I don't like the current name (update_framebuffer), but if the
referenced render pass doesn't have a framebuffer, one is created. The
renderpass is referenced via the active renderpass of the named render
step. Unfortunately, this has uncovered a bug in the setup of renderpass
objects: main.deferred has output's renderpass, and main.deferred_cube
and output have bogus renderpass objects.
Being able to specify the types in the push constant ranges makes it a
lot easier to get the specification correct. I never did like having to
do the offsets and sizes by hand as it was quite error prone. Right now,
float, int, uint, vec3, vec4 and mat4 are supported, and adheres to
layout std430.
This allows the likes of:
qfv_pushconstantrangeinfo_s = {
.name = qfv_pushconstantrangeinfo_t;
.type = (QFDictionary);
.dictionary = {
.parse = {
type = (labeledarray, qfv_pushconstantinfo_t, name);
size = num_pushconstants;
values = pushconstants;
};
stageFlags = $name.auto;
};
stageFlags = auto;
};
Leading to:
pushConstants = {
vertex = { Model = mat4; blend = float; };
fragment = { colors = uint; base_color = vec4; fog = vec4; };
};
Where the label of the labeled array (which pushConstants is) is
actually an enum flag and the dictionary value is another labeled array.
The up-coming changes to push constant handling has qfv_float etc type
enum values and using "float" instead of "qfv_float" is highly desirable
as the names match the glsl type names.
The creation of the render jobs doesn't really belong with the running
of those jobs. This makes the code a little easier to navigate as it was
too easy to lost between load-time and run-time code.
This is with the new render job scheme. I very much doubt it actually
works (can't start testing until everything passes, and it's disabled
for the moment (define in vid_render_vulkan.c)), but it's helping iron
out what more is needed in the render system.
I never liked it, but with C2x coming out, it's best to handle bools
properly. I haven't gone through all the uses of int as bool (I'll leave
that for fixing when I encounter them), but this gets QF working with
both c2x (really, gnu2x because of raw strings).
I never liked the various hacks I had come up with for representing
resource handles in Ruamoko. Structs with an int were awkward to test,
pointers and ints could be modified, etc etc. The new @handle keyword (@
used to keep handle free for use) works just like struct, union and
enum in syntax, but creates an opaque type suitable for a 32-bit handle.
The backing type is a function so v6 progs can use it without (all the
necessary opcodes exist) and no modifications were needed for
type-checking in binary expressions, but only assignment and comparisons
are supported, and (of course) nil. Tested using cbuf_t and QFile: seems
to work as desired.
I had considered 64-bit handles, but really, if more than 4G resource
objects are needed, I'm not sure QF can handle the game. However, that
limit is per resource manager, not total.
Really, a bit more than stub as the basic code is there, but nothing
works properly yet due to missing resources (especially descriptor sets
and pools), and the frame buffer creation is still disabled.
The step dependencies are not handled yet as threading isn't used at
this stage, but since I'll require dependencies to always come earlier,
this shouldn't cause a problem.
I had somehow missed vkfieldignore in a consistency pass, or just messed
up its initialization (and thus deallocation) resulting in a double-free
of the strings.
This fixes a Sys_Error when loading the level for the first demo (and
probably many other times). It was mod_numknown getting set to 0 that
triggered the issue, but that seems to be necessary for the other
renderers. I think the whole model loading and caching system needs an
overhaul as this doesn't feel quite right due to removing part of the
advantage of caching the model data.
While the previous cleanup took care of the C side, it turns out vkgen
was leaking property list items all over the place, but they were
cleaned up by the shutdown code.
The jobs will become the core of the renderer, with each job step being
one of a render pass, compute pass, or processor (CPU-only) task. The
steps support dependencies, which will allow for threading the system in
the future.
Currently, just the structures, parse support, and prototype job
specification (render.plist) have been implemented. No conversion to
working data is done yet, and many things, in particular resources, will
need to be reworked, but this gets the basic design in.
Flushing memory requires nonCoherentAtomSize alignment, but this can
cause the flush range to go out of bounds of an improperly sized buffer.
However, only host-visible (and probably really only cached, but all
three covered) needs flushing, so no rounding up is done for
device-local memory.
It should have been this way all along, and it seems I thought they were
when I did rua_gui.c as it already freed its resource block, which would
have been a double free (oops). Fixes an invalid write when shutting
down progs in qwaq-cmd (relevant change not committed).
Render passes and subpasses are now mostly initialized, just command
buffers and frame buffer related info to go (including view/scissor for
pipelines).
Due to a typo in the list of extra property list items to add to the
symbol table (corrected), subsequent symbols were pointing to the wrong
memory address.
Not only does this quieten the validation layers, it ensures that all
the object handles are named and where they need to be. Also fixes only
one pipeline being created instead of the 15 or so.