Just "loading" and "unloading" (both really just hints due to the
caching system), and an internal function for converting a handle to a
model pointer, but it let me test IQM loading and unloading in Vulkan.
The model system is rather clunky as it is focused around caching, so
unloading is more of a suggestion than anything, but it was good enough
for testing loading and unloading of IQM models in Vulkan.
Despite the base IQM specification not supporting blend-shapes, I think
IQM will become the basis for QF's generic model representation (at
least for the more advanced renderers). After my experience with .mu
models (KSP) and unity mesh objects (both normal and skinned), and
reviewing the IQM spec, it looks like with the addition of support for
blend-shapes, IQM is actually pretty good.
This is just the preliminary work to get standard IQM models loading in
vulkan (seems to work, along with unloading), and they very basics into
the renderer (most likely not working: not tested yet). The rest of the
renderer seems to be unaffected, though, which is good.
The resource subsystem creates buffers, images, buffer views and image
views in a single batch operation, using a single memory object to back
all the buffers and images. I had been doing this by hand for a while,
but got tired of jumping through all those vulkan hoops. While it's
still a little tedious to set up the arrays for QFV_CreateResource (and
they need to be kept around for QFV_DestroyResource), it really eases
calculation of memory object size and sub-resource offsets. And
destroying all the objects is just one call to QFV_DestroyResource.
I might need to do similar for other formats, but i ran into the problem
of the texture type being tex_palette instead of the expected tex_rgba
when pre-(no-)loading a tga image resulting in Vulkan not liking my
attempt at generating mipmaps.
Having to refigure out what values are going into the vectors got old
very fast. The comments don't help with verifying the values, but at
least I can tell at a glance where 2(xy - wz) goes and thus determine
the "orientation" of the matrix.
pr_type_t now contains only the one "value" field, and all the access
macros now use their PACKED variant for base access, making access to
larger types more consistent with the smaller types.
They're really redundant, and removing the next pointer makes for a
slightly smaller cvar struct. Cvar_Select was added to allow finding
lists of matching cvars.
The tab-completion and config saving code was reworked to use the hash
table DO functions. Comments removed since the code was completely
rewritten, but still many thanks to EvilTypeGuy and Fett.
Hash_Select returns a list of elements that match a given criterion
(select callback returning non-0).
Hash_ForEach simply calls a function for every element.
And use it for hud_scoreboard_gravity. Putting the enum def in view made
the most sense as view does own the base type and the enum is likely to
be by useful for other settings.
My script didn't know what type to make the cvars since they're not used
directly by the code, so they got treated as strings instead of ints or
floats.
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
The prefix gives more context to the error messages, making the system a
lot easier to use (it was especially helpful when getting my cvar revamp
into shape).
Based on the flags type used in vkparse (difference is the lack of
support for plists). Having this will make supporting named flags in
cvars much easier (though setting up the enum type is a bit of a chore).
This allows for easy (and safe) printing of cexpr values where the type
supports it. Types that don't support printing would be due to being too
complex or possibly write-only (eg, password strings, when strings are
supported directly).
This is progress towards #23. There are still some references to
host_time and host_client (via nq's server.h), and a lot of references
to sv and svs, but this is definitely a step in the right direction.
This allows a single render pass description to be used for both
on-screen and off-screen targets. While Vulkan does allow a VkRenderPass
to be used with any compatible frame buffer, and vkparse caches a
VkRenderPass created from the same description, this allows the same
description to be used for a compatible off-screen target without any
dependence on the swapchain. However, there is a problem in the caching
when it comes to targeting outputs with different formats.
This is progress towards #23. There are still some references to
host_time and host_client (via nq's server.h), and a lot of references
to sv and svs, but this is definitely a step in the right direction.
Really, this won't make all that much difference because alias models
with more than one skin are quite rare, and those with animated skin
groups are even rarer. However, for those models that do have more than
one skin, it will allow for reduced allocation overheads, and when
supported (glsl, vulkan, maybe gl), loading all the skins into an array
texture (since all skins are the same size, though external skins may
vary), but that's not implemented yet, this just wraps the old one skin
at a time code.
This allows a single render pass description to be used for both
on-screen and off-screen targets. While Vulkan does allow a VkRenderPass
to be used with any compatible frame buffer, and vkparse caches a
VkRenderPass created from the same description, this allows the same
description to be used for a compatible off-screen target without any
dependence on the swapchain. However, there is a problem in the caching
when it comes to targeting outputs with different formats.
This makes much more sense as they are intimately tied to the frame
buffer on which a render pass is working. Now, just the window width
and height are stored in vulkan_ctx_t. As a side benefit,
QFV_CreateSwapchain no long references viddef (now just palette and
conview in vulkan_draw.c to go).
While I have trouble imagining it making that much performance
difference going from 4 verts to 3 for a whopping 2 polygons, or even
from 2 triangles to 1 for each poly, using only indices for the vertices
does remove a lot of code, and better yet, some memory and buffer
allocations... always a good thing.
That said, I guess freeing up a GPU thread for something else could make
a difference.
I think I had gotten lucky with captures not being corrupt due to them
being much bigger than all but the L3 cache (and then they're over 1/2
the size), so the memory was being automatically invalidated by other
activity. Don't want to trust such luck, though.
This means that a tex_t object is passed in instead of just raw bytes
and width and height, but it means the texture can specify whether it's
flipped or uses BGR instead of RGB. This fixes the upside down
screenshots for vulkan.
This fixes (*ahem*) the vulkan renderer segfaulting when attempting to
take a screenshot. However, the image is upside down. Also, remote
snapshots and demo capture are broken for the moment.
QFS_NextFilename was renamed to QFS_NextFile to reflect the fact it now
returns a QFile pointer for the newly created file (as well as the
name). This necessitated updating WritePNG to take a file pointer
instead of a file name, with the advantage that WritePNGqfs is no longer
necessary and callers have much more control over the creation of the
file.
This makes QFS_NextFile much more secure against file system race
conditions and attacks (at least in theory). If nothing else, it will
make it more robust in a multi-threaded environment.
QF currently uses unique file names for screenshots and server-side
demos (and remote snapshots), but they're generally useful.
QFS_NextFilename has been filling this role, but it is highly insecure
in its current implementation. This is the first step to taking care of
that.
clang doesn't like the same variable name being used in nested
expression statements, so give the "safety" variables in reused macros
semi-meaningful (based on macro name) tails to keep them separate.
gcc and clang have rather different swizzle builtins, but both do a nice
job of optimizing the intuitive initializer swizzle (I think gcc 8(?)
didn't do such a good job thus my use of __builtin_shuffle).
Viewport and FOV updates are now separate so updating one doesn't cause
recalculations of the other. Also, perspective setup is now done
directly from the tangents of the half angles for fov_x and fov_y making
the renderers independent of fov/aspect mode. I imagine things are a bit
of a mess with view size changes, and especially screen size changes
(not supported yet anyway), and vulkan winds up updating its projection
matrices every frame, but everything that's expected to work does
(vulkan errors out for fisheye or warp due to frame buffer creation not
being supported yet).
Definitely not something for the renderer to care about directly (ie, at
most, a post-process filter setting or palette update, which is how it
actually is currently).
I meant to do this a while ago but forgot about it. Things are a bit of
a mess in that the renderer knows too much about entities, but
eventually the renderer will know about only things to render (meshes,
particles, etc).
The quake-specific enums are now in the client header, and the particle
system now has a gravity field rather than getting it from
vid_render_data (which I hope to eventually get rid of entirely).