mirror of
https://github.com/ioquake/jedi-outcast.git
synced 2024-11-10 07:11:42 +00:00
435 lines
8.7 KiB
C
435 lines
8.7 KiB
C
// mathlib.c -- math primitives
|
|
|
|
#include "cmdlib.h"
|
|
#include "mathlib.h"
|
|
|
|
#ifdef _WIN32
|
|
//Improve floating-point consistency.
|
|
//without this option weird floating point issues occur
|
|
#pragma optimize( "p", on )
|
|
#endif
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
|
|
/*
|
|
** NormalToLatLong
|
|
**
|
|
** We use two byte encoded normals in some space critical applications.
|
|
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
|
|
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
|
|
**
|
|
*/
|
|
void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
|
|
// check for singularities
|
|
if ( normal[0] == 0 && normal[1] == 0 ) {
|
|
if ( normal[2] > 0 ) {
|
|
bytes[0] = 0;
|
|
bytes[1] = 0; // lat = 0, long = 0
|
|
} else {
|
|
bytes[0] = 128;
|
|
bytes[1] = 0; // lat = 0, long = 128
|
|
}
|
|
} else {
|
|
int a, b;
|
|
|
|
a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
|
|
a &= 0xff;
|
|
|
|
b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
|
|
b &= 0xff;
|
|
|
|
bytes[0] = b; // longitude
|
|
bytes[1] = a; // lattitude
|
|
}
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane, plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right, right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
|
|
void Vec10Copy( vec_t *in, vec_t *out ) {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
out[3] = in[3];
|
|
out[4] = in[4];
|
|
out[5] = in[5];
|
|
out[6] = in[6];
|
|
out[7] = in[7];
|
|
out[8] = in[8];
|
|
out[9] = in[9];
|
|
}
|
|
|
|
|
|
void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d )
|
|
{
|
|
d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0];
|
|
d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1];
|
|
d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2];
|
|
}
|
|
|
|
double VectorLength( const vec3_t v ) {
|
|
double length;
|
|
|
|
length = sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
|
return length;
|
|
}
|
|
|
|
qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) {
|
|
int i;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
|
|
return qfalse;
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
|
|
{
|
|
vec3_t vWork, va;
|
|
int i;
|
|
int nIndex[3][2];
|
|
nIndex[0][0] = 1; nIndex[0][1] = 2;
|
|
nIndex[1][0] = 2; nIndex[1][1] = 0;
|
|
nIndex[2][0] = 0; nIndex[2][1] = 1;
|
|
|
|
VectorCopy(vIn, va);
|
|
VectorCopy(va, vWork);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (vRotation[i] != 0)
|
|
{
|
|
double dAngle = vRotation[i] / 180 * Q_PI;
|
|
double c = cos(dAngle);
|
|
double s = sin(dAngle);
|
|
vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
|
|
vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
|
|
}
|
|
VectorCopy(vWork, va);
|
|
}
|
|
VectorCopy(vWork, out);
|
|
}
|
|
|
|
|
|
vec_t Q_rint (vec_t in)
|
|
{
|
|
return floor (in + 0.5);
|
|
}
|
|
|
|
void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) {
|
|
vc[0] = va[0] + scale*vb[0];
|
|
vc[1] = va[1] + scale*vb[1];
|
|
vc[2] = va[2] + scale*vb[2];
|
|
}
|
|
|
|
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
|
|
{
|
|
out[0] = va[0]-vb[0];
|
|
out[1] = va[1]-vb[1];
|
|
out[2] = va[2]-vb[2];
|
|
}
|
|
|
|
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
|
|
{
|
|
out[0] = va[0]+vb[0];
|
|
out[1] = va[1]+vb[1];
|
|
out[2] = va[2]+vb[2];
|
|
}
|
|
|
|
void _VectorCopy (vec3_t in, vec3_t out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
|
|
{
|
|
out[0] = v[0] * scale;
|
|
out[1] = v[1] * scale;
|
|
out[2] = v[2] * scale;
|
|
}
|
|
|
|
vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
|
|
vec_t length, ilength;
|
|
|
|
length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
|
|
if (length == 0)
|
|
{
|
|
VectorClear (out);
|
|
return 0;
|
|
}
|
|
|
|
ilength = 1.0/length;
|
|
out[0] = in[0]*ilength;
|
|
out[1] = in[1]*ilength;
|
|
out[2] = in[2]*ilength;
|
|
|
|
return length;
|
|
}
|
|
|
|
vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
|
|
float max, scale;
|
|
|
|
max = in[0];
|
|
if (in[1] > max)
|
|
max = in[1];
|
|
if (in[2] > max)
|
|
max = in[2];
|
|
|
|
if (max == 0) {
|
|
out[0] = out[1] = out[2] = 1.0;
|
|
return 0;
|
|
}
|
|
|
|
scale = 1.0 / max;
|
|
|
|
VectorScale (in, scale, out);
|
|
|
|
return max;
|
|
}
|
|
|
|
|
|
|
|
void VectorInverse (vec3_t v)
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
void ClearBounds (vec3_t mins, vec3_t maxs)
|
|
{
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
}
|
|
|
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
|
|
int i;
|
|
vec_t val;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
val = v[i];
|
|
if (val < mins[i])
|
|
mins[i] = val;
|
|
if (val > maxs[i])
|
|
maxs[i] = val;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
int PlaneTypeForNormal (vec3_t normal) {
|
|
if (normal[0] == 1.0 || normal[0] == -1.0)
|
|
return PLANE_X;
|
|
if (normal[1] == 1.0 || normal[1] == -1.0)
|
|
return PLANE_Y;
|
|
if (normal[2] == 1.0 || normal[2] == -1.0)
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
|
|
/*
|
|
================
|
|
MatrixMultiply
|
|
================
|
|
*/
|
|
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst, dst );
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotatePointAroundVector
|
|
|
|
This is not implemented very well...
|
|
===============
|
|
*/
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees ) {
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = cos( rad );
|
|
zrot[0][1] = sin( rad );
|
|
zrot[1][0] = -sin( rad );
|
|
zrot[1][1] = cos( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ ) {
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|