When using SET_STATIC_INIT, the set size needs to be the same as what
set_new() would create for the same number of bits, otherwise the set
will possibly get resized incorrectly (which is bad news when the array
was allocated using alloca). While this is really a symptom of
set_bits_t not getting the right size, getting weird segfaults is not a
good way to diagnose the problem, and set_bits_t being the wrong size is
just a minor pessimism.
Really, a bit more than stub as the basic code is there, but nothing
works properly yet due to missing resources (especially descriptor sets
and pools), and the frame buffer creation is still disabled.
The step dependencies are not handled yet as threading isn't used at
this stage, but since I'll require dependencies to always come earlier,
this shouldn't cause a problem.
This fixes a Sys_Error when loading the level for the first demo (and
probably many other times). It was mod_numknown getting set to 0 that
triggered the issue, but that seems to be necessary for the other
renderers. I think the whole model loading and caching system needs an
overhaul as this doesn't feel quite right due to removing part of the
advantage of caching the model data.
Requiring top-level {} or () for (usually) hand-written files is awkward
and even a little error prone, and certainly ugly at times. With this,
loaders that expect a particular format can specify the format a little
more directly.
The jobs will become the core of the renderer, with each job step being
one of a render pass, compute pass, or processor (CPU-only) task. The
steps support dependencies, which will allow for threading the system in
the future.
Currently, just the structures, parse support, and prototype job
specification (render.plist) have been implemented. No conversion to
working data is done yet, and many things, in particular resources, will
need to be reworked, but this gets the basic design in.
The hierarchy leak was particularly troublesome to fix, but now the
hierarchies get updated (and freed) automatically just by removing the
hierarchy reference component from the entity. I suspect there will be
issues with entities that are on multiple hierarchies, but I'll sort
that out later.
And rename _bsearch to QF_bsearch_r since that's far less confusing.
Also, update the test to make it possible for valgrind to detect the
out-by-one. The problem was found when trying to remove components from
an entity when using subpools.
I'm not 100% sure this is the best fix for the issue, but the way the
cbuf interpreter stack works (especially in the console code) meant that
the stack was built in the order opposite to how it could be safely
deleted with the existing function. Yeah, more leaks :P
Finally, hash links can be freed when the hash context is no longer
relevant. The context is created automatically when needed, and the
owner can delete the context when its done with the relevant hash
tables.
Render passes and subpasses are now mostly initialized, just command
buffers and frame buffer related info to go (including view/scissor for
pipelines).
Not only does this quieten the validation layers, it ensures that all
the object handles are named and where they need to be. Also fixes only
one pipeline being created instead of the 15 or so.
The render passes seem to be created successfully, but pipelines fail
due to not having layout set, resulting in a segfault (bug in validation
layers?).
I don't remember why I kept the abbreviated configs for images and image
views, but it because such that I need to be able to specify them
completely. In addition, image views support external images.
The rest was just cleaning up after the changes to qfv_resobj_t.
.dictionary can ask for standard parsing via a .parse key (value is
ignored currently).
Fields can use $auto to use standard parsing for that field.
If either is used, the plist field descriptors are written.
They're currently just stubs, but this gets the render info loading
working without any errors. The next step is to connect up pipelines and
create the image resources, then implementing the task functions will
have meaning.
This gets an empty (no tasks or pipelines connected) render context
initialized and available for other subsystems to register their task
functions. Nothing is using it yet, but the test parse of rp_main_def
fails gracefully (needs those tasks).
This just sets up the memory block and cexpr descriptors for the
parameters, parameter parsing is separate (and next). The parameters are
aligned to their size.
A bunch of missed struct members, incorrect parse types, and some logic
errors in the parse setup. Still not working due to problems with
vectors from plist string references and some other errors, but getting
there.
There's still a lot of work to do, but the basics are in. The spec will
be parsed into info structs that can then be further processed to
generate all the actual structs, generally making things a little less
timing dependent (eg, image view info refers to its image by name).
The new render pass and subpass structs have their names mangled for now
until I can switch over to the new system.
While the old system did get things going, it felt clunky to set up,
especially when it came to variations on render passes (eg, flat vs
cube-mapped). Also, much of it felt inside-out, especially the
separation of pipelines and render passes: having to specify the render
pass and subpass in the pipeline spec made the spec feel overly coupled
to the render pass setup. While this is the case in Vulkan, it is not
reflected properly in the pipeline spec. The new system will adjust the
render pass and subpass parameters of the pipeline spec as needed,
making the pipeline specs more reusable, and hopefully less error prone
as the pipelines are directly referenced by the subpasses that use them.
In addition, subpass dependencies should be much easier to set up as
only the dependent subpass specifies the dependency and the subpass
source dependency is mentioned by name. Frame buffer attachments also
get a similar treatment.
The new spec "format" isn't quite finalized (needs to meet the enemy
known as parsing) but it feels like a good starting place.