mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-14 16:31:38 +00:00
6cc5e1762b
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5927 fc73d0e0-1445-4013-8a0c-d673dee63da5
418 lines
12 KiB
GLSL
418 lines
12 KiB
GLSL
!!ver 100 150
|
|
!!permu TESS
|
|
!!permu FULLBRIGHT
|
|
!!permu UPPERLOWER
|
|
!!permu FRAMEBLEND
|
|
!!permu SKELETAL
|
|
!!permu FOG
|
|
!!permu BUMP
|
|
!!permu REFLECTCUBEMASK
|
|
!!cvarf r_glsl_offsetmapping_scale
|
|
!!cvarf gl_specular
|
|
!!cvardf gl_affinemodels=0
|
|
!!cvardf r_tessellation_level=5
|
|
!!samps !EIGHTBIT diffuse normalmap specular fullbright upper lower reflectmask reflectcube
|
|
!!samps =EIGHTBIT paletted 1
|
|
!!samps =OCCLUDE occlusion
|
|
//!!permu VC // adds rgba vertex colour multipliers
|
|
//!!permu SPECULAR // auto-added when gl_specular>0
|
|
//!!permu OFFSETMAPPING // auto-added when r_glsl_offsetmapping is set
|
|
//!!permu NONORMALS // states that there's no normals available, which affects lighting.
|
|
//!!permu ORM // specularmap is r:Occlusion, g:Roughness, b:Metalness
|
|
//!!permu SG // specularmap is rgb:F0, a:Roughness (instead of exponent)
|
|
//!!permu PBR // an attempt at pbr logic (enabled from ORM or SG)
|
|
//!!permu NOOCCLUDE // ignores the use of ORM's occlusion... yeah, stupid.
|
|
//!!permu OCCLUDE // use an explicit occlusion texturemap (separate from roughness+metalness).
|
|
//!!permu EIGHTBIT // uses software-style paletted colourmap lookups
|
|
//!!permu ALPHATEST // if defined, this is the required alpha level (more versatile than doing it at the q3shader level)
|
|
|
|
#include "sys/defs.h"
|
|
|
|
//standard shader used for models.
|
|
//must support skeletal and 2-way vertex blending or Bad Things Will Happen.
|
|
//the vertex shader is responsible for calculating lighting values.
|
|
|
|
#if gl_affinemodels==1 && __VERSION__ >= 130 && !defined(GL_ES)
|
|
#define affine noperspective
|
|
#else
|
|
#define affine
|
|
#endif
|
|
|
|
#if defined(ORM) || defined(SG)
|
|
#define PBR
|
|
#endif
|
|
|
|
#ifdef NONORMALS //lots of things need normals to work properly. make sure nothing breaks simply because they added an extra texture.
|
|
#undef BUMP
|
|
#undef SPECULAR
|
|
#undef OFFSETMAPPING
|
|
#undef REFLECTCUBEMASK
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef VERTEX_SHADER
|
|
#include "sys/skeletal.h"
|
|
|
|
affine varying vec2 tc;
|
|
varying vec4 light;
|
|
#if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
varying vec3 eyevector;
|
|
#endif
|
|
#if defined(PBR)||defined(REFLECTCUBEMASK)
|
|
varying mat3 invsurface;
|
|
#endif
|
|
#ifdef TESS
|
|
varying vec3 vertex;
|
|
varying vec3 normal;
|
|
#endif
|
|
|
|
void main ()
|
|
{
|
|
light.rgba = vec4(e_light_ambient, 1.0);
|
|
|
|
#ifdef NONORMALS
|
|
vec3 n, w;
|
|
gl_Position = skeletaltransform_w(w);
|
|
n = vec3(0.0);
|
|
#else
|
|
vec3 n, s, t, w;
|
|
gl_Position = skeletaltransform_wnst(w,n,s,t);
|
|
n = normalize(n);
|
|
s = normalize(s);
|
|
t = normalize(t);
|
|
#ifndef PBR
|
|
float d = dot(n,e_light_dir);
|
|
if (d < 0.0) //vertex shader. this might get ugly, but I don't really want to make it per vertex.
|
|
d = 0.0; //this avoids the dark side going below the ambient level.
|
|
light.rgb += (d*e_light_mul);
|
|
#else
|
|
light.rgb = vec3(1.0);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(SPECULAR)||defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
vec3 eyeminusvertex = e_eyepos - w.xyz;
|
|
eyevector.x = dot(eyeminusvertex, s.xyz);
|
|
eyevector.y = dot(eyeminusvertex, t.xyz);
|
|
eyevector.z = dot(eyeminusvertex, n.xyz);
|
|
#endif
|
|
#if defined(PBR) || defined(REFLECTCUBEMASK)
|
|
invsurface = mat3(s, t, n);
|
|
#endif
|
|
|
|
tc = v_texcoord;
|
|
|
|
#ifdef VC
|
|
light *= v_colour;
|
|
#endif
|
|
|
|
//FIXME: Software rendering imitation should possibly push out normals by half a pixel or something to approximate software's over-estimation of distant model sizes (small models are drawn using JUST their verticies using the nearest pixel, which results in larger meshes)
|
|
|
|
#ifdef TESS
|
|
normal = n;
|
|
vertex = w;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(TESS_CONTROL_SHADER)
|
|
layout(vertices = 3) out;
|
|
|
|
in vec3 vertex[];
|
|
out vec3 t_vertex[];
|
|
in vec3 normal[];
|
|
out vec3 t_normal[];
|
|
affine in vec2 tc[];
|
|
affine out vec2 t_tc[];
|
|
in vec4 light[];
|
|
out vec4 t_light[];
|
|
#if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
in vec3 eyevector[];
|
|
out vec3 t_eyevector[];
|
|
#endif
|
|
#ifdef REFLECTCUBEMASK
|
|
in mat3 invsurface[];
|
|
out mat3 t_invsurface[];
|
|
#endif
|
|
void main()
|
|
{
|
|
//the control shader needs to pass stuff through
|
|
#define id gl_InvocationID
|
|
t_vertex[id] = vertex[id];
|
|
t_normal[id] = normal[id];
|
|
t_tc[id] = tc[id];
|
|
t_light[id] = light[id];
|
|
#if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
t_eyevector[id] = eyevector[id];
|
|
#endif
|
|
#ifdef REFLECTCUBEMASK
|
|
t_invsurface[id][0] = invsurface[id][0];
|
|
t_invsurface[id][1] = invsurface[id][1];
|
|
t_invsurface[id][2] = invsurface[id][2];
|
|
#endif
|
|
|
|
gl_TessLevelOuter[0] = float(r_tessellation_level);
|
|
gl_TessLevelOuter[1] = float(r_tessellation_level);
|
|
gl_TessLevelOuter[2] = float(r_tessellation_level);
|
|
gl_TessLevelInner[0] = float(r_tessellation_level);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(TESS_EVALUATION_SHADER)
|
|
layout(triangles) in;
|
|
|
|
in vec3 t_vertex[];
|
|
in vec3 t_normal[];
|
|
affine in vec2 t_tc[];
|
|
affine out vec2 tc;
|
|
in vec4 t_light[];
|
|
out vec4 light;
|
|
#if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
in vec3 t_eyevector[];
|
|
out vec3 eyevector;
|
|
#endif
|
|
#ifdef REFLECTCUBEMASK
|
|
in mat3 t_invsurface[];
|
|
out mat3 invsurface;
|
|
#endif
|
|
|
|
#define LERP(a) (gl_TessCoord.x*a[0] + gl_TessCoord.y*a[1] + gl_TessCoord.z*a[2])
|
|
void main()
|
|
{
|
|
#define factor 1.0
|
|
tc = LERP(t_tc);
|
|
vec3 w = LERP(t_vertex);
|
|
|
|
vec3 t0 = w - dot(w-t_vertex[0],t_normal[0])*t_normal[0];
|
|
vec3 t1 = w - dot(w-t_vertex[1],t_normal[1])*t_normal[1];
|
|
vec3 t2 = w - dot(w-t_vertex[2],t_normal[2])*t_normal[2];
|
|
w = w*(1.0-factor) + factor*(gl_TessCoord.x*t0+gl_TessCoord.y*t1+gl_TessCoord.z*t2);
|
|
|
|
//FIXME: we should be recalcing these here, instead of just lerping them
|
|
light = LERP(t_light);
|
|
#if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
eyevector = LERP(t_eyevector);
|
|
#endif
|
|
#ifdef REFLECTCUBEMASK
|
|
invsurface[0] = LERP(t_invsurface[0]);
|
|
invsurface[1] = LERP(t_invsurface[1]);
|
|
invsurface[2] = LERP(t_invsurface[2]);
|
|
#endif
|
|
|
|
gl_Position = m_modelviewprojection * vec4(w,1.0);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef FRAGMENT_SHADER
|
|
|
|
#include "sys/fog.h"
|
|
|
|
#if defined(SPECULAR)
|
|
uniform float cvar_gl_specular;
|
|
#endif
|
|
|
|
#ifdef OFFSETMAPPING
|
|
#include "sys/offsetmapping.h"
|
|
#endif
|
|
|
|
#ifdef EIGHTBIT
|
|
#define s_colourmap s_t0
|
|
#endif
|
|
|
|
affine varying vec2 tc;
|
|
varying vec4 light;
|
|
#if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR)
|
|
varying vec3 eyevector;
|
|
#endif
|
|
#if defined(PBR) || defined(REFLECTCUBEMASK)
|
|
varying mat3 invsurface;
|
|
#endif
|
|
|
|
#ifdef PBR
|
|
#include "sys/pbr.h"
|
|
#if 0
|
|
vec3 getIBLContribution(PBRInfo pbrInputs, vec3 n, vec3 reflection)
|
|
{
|
|
float mipCount = 9.0; // resolution of 512x512
|
|
float lod = (pbrInputs.perceptualRoughness * mipCount);
|
|
// retrieve a scale and bias to F0. See [1], Figure 3
|
|
vec3 brdf = texture2D(u_brdfLUT, vec2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness)).rgb;
|
|
vec3 diffuseLight = textureCube(u_DiffuseEnvSampler, n).rgb;
|
|
|
|
#ifdef USE_TEX_LOD
|
|
vec3 specularLight = textureCubeLodEXT(u_SpecularEnvSampler, reflection, lod).rgb;
|
|
#else
|
|
vec3 specularLight = textureCube(u_SpecularEnvSampler, reflection).rgb;
|
|
#endif
|
|
|
|
vec3 diffuse = diffuseLight * pbrInputs.diffuseColor;
|
|
vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
|
|
|
|
// For presentation, this allows us to disable IBL terms
|
|
diffuse *= u_ScaleIBLAmbient.x;
|
|
specular *= u_ScaleIBLAmbient.y;
|
|
|
|
return diffuse + specular;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
void main ()
|
|
{
|
|
vec4 col, sp;
|
|
|
|
#ifdef OFFSETMAPPING
|
|
vec2 tcoffsetmap = offsetmap(s_normalmap, tc, eyevector);
|
|
#define tc tcoffsetmap
|
|
#endif
|
|
|
|
#ifdef EIGHTBIT
|
|
vec3 lightlev = light.rgb;
|
|
//FIXME: with this extra flag, half the permutations are redundant.
|
|
lightlev *= 0.5; //counter the fact that the colourmap contains overbright values and logically ranges from 0 to 2 intead of to 1.
|
|
float pal = texture2D(s_paletted, tc).r; //the palette index. hopefully not interpolated.
|
|
// lightlev -= 1.0 / 128.0; //software rendering appears to round down, so make sure we favour the lower values instead of rounding to the nearest
|
|
col.r = texture2D(s_colourmap, vec2(pal, 1.0-lightlev.r)).r; //do 3 lookups. this is to cope with lit files, would be a waste to not support those.
|
|
col.g = texture2D(s_colourmap, vec2(pal, 1.0-lightlev.g)).g; //its not very softwarey, but re-palettizing is ugly.
|
|
col.b = texture2D(s_colourmap, vec2(pal, 1.0-lightlev.b)).b; //without lits, it should be identical.
|
|
col.a = (pal<1.0)?light.a:0.0;
|
|
#else
|
|
col = texture2D(s_diffuse, tc);
|
|
#ifdef UPPER
|
|
vec4 uc = texture2D(s_upper, tc);
|
|
col.rgb += uc.rgb*e_uppercolour*uc.a;
|
|
#endif
|
|
#ifdef LOWER
|
|
vec4 lc = texture2D(s_lower, tc);
|
|
col.rgb += lc.rgb*e_lowercolour*lc.a;
|
|
#endif
|
|
|
|
col *= factor_base;
|
|
|
|
#ifndef IOR
|
|
#define IOR 1.5 //Index Of Reflection.
|
|
#endif
|
|
#define dielectricSpecular pow(((IOR - 1.0)/(IOR + 1.0)),2.0)
|
|
#ifdef SPECULAR
|
|
vec4 specs = texture2D(s_specular, tc)*factor_spec;
|
|
#ifdef ORM
|
|
#define occlusion specs.r
|
|
#define roughness clamp(specs.g, 0.04, 1.0)
|
|
#define metalness specs.b
|
|
#define gloss 1.0 //sqrt(1.0-roughness)
|
|
#define ambientrgb (specrgb+col.rgb)
|
|
vec3 specrgb = mix(vec3(dielectricSpecular), col.rgb, metalness);
|
|
col.rgb = col.rgb * (1.0 - dielectricSpecular) * (1.0-metalness);
|
|
#elif defined(SG) //pbr-style specular+glossiness, without occlusion
|
|
//occlusion needs to be baked in. :(
|
|
#define roughness (1.0-specs.a)
|
|
#define gloss (specs.a)
|
|
#define specrgb specs.rgb
|
|
#define ambientrgb (specrgb+col.rgb)
|
|
#else //blinn-phong
|
|
#define roughness (1.0-specs.a)
|
|
#define gloss specs.a
|
|
#define specrgb specs.rgb
|
|
#define ambientrgb col.rgb
|
|
#endif
|
|
#else
|
|
#define roughness 0.3
|
|
#define specrgb vec3(1.0) //vec3(dielectricSpecular)
|
|
#define ambientrgb col.rgb
|
|
#endif
|
|
|
|
#ifdef BUMP
|
|
#ifdef PBR //to modelspace
|
|
vec3 bumps = normalize(invsurface * (texture2D(s_normalmap, tc).rgb*2.0 - 1.0));
|
|
#else //stay in tangentspace
|
|
vec3 bumps = normalize(vec3(texture2D(s_normalmap, tc)) - 0.5);
|
|
#endif
|
|
#else
|
|
#ifdef PBR //to modelspace
|
|
#define bumps normalize(invsurface[2])
|
|
#else //tangent space
|
|
#define bumps vec3(0.0, 0.0, 1.0)
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef PBR
|
|
//move everything to model space
|
|
col.rgb = DoPBR(bumps, normalize(eyevector), -e_light_dir, roughness, col.rgb, specrgb, vec3(0.0,1.0,1.0))*e_light_mul + e_light_ambient*.25*ambientrgb;
|
|
#elif defined(gloss)
|
|
vec3 halfdir = normalize(normalize(eyevector) - e_light_dir);
|
|
float specmag = pow(max(dot(halfdir, bumps), 0.0), FTE_SPECULAR_EXPONENT * gloss);
|
|
col.rgb += FTE_SPECULAR_MULTIPLIER * specmag * specrgb;
|
|
#endif
|
|
|
|
#ifdef REFLECTCUBEMASK
|
|
vec3 rtc = reflect(-eyevector, bumps);
|
|
#ifndef PBR
|
|
rtc = rtc.x*invsurface[0] + rtc.y*invsurface[1] + rtc.z*invsurface[2];
|
|
#endif
|
|
rtc = (m_model * vec4(rtc.xyz,0.0)).xyz;
|
|
col.rgb += texture2D(s_reflectmask, tc).rgb * textureCube(s_reflectcube, rtc).rgb;
|
|
#endif
|
|
|
|
#ifdef OCCLUDE
|
|
col.rgb *= texture2D(s_occlusion, tc).r;
|
|
#elif defined(occlusion) && !defined(NOOCCLUDE)
|
|
col.rgb *= occlusion;
|
|
#endif
|
|
col *= light * e_colourident;
|
|
|
|
#ifdef FULLBRIGHT
|
|
vec4 fb = texture2D(s_fullbright, tc);
|
|
// col.rgb = mix(col.rgb, fb.rgb, fb.a);
|
|
col.rgb += fb.rgb * fb.a * e_glowmod.rgb * factor_emit.rgb;
|
|
#elif defined(PBR)
|
|
col.rgb += e_glowmod.rgb * factor_emit.rgb;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef ALPHATEST
|
|
if (!(col.a ALPHATEST))
|
|
discard;
|
|
#elif defined(MASK)
|
|
#if defined(MASKLT)
|
|
if (col.a < MASK)
|
|
discard;
|
|
#else
|
|
if (col.a >= MASK)
|
|
discard;
|
|
#endif
|
|
col.a = 1.0; //alpha blending AND alpha testing usually looks stupid, plus it screws up our fog.
|
|
#endif
|
|
|
|
gl_FragColor = fog4(col);
|
|
}
|
|
#endif
|
|
|