[count++] = select_nodes (graph, G, m->member);
set_delstate (m);
}
if (count == graph->num_siblings)
goto irreducible;
node_list = malloc (count * sizeof (flownode_t *));
for (i = 0; i < count; i++) {
node = new_node ();
node->siblings = node_list;
node->num_siblings = count;
node->id = i;
node->num_nodes = set_size (I[i]);
node->nodes = malloc (node->num_nodes * sizeof (flownode_t *));
for (j = 0, m = set_first (I[i]); m; m = set_next (m), j++) {
node->nodes[j] = graph->siblings[m->member];
node->nodes[j]->region = i;
}
node_list[node->id] = node;
}
for (i = 0; i < count; i++) {
node = node_list[i];
set_empty (G); // G now represents the set of successors of node
for (j = 0; j < node->num_nodes; j++) {
flownode_t *n = node->nodes[j];
for (k = 0; k < n->num_succ; k++) {
flownode_t *m = n->siblings[n->successors[k]];
if (m->region != i && !set_is_member (G, m->region))
set_add (G, m->region);
}
}
node->num_succ = set_size (G);
node->successors = malloc (node->num_succ * sizeof (unsigned));
for (j = 0, m = set_first (G); m; j++, m = set_next (m))
node->successors[j] = m->member;
}
flow_find_predecessors (node_list, count);
irreducible:
for (i = 0; i < count; i++)
set_delete (I[i]);
free (I);
set_delete (G);
if (node_list)
return node_list[0];
return 0;
}
void
flow_build_graph (function_t *func)
{
@ -427,4 +533,6 @@ flow_build_graph (function_t *func)
flow_calc_dominators (node_list, num_blocks);
func->loops = flow_find_loops (node_list, num_blocks);
func->flow = node_list[0];
while ((node = flow_reduce (func->flow)))
func->flow = node;
}