jedi-academy/code/renderer/tr_flares.cpp

428 lines
11 KiB
C++

// tr_flares.c
#include "tr_local.h"
/*
=============================================================================
LIGHT FLARES
A light flare is an effect that takes place inside the eye when bright light
sources are visible. The size of the flare reletive to the screen is nearly
constant, irrespective of distance, but the intensity should be proportional to the
projected area of the light source.
A surface that has been flagged as having a light flare will calculate the depth
buffer value that it's midpoint should have when the surface is added.
After all opaque surfaces have been rendered, the depth buffer is read back for
each flare in view. If the point has not been obscured by a closer surface, the
flare should be drawn.
Surfaces that have a repeated texture should never be flagged as flaring, because
there will only be a single flare added at the midpoint of the polygon.
To prevent abrupt popping, the intensity of the flare is interpolated up and
down as it changes visibility. This involves scene to scene state, unlike almost
all other aspects of the renderer, and is complicated by the fact that a single
frame may have multiple scenes.
RB_RenderFlares() will be called once per view (twice in a mirrored scene, potentially
up to five or more times in a frame with 3D status bar icons).
=============================================================================
*/
// flare states maintain visibility over multiple frames for fading
// layers: view, mirror, menu
typedef struct flare_s {
struct flare_s *next; // for active chain
int addedFrame;
qboolean inPortal; // true if in a portal view of the scene
int frameSceneNum;
void *surface;
int fogNum;
int fadeTime;
qboolean visible; // state of last test
float drawIntensity; // may be non 0 even if !visible due to fading
float lightScale;
int windowX, windowY;
float eyeZ;
vec3_t color;
} flare_t;
#define MAX_FLARES 128
flare_t r_flareStructs[MAX_FLARES];
flare_t *r_activeFlares, *r_inactiveFlares;
/*
==================
R_ClearFlares
==================
*/
void R_ClearFlares( void ) {
int i;
memset( r_flareStructs, 0, sizeof( r_flareStructs ) );
r_activeFlares = NULL;
r_inactiveFlares = NULL;
for ( i = 0 ; i < MAX_FLARES ; i++ ) {
r_flareStructs[i].next = r_inactiveFlares;
r_inactiveFlares = &r_flareStructs[i];
}
}
/*
==================
RB_AddFlare
This is called at surface tesselation time
==================
*/
void RB_AddFlare( void *surface, int fogNum, vec3_t point, vec3_t color, vec3_t normal, float lightScale) {
int i;
flare_t *f, *oldest;
vec3_t local;
float d;
vec4_t eye, clip, normalized, window;
backEnd.pc.c_flareAdds++;
// if the point is off the screen, don't bother adding it
// calculate screen coordinates and depth
R_TransformModelToClip( point, backEnd.or.modelMatrix,
backEnd.viewParms.projectionMatrix, eye, clip );
// check to see if the point is completely off screen
for ( i = 0 ; i < 3 ; i++ ) {
if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) {
return;
}
}
R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window );
if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth
|| window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) {
return; // shouldn't happen, since we check the clip[] above, except for FP rounding
}
// see if a flare with a matching surface, scene, and view exists
oldest = r_flareStructs;
for ( f = r_activeFlares ; f ; f = f->next ) {
if ( f->surface == surface && f->frameSceneNum == backEnd.viewParms.frameSceneNum
&& f->inPortal == backEnd.viewParms.isPortal ) {
break;
}
}
// allocate a new one
if (!f ) {
if ( !r_inactiveFlares ) {
// the list is completely full
return;
}
f = r_inactiveFlares;
r_inactiveFlares = r_inactiveFlares->next;
f->next = r_activeFlares;
r_activeFlares = f;
f->surface = surface;
f->frameSceneNum = backEnd.viewParms.frameSceneNum;
f->inPortal = backEnd.viewParms.isPortal;
f->addedFrame = -1;
}
if ( f->addedFrame != backEnd.viewParms.frameCount - 1 ) {
f->visible = qfalse;
f->fadeTime = backEnd.refdef.time - 2000;
}
f->addedFrame = backEnd.viewParms.frameCount;
f->fogNum = fogNum;
f->lightScale = lightScale;
VectorCopy( color, f->color );
// fade the intensity of the flare down as the
// light surface turns away from the viewer
if ( normal ) {
VectorSubtract( backEnd.viewParms.or.origin, point, local );
VectorNormalizeFast( local );
d = DotProduct( local, normal );
VectorScale( f->color, d, f->color );
}
// save info needed to test
f->windowX = backEnd.viewParms.viewportX + window[0];
f->windowY = backEnd.viewParms.viewportY + window[1];
f->eyeZ = eye[2];
}
/*
==================
RB_AddDlightFlares
==================
*/
void RB_AddDlightFlares( void ) {
dlight_t *l;
int i, j, k;
fog_t *fog;
if ( !r_flares->integer ) {
return;
}
l = backEnd.refdef.dlights;
fog = tr.world->fogs;
for (i=0 ; i<backEnd.refdef.num_dlights ; i++, l++) {
// find which fog volume the light is in
for ( j = 1 ; j < tr.world->numfogs ; j++ ) {
fog = &tr.world->fogs[j];
for ( k = 0 ; k < 3 ; k++ ) {
if ( l->origin[k] < fog->bounds[0][k] || l->origin[k] > fog->bounds[1][k] ) {
break;
}
}
if ( k == 3 ) {
break;
}
}
if ( j == tr.world->numfogs ) {
j = 0;
}
RB_AddFlare( (void *)l, j, l->origin, l->color, NULL, 1.0f );
}
}
/*
===============================================================================
FLARE BACK END
===============================================================================
*/
/*
==================
RB_TestFlare
==================
*/
void RB_TestFlare( flare_t *f ) {
float depth;
qboolean visible;
float fade;
float screenZ;
backEnd.pc.c_flareTests++;
// doing a readpixels is as good as doing a glFinish(), so
// don't bother with another sync
glState.finishCalled = qfalse;
// read back the z buffer contents
qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth );
screenZ = backEnd.viewParms.projectionMatrix[14] /
( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] );
visible = ( -f->eyeZ - -screenZ ) < 24;
if ( visible ) {
if ( !f->visible ) {
f->visible = qtrue;
f->fadeTime = backEnd.refdef.time - 1;
}
fade = ( ( backEnd.refdef.time - f->fadeTime ) /1000.0f ) * r_flareFade->value;
} else {
if ( f->visible ) {
f->visible = qfalse;
f->fadeTime = backEnd.refdef.time - 1;
}
fade = 1.0 - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value;
}
if ( fade < 0 ) {
fade = 0;
}
if ( fade > 1 ) {
fade = 1;
}
f->drawIntensity = fade;
}
/*
==================
RB_RenderFlare
==================
*/
void RB_RenderFlare( flare_t *f ) {
float size;
vec3_t color;
int iColor[3];
backEnd.pc.c_flareRenders++;
VectorScale( f->color, f->drawIntensity*tr.identityLight, color );
iColor[0] = color[0] * 255;
iColor[1] = color[1] * 255;
iColor[2] = color[2] * 255;
size = f->lightScale * backEnd.viewParms.viewportWidth * ( r_flareSize->value/640.0 + 8 / -f->eyeZ );
RB_BeginSurface( tr.flareShader, f->fogNum );
// FIXME: use quadstamp?
tess.xyz[tess.numVertexes][0] = f->windowX - size;
tess.xyz[tess.numVertexes][1] = f->windowY - size;
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = f->windowX - size;
tess.xyz[tess.numVertexes][1] = f->windowY + size;
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 1;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = f->windowX + size;
tess.xyz[tess.numVertexes][1] = f->windowY + size;
tess.texCoords[tess.numVertexes][0][0] = 1;
tess.texCoords[tess.numVertexes][0][1] = 1;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = f->windowX + size;
tess.xyz[tess.numVertexes][1] = f->windowY - size;
tess.texCoords[tess.numVertexes][0][0] = 1;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = iColor[0];
tess.vertexColors[tess.numVertexes][1] = iColor[1];
tess.vertexColors[tess.numVertexes][2] = iColor[2];
tess.vertexColors[tess.numVertexes][3] = 255;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 1;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 3;
RB_EndSurface();
}
/*
==================
RB_RenderFlares
Because flares are simulating an occular effect, they should be drawn after
everything (all views) in the entire frame has been drawn.
Because of the way portals use the depth buffer to mark off areas, the
needed information would be lost after each view, so we are forced to draw
flares after each view.
The resulting artifact is that flares in mirrors or portals don't dim properly
when occluded by something in the main view, and portal flares that should
extend past the portal edge will be overwritten.
==================
*/
void RB_RenderFlares (void) {
flare_t *f;
flare_t **prev;
qboolean draw;
if ( !r_flares->integer ) {
return;
}
// RB_AddDlightFlares();
// perform z buffer readback on each flare in this view
draw = qfalse;
prev = &r_activeFlares;
while ( ( f = *prev ) != NULL ) {
// throw out any flares that weren't added last frame
if ( f->addedFrame < backEnd.viewParms.frameCount - 1 ) {
*prev = f->next;
f->next = r_inactiveFlares;
r_inactiveFlares = f;
continue;
}
// don't draw any here that aren't from this scene / portal
f->drawIntensity = 0;
if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum
&& f->inPortal == backEnd.viewParms.isPortal ) {
RB_TestFlare( f );
if ( f->drawIntensity ) {
draw = qtrue;
} else {
// this flare has completely faded out, so remove it from the chain
*prev = f->next;
f->next = r_inactiveFlares;
r_inactiveFlares = f;
continue;
}
}
prev = &f->next;
}
if ( !draw ) {
return; // none visible
}
if ( backEnd.viewParms.isPortal ) {
qglDisable (GL_CLIP_PLANE0);
}
qglPushMatrix();
qglLoadIdentity();
qglMatrixMode( GL_PROJECTION );
qglPushMatrix();
qglLoadIdentity();
qglOrtho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth,
backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight,
-99999, 99999 );
for ( f = r_activeFlares ; f ; f = f->next ) {
if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum
&& f->inPortal == backEnd.viewParms.isPortal
&& f->drawIntensity ) {
RB_RenderFlare( f );
}
}
qglPopMatrix();
qglMatrixMode( GL_MODELVIEW );
qglPopMatrix();
}