jedi-academy/code/renderer/tr_curve.cpp

904 lines
22 KiB
C++

// leave this as first line for PCH reasons...
//
#include "../server/exe_headers.h"
#include "tr_local.h"
/*
This file does all of the processing necessary to turn a raw grid of points
read from the map file into a srfGridMesh_t ready for rendering.
The level of detail solution is direction independent, based only on subdivided
distance from the true curve.
Only a single entry point:
srfGridMesh_t *R_SubdividePatchToGrid( int width, int height,
drawVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE] ) {
*/
/*
============
LerpDrawVert
============
*/
#ifdef _XBOX
static void LerpDrawVert( drawVert_t *a, drawVert_t *b, drawVert_t *out ) {
int k;
out->xyz[0] = 0.5 * (a->xyz[0] + b->xyz[0]);
out->xyz[1] = 0.5 * (a->xyz[1] + b->xyz[1]);
out->xyz[2] = 0.5 * (a->xyz[2] + b->xyz[2]);
out->dvst[0] = (short)(0.5 * (float)(a->dvst[0] + b->dvst[0]));
out->dvst[1] = (short)(0.5 * (float)(a->dvst[1] + b->dvst[1]));
out->normal[0] = 0.5 * (a->normal[0] + b->normal[0]);
out->normal[1] = 0.5 * (a->normal[1] + b->normal[1]);
out->normal[2] = 0.5 * (a->normal[2] + b->normal[2]);
for(k=0;k<MAXLIGHTMAPS;k++)
{
out->dvlightmap[k][0] = (short)(0.5 * (float)(a->dvlightmap[k][0] + b->dvlightmap[k][0]));
out->dvlightmap[k][1] = (short)(0.5 * (float)(a->dvlightmap[k][1] + b->dvlightmap[k][1]));
#ifdef COMPRESS_VERTEX_COLORS
// Need to do averaging per every four bits
for (int j = 0; j < 2; ++j)
{
byte ah, al, bh, bl;
ah = a->dvcolor[k][j] >> 4;
al = a->dvcolor[k][j] & 0x0F;
bh = b->dvcolor[k][j] >> 4;
bl = b->dvcolor[k][j] & 0x0F;
out->dvcolor[k][j] = (((ah+bh) / 2) << 4) | ((al+bl) / 2);
}
#else
out->dvcolor[k][0] = (a->dvcolor[k][0] + b->dvcolor[k][0]) / 2;
out->dvcolor[k][1] = (a->dvcolor[k][1] + b->dvcolor[k][1]) / 2;
out->dvcolor[k][2] = (a->dvcolor[k][2] + b->dvcolor[k][2]) / 2;
out->dvcolor[k][3] = (a->dvcolor[k][3] + b->dvcolor[k][3]) / 2;
#endif
}
}
#else // _XBOX
static void LerpDrawVert( drawVert_t *a, drawVert_t *b, drawVert_t *out ) {
int k;
out->xyz[0] = 0.5 * (a->xyz[0] + b->xyz[0]);
out->xyz[1] = 0.5 * (a->xyz[1] + b->xyz[1]);
out->xyz[2] = 0.5 * (a->xyz[2] + b->xyz[2]);
out->st[0] = 0.5 * (a->st[0] + b->st[0]);
out->st[1] = 0.5 * (a->st[1] + b->st[1]);
out->normal[0] = 0.5 * (a->normal[0] + b->normal[0]);
out->normal[1] = 0.5 * (a->normal[1] + b->normal[1]);
out->normal[2] = 0.5 * (a->normal[2] + b->normal[2]);
for(k=0;k<MAXLIGHTMAPS;k++)
{
out->lightmap[k][0] = 0.5 * (a->lightmap[k][0] + b->lightmap[k][0]);
out->lightmap[k][1] = 0.5 * (a->lightmap[k][1] + b->lightmap[k][1]);
out->color[k][0] = (a->color[k][0] + b->color[k][0]) >> 1;
out->color[k][1] = (a->color[k][1] + b->color[k][1]) >> 1;
out->color[k][2] = (a->color[k][2] + b->color[k][2]) >> 1;
out->color[k][3] = (a->color[k][3] + b->color[k][3]) >> 1;
}
}
#endif // _XBOX
/*
============
Transpose
============
*/
#ifdef _XBOX
static void Transpose( int width, int height, drawVert_t* ctrl/*[MAX_GRID_SIZE][MAX_GRID_SIZE]*/ ) {
int i, j;
drawVert_t temp;
if ( width > height ) {
for ( i = 0 ; i < height ; i++ ) {
for ( j = i + 1 ; j < width ; j++ ) {
if ( j < height ) {
// swap the value
temp = ctrl[j*MAX_GRID_SIZE+i];
ctrl[j*MAX_GRID_SIZE+i] = ctrl[i*MAX_GRID_SIZE+j];
ctrl[i*MAX_GRID_SIZE+j] = temp;
} else {
// just copy
ctrl[j*MAX_GRID_SIZE+i] = ctrl[i*MAX_GRID_SIZE+j];
}
}
}
} else {
for ( i = 0 ; i < width ; i++ ) {
for ( j = i + 1 ; j < height ; j++ ) {
if ( j < width ) {
// swap the value
temp = ctrl[i*MAX_GRID_SIZE+j];
ctrl[i*MAX_GRID_SIZE+j] = ctrl[j*MAX_GRID_SIZE+i];
ctrl[j*MAX_GRID_SIZE+i] = temp;
} else {
// just copy
ctrl[i*MAX_GRID_SIZE+j] = ctrl[j*MAX_GRID_SIZE+i];
}
}
}
}
}
#else // _XBOX
static void Transpose( int width, int height, drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE] ) {
int i, j;
drawVert_t temp;
if ( width > height ) {
for ( i = 0 ; i < height ; i++ ) {
for ( j = i + 1 ; j < width ; j++ ) {
if ( j < height ) {
// swap the value
temp = ctrl[j][i];
ctrl[j][i] = ctrl[i][j];
ctrl[i][j] = temp;
} else {
// just copy
ctrl[j][i] = ctrl[i][j];
}
}
}
} else {
for ( i = 0 ; i < width ; i++ ) {
for ( j = i + 1 ; j < height ; j++ ) {
if ( j < width ) {
// swap the value
temp = ctrl[i][j];
ctrl[i][j] = ctrl[j][i];
ctrl[j][i] = temp;
} else {
// just copy
ctrl[i][j] = ctrl[j][i];
}
}
}
}
}
#endif
/*
=================
MakeMeshNormals
Handles all the complicated wrapping and degenerate cases
=================
*/
#ifdef _XBOX
static void MakeMeshNormals( int width, int height, drawVert_t* ctrl/*[MAX_GRID_SIZE][MAX_GRID_SIZE]*/ ) {
int i, j, k, dist;
vec3_t normal;
vec3_t sum;
int count;
vec3_t base;
vec3_t delta;
int x, y;
drawVert_t *dv;
vec3_t around[8], temp;
qboolean good[8];
qboolean wrapWidth, wrapHeight;
float len;
static int neighbors[8][2] = {
{0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}
};
wrapWidth = qfalse;
for ( i = 0 ; i < height ; i++ ) {
VectorSubtract( ctrl[i*MAX_GRID_SIZE+0].xyz, ctrl[i*MAX_GRID_SIZE+width-1].xyz, delta );
len = VectorLengthSquared( delta );
if ( len > 1.0 ) {
break;
}
}
if ( i == height ) {
wrapWidth = qtrue;
}
wrapHeight = qfalse;
for ( i = 0 ; i < width ; i++ ) {
VectorSubtract( ctrl[0*MAX_GRID_SIZE+i].xyz, ctrl[(height-1)*MAX_GRID_SIZE+i].xyz, delta );
len = VectorLengthSquared( delta );
if ( len > 1.0 ) {
break;
}
}
if ( i == width) {
wrapHeight = qtrue;
}
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
count = 0;
dv = &ctrl[j*MAX_GRID_SIZE+i];
VectorCopy( dv->xyz, base );
for ( k = 0 ; k < 8 ; k++ ) {
VectorClear( around[k] );
good[k] = qfalse;
for ( dist = 1 ; dist <= 3 ; dist++ ) {
x = i + neighbors[k][0] * dist;
y = j + neighbors[k][1] * dist;
if ( wrapWidth ) {
if ( x < 0 ) {
x = width - 1 + x;
} else if ( x >= width ) {
x = 1 + x - width;
}
}
if ( wrapHeight ) {
if ( y < 0 ) {
y = height - 1 + y;
} else if ( y >= height ) {
y = 1 + y - height;
}
}
if ( x < 0 || x >= width || y < 0 || y >= height ) {
break; // edge of patch
}
VectorSubtract( ctrl[y*MAX_GRID_SIZE+x].xyz, base, temp );
if ( VectorNormalize2( temp, temp ) == 0 ) {
continue; // degenerate edge, get more dist
} else {
good[k] = qtrue;
VectorCopy( temp, around[k] );
break; // good edge
}
}
}
VectorClear( sum );
for ( k = 0 ; k < 8 ; k++ ) {
if ( !good[k] || !good[(k+1)&7] ) {
continue; // didn't get two points
}
CrossProduct( around[(k+1)&7], around[k], normal );
if ( VectorNormalize2( normal, normal ) == 0 ) {
continue;
}
VectorAdd( normal, sum, sum );
count++;
}
if ( count == 0 ) {
//printf("bad normal\n");
count = 1;
}
VectorNormalize2( sum, dv->normal );
}
}
}
#else // _XBOX
static void MakeMeshNormals( int width, int height, drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE] ) {
int i, j, k, dist;
vec3_t normal;
vec3_t sum;
int count;
vec3_t base;
vec3_t delta;
int x, y;
drawVert_t *dv;
vec3_t around[8], temp;
qboolean good[8];
qboolean wrapWidth, wrapHeight;
float len;
static int neighbors[8][2] = {
{0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}
};
wrapWidth = qfalse;
for ( i = 0 ; i < height ; i++ ) {
VectorSubtract( ctrl[i][0].xyz, ctrl[i][width-1].xyz, delta );
len = VectorLength( delta );
if ( len > 1.0 ) {
break;
}
}
if ( i == height ) {
wrapWidth = qtrue;
}
wrapHeight = qfalse;
for ( i = 0 ; i < width ; i++ ) {
VectorSubtract( ctrl[0][i].xyz, ctrl[height-1][i].xyz, delta );
len = VectorLength( delta );
if ( len > 1.0 ) {
break;
}
}
if ( i == width) {
wrapHeight = qtrue;
}
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
count = 0;
dv = &ctrl[j][i];
VectorCopy( dv->xyz, base );
for ( k = 0 ; k < 8 ; k++ ) {
VectorClear( around[k] );
good[k] = qfalse;
for ( dist = 1 ; dist <= 3 ; dist++ ) {
x = i + neighbors[k][0] * dist;
y = j + neighbors[k][1] * dist;
if ( wrapWidth ) {
if ( x < 0 ) {
x = width - 1 + x;
} else if ( x >= width ) {
x = 1 + x - width;
}
}
if ( wrapHeight ) {
if ( y < 0 ) {
y = height - 1 + y;
} else if ( y >= height ) {
y = 1 + y - height;
}
}
if ( x < 0 || x >= width || y < 0 || y >= height ) {
break; // edge of patch
}
VectorSubtract( ctrl[y][x].xyz, base, temp );
if ( VectorNormalize2( temp, temp ) == 0 ) {
continue; // degenerate edge, get more dist
} else {
good[k] = qtrue;
VectorCopy( temp, around[k] );
break; // good edge
}
}
}
VectorClear( sum );
for ( k = 0 ; k < 8 ; k++ ) {
if ( !good[k] || !good[(k+1)&7] ) {
continue; // didn't get two points
}
CrossProduct( around[(k+1)&7], around[k], normal );
if ( VectorNormalize2( normal, normal ) == 0 ) {
continue;
}
VectorAdd( normal, sum, sum );
count++;
}
if ( count == 0 ) {
//printf("bad normal\n");
count = 1;
}
VectorNormalize2( sum, dv->normal );
}
}
}
#endif
/*
============
InvertCtrl
============
*/
#ifdef _XBOX
static void InvertCtrl( int width, int height, drawVert_t* ctrl/*[MAX_GRID_SIZE][MAX_GRID_SIZE]*/ ) {
int i, j;
drawVert_t temp;
for ( i = 0 ; i < height ; i++ ) {
for ( j = 0 ; j < width/2 ; j++ ) {
temp = ctrl[i*MAX_GRID_SIZE+j];
ctrl[i*MAX_GRID_SIZE+j] = ctrl[i*MAX_GRID_SIZE+width-1-j];
ctrl[i*MAX_GRID_SIZE+width-1-j] = temp;
}
}
}
#else // _XBOX
static void InvertCtrl( int width, int height, drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE] ) {
int i, j;
drawVert_t temp;
for ( i = 0 ; i < height ; i++ ) {
for ( j = 0 ; j < width/2 ; j++ ) {
temp = ctrl[i][j];
ctrl[i][j] = ctrl[i][width-1-j];
ctrl[i][width-1-j] = temp;
}
}
}
#endif // _XBOX
/*
=================
InvertErrorTable
=================
*/
#ifdef _XBOX
static void InvertErrorTable( float* errorTable/*[2][MAX_GRID_SIZE]*/, int width, int height ) {
int i;
float copy[2][MAX_GRID_SIZE];
memcpy( copy, errorTable, sizeof( copy ) );
for ( i = 0 ; i < width ; i++ ) {
errorTable[1*MAX_GRID_SIZE+i] = copy[0][i]; //[width-1-i];
}
for ( i = 0 ; i < height ; i++ ) {
errorTable[0*MAX_GRID_SIZE+i] = copy[1][height-1-i];
}
}
#else // _XBOX
static void InvertErrorTable( float errorTable[2][MAX_GRID_SIZE], int width, int height ) {
int i;
float copy[2][MAX_GRID_SIZE];
memcpy( copy, errorTable, sizeof( copy ) );
for ( i = 0 ; i < width ; i++ ) {
errorTable[1][i] = copy[0][i]; //[width-1-i];
}
for ( i = 0 ; i < height ; i++ ) {
errorTable[0][i] = copy[1][height-1-i];
}
}
#endif // _XBOX
/*
==================
PutPointsOnCurve
==================
*/
#ifdef _XBOX
static void PutPointsOnCurve( drawVert_t* ctrl/*[MAX_GRID_SIZE][MAX_GRID_SIZE]*/,
int width, int height ) {
int i, j;
drawVert_t prev, next;
for ( i = 0 ; i < width ; i++ ) {
for ( j = 1 ; j < height ; j += 2 ) {
LerpDrawVert( &ctrl[j*MAX_GRID_SIZE+i], &ctrl[(j+1)*MAX_GRID_SIZE+i], &prev );
LerpDrawVert( &ctrl[j*MAX_GRID_SIZE+i], &ctrl[(j-1)*MAX_GRID_SIZE+i], &next );
LerpDrawVert( &prev, &next, &ctrl[j*MAX_GRID_SIZE+i] );
}
}
for ( j = 0 ; j < height ; j++ ) {
for ( i = 1 ; i < width ; i += 2 ) {
LerpDrawVert( &ctrl[j*MAX_GRID_SIZE+i], &ctrl[j*MAX_GRID_SIZE+i+1], &prev );
LerpDrawVert( &ctrl[j*MAX_GRID_SIZE+i], &ctrl[j*MAX_GRID_SIZE+i-1], &next );
LerpDrawVert( &prev, &next, &ctrl[j*MAX_GRID_SIZE+i] );
}
}
}
#else // _XBOX
static void PutPointsOnCurve( drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE],
int width, int height ) {
int i, j;
drawVert_t prev, next;
for ( i = 0 ; i < width ; i++ ) {
for ( j = 1 ; j < height ; j += 2 ) {
LerpDrawVert( &ctrl[j][i], &ctrl[j+1][i], &prev );
LerpDrawVert( &ctrl[j][i], &ctrl[j-1][i], &next );
LerpDrawVert( &prev, &next, &ctrl[j][i] );
}
}
for ( j = 0 ; j < height ; j++ ) {
for ( i = 1 ; i < width ; i += 2 ) {
LerpDrawVert( &ctrl[j][i], &ctrl[j][i+1], &prev );
LerpDrawVert( &ctrl[j][i], &ctrl[j][i-1], &next );
LerpDrawVert( &prev, &next, &ctrl[j][i] );
}
}
}
#endif // _XBOX
/*
=================
R_SubdividePatchToGrid
=================
*/
#ifdef _XBOX
srfGridMesh_t *R_SubdividePatchToGrid( int width, int height, drawVert_t* points,
drawVert_t* ctrl, float* errorTable ) {
int i, j, k, l;
drawVert_t prev, next, mid;
float len, maxLen;
int dir;
int t;
srfGridMesh_t *grid;
drawVert_t *vert;
vec3_t tmpVec;
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
ctrl[j*MAX_GRID_SIZE+i] = points[j*width+i];
}
}
for ( dir = 0 ; dir < 2 ; dir++ ) {
for ( j = 0 ; j < MAX_GRID_SIZE ; j++ ) {
errorTable[dir*MAX_GRID_SIZE+j] = 0;
}
// horizontal subdivisions
for ( j = 0 ; j + 2 < width ; j += 2 ) {
// check subdivided midpoints against control points
maxLen = 0;
for ( i = 0 ; i < height ; i++ ) {
vec3_t midxyz;
vec3_t dir;
vec3_t projected;
float d;
// calculate the point on the curve
for ( l = 0 ; l < 3 ; l++ ) {
midxyz[l] = (ctrl[i*MAX_GRID_SIZE+j].xyz[l]
+ ctrl[i*MAX_GRID_SIZE+j+1].xyz[l] * 2
+ ctrl[i*MAX_GRID_SIZE+j+2].xyz[l] ) * 0.25;
}
// see how far off the line it is
// using dist-from-line will not account for internal
// texture warping, but it gives a lot less polygons than
// dist-from-midpoint
VectorSubtract( midxyz, ctrl[i*MAX_GRID_SIZE+j].xyz, midxyz );
VectorSubtract( ctrl[i*MAX_GRID_SIZE+j+2].xyz, ctrl[i*MAX_GRID_SIZE+j].xyz, dir );
VectorNormalize( dir );
d = DotProduct( midxyz, dir );
VectorScale( dir, d, projected );
VectorSubtract( midxyz, projected, midxyz);
len = VectorLengthSquared( midxyz );
if ( len > maxLen ) {
maxLen = len;
}
}
maxLen = sqrt(maxLen);
// if all the points are on the lines, remove the entire columns
if ( maxLen < 0.1 ) {
errorTable[dir*MAX_GRID_SIZE+j+1] = 999;
continue;
}
// see if we want to insert subdivided columns
if ( width + 2 > MAX_GRID_SIZE ) {
errorTable[dir*MAX_GRID_SIZE+j+1] = 1.0/maxLen;
continue; // can't subdivide any more
}
if ( maxLen <= r_subdivisions->value ) {
errorTable[dir*MAX_GRID_SIZE+j+1] = 1.0/maxLen;
continue; // didn't need subdivision
}
errorTable[dir*MAX_GRID_SIZE+j+2] = 1.0/maxLen;
// insert two columns and replace the peak
width += 2;
for ( i = 0 ; i < height ; i++ ) {
LerpDrawVert( &ctrl[i*MAX_GRID_SIZE+j], &ctrl[i*MAX_GRID_SIZE+j+1], &prev );
LerpDrawVert( &ctrl[i*MAX_GRID_SIZE+j+1], &ctrl[i*MAX_GRID_SIZE+j+2], &next );
LerpDrawVert( &prev, &next, &mid );
for ( k = width - 1 ; k > j + 3 ; k-- ) {
ctrl[i*MAX_GRID_SIZE+k] = ctrl[i*MAX_GRID_SIZE+k-2];
}
ctrl[i*MAX_GRID_SIZE+j + 1] = prev;
ctrl[i*MAX_GRID_SIZE+j + 2] = mid;
ctrl[i*MAX_GRID_SIZE+j + 3] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
Transpose( width, height, ctrl );
t = width;
width = height;
height = t;
}
// put all the aproximating points on the curve
PutPointsOnCurve( ctrl, width, height );
// cull out any rows or columns that are colinear
for ( i = 1 ; i < width-1 ; i++ ) {
if ( errorTable[0*MAX_GRID_SIZE+i] != 999 ) {
continue;
}
for ( j = i+1 ; j < width ; j++ ) {
for ( k = 0 ; k < height ; k++ ) {
ctrl[k*MAX_GRID_SIZE+j-1] = ctrl[k*MAX_GRID_SIZE+j];
}
errorTable[0*MAX_GRID_SIZE+j-1] = errorTable[0*MAX_GRID_SIZE+j];
}
width--;
}
for ( i = 1 ; i < height-1 ; i++ ) {
if ( errorTable[1*MAX_GRID_SIZE+i] != 999 ) {
continue;
}
for ( j = i+1 ; j < height ; j++ ) {
for ( k = 0 ; k < width ; k++ ) {
ctrl[(j-1)*MAX_GRID_SIZE+k] = ctrl[j*MAX_GRID_SIZE+k];
}
errorTable[1*MAX_GRID_SIZE+j-1] = errorTable[1*MAX_GRID_SIZE+j];
}
height--;
}
#if 1
// flip for longest tristrips as an optimization
// the results should be visually identical with or
// without this step
if ( height > width ) {
Transpose( width, height, ctrl );
InvertErrorTable( errorTable, width, height );
t = width;
width = height;
height = t;
InvertCtrl( width, height, ctrl );
}
#endif
// calculate normals
MakeMeshNormals( width, height, ctrl );
// copy the results out to a grid
grid = (struct srfGridMesh_s *) Hunk_Alloc( (width * height - 1) * sizeof( drawVert_t ) + sizeof( *grid ) + width * 4 + height * 4, qtrue );
grid->widthLodError = (float*)(((char*)grid) + (width * height - 1) *
sizeof(drawVert_t) + sizeof(*grid));
memcpy( grid->widthLodError, &errorTable[0*MAX_GRID_SIZE], width * 4 );
grid->heightLodError = (float*)(((char*)grid->widthLodError) + width * 4);
memcpy( grid->heightLodError, &errorTable[1*MAX_GRID_SIZE], height * 4 );
grid->width = width;
grid->height = height;
grid->surfaceType = SF_GRID;
ClearBounds( grid->meshBounds[0], grid->meshBounds[1] );
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
vert = &grid->verts[j*width+i];
*vert = ctrl[j*MAX_GRID_SIZE+i];
AddPointToBounds( vert->xyz, grid->meshBounds[0], grid->meshBounds[1] );
}
}
// compute local origin and bounds
VectorAdd( grid->meshBounds[0], grid->meshBounds[1], grid->localOrigin );
VectorScale( grid->localOrigin, 0.5f, grid->localOrigin );
VectorSubtract( grid->meshBounds[0], grid->localOrigin, tmpVec );
grid->meshRadius = VectorLength( tmpVec );
VectorCopy( grid->localOrigin, grid->lodOrigin );
grid->lodRadius = grid->meshRadius;
return grid;
}
#else // _XBOX
srfGridMesh_t *R_SubdividePatchToGrid( int width, int height,
drawVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE] ) {
int i, j, k, l;
drawVert_t prev, next, mid;
float len, maxLen;
int dir;
int t;
MAC_STATIC drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE];
float errorTable[2][MAX_GRID_SIZE];
srfGridMesh_t *grid;
drawVert_t *vert;
vec3_t tmpVec;
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
ctrl[j][i] = points[j*width+i];
}
}
for ( dir = 0 ; dir < 2 ; dir++ ) {
for ( j = 0 ; j < MAX_GRID_SIZE ; j++ ) {
errorTable[dir][j] = 0;
}
// horizontal subdivisions
for ( j = 0 ; j + 2 < width ; j += 2 ) {
// check subdivided midpoints against control points
maxLen = 0;
for ( i = 0 ; i < height ; i++ ) {
vec3_t midxyz;
vec3_t dir;
vec3_t projected;
float d;
// calculate the point on the curve
for ( l = 0 ; l < 3 ; l++ ) {
midxyz[l] = (ctrl[i][j].xyz[l] + ctrl[i][j+1].xyz[l] * 2
+ ctrl[i][j+2].xyz[l] ) * 0.25;
}
// see how far off the line it is
// using dist-from-line will not account for internal
// texture warping, but it gives a lot less polygons than
// dist-from-midpoint
VectorSubtract( midxyz, ctrl[i][j].xyz, midxyz );
VectorSubtract( ctrl[i][j+2].xyz, ctrl[i][j].xyz, dir );
VectorNormalize( dir );
d = DotProduct( midxyz, dir );
VectorScale( dir, d, projected );
VectorSubtract( midxyz, projected, midxyz);
len = VectorLength( midxyz );
if ( len > maxLen ) {
maxLen = len;
}
}
// if all the points are on the lines, remove the entire columns
if ( maxLen < 0.1 ) {
errorTable[dir][j+1] = 999;
continue;
}
// see if we want to insert subdivided columns
if ( width + 2 > MAX_GRID_SIZE ) {
errorTable[dir][j+1] = 1.0/maxLen;
continue; // can't subdivide any more
}
if ( maxLen <= r_subdivisions->value ) {
errorTable[dir][j+1] = 1.0/maxLen;
continue; // didn't need subdivision
}
errorTable[dir][j+2] = 1.0/maxLen;
// insert two columns and replace the peak
width += 2;
for ( i = 0 ; i < height ; i++ ) {
LerpDrawVert( &ctrl[i][j], &ctrl[i][j+1], &prev );
LerpDrawVert( &ctrl[i][j+1], &ctrl[i][j+2], &next );
LerpDrawVert( &prev, &next, &mid );
for ( k = width - 1 ; k > j + 3 ; k-- ) {
ctrl[i][k] = ctrl[i][k-2];
}
ctrl[i][j + 1] = prev;
ctrl[i][j + 2] = mid;
ctrl[i][j + 3] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
Transpose( width, height, ctrl );
t = width;
width = height;
height = t;
}
// put all the aproximating points on the curve
PutPointsOnCurve( ctrl, width, height );
// cull out any rows or columns that are colinear
for ( i = 1 ; i < width-1 ; i++ ) {
if ( errorTable[0][i] != 999 ) {
continue;
}
for ( j = i+1 ; j < width ; j++ ) {
for ( k = 0 ; k < height ; k++ ) {
ctrl[k][j-1] = ctrl[k][j];
}
errorTable[0][j-1] = errorTable[0][j];
}
width--;
}
for ( i = 1 ; i < height-1 ; i++ ) {
if ( errorTable[1][i] != 999 ) {
continue;
}
for ( j = i+1 ; j < height ; j++ ) {
for ( k = 0 ; k < width ; k++ ) {
ctrl[j-1][k] = ctrl[j][k];
}
errorTable[1][j-1] = errorTable[1][j];
}
height--;
}
#if 1
// flip for longest tristrips as an optimization
// the results should be visually identical with or
// without this step
if ( height > width ) {
Transpose( width, height, ctrl );
InvertErrorTable( errorTable, width, height );
t = width;
width = height;
height = t;
InvertCtrl( width, height, ctrl );
}
#endif
// calculate normals
MakeMeshNormals( width, height, ctrl );
// copy the results out to a grid
grid = (struct srfGridMesh_s *) Hunk_Alloc( (width * height - 1) * sizeof( drawVert_t ) + sizeof( *grid ), qtrue );
grid->widthLodError = (float *) Hunk_Alloc( width * 4, qfalse );
memcpy( grid->widthLodError, errorTable[0], width * 4 );
grid->heightLodError = (float *) Hunk_Alloc( height * 4, qfalse );
memcpy( grid->heightLodError, errorTable[1], height * 4 );
grid->width = width;
grid->height = height;
grid->surfaceType = SF_GRID;
ClearBounds( grid->meshBounds[0], grid->meshBounds[1] );
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
vert = &grid->verts[j*width+i];
*vert = ctrl[j][i];
AddPointToBounds( vert->xyz, grid->meshBounds[0], grid->meshBounds[1] );
}
}
// compute local origin and bounds
VectorAdd( grid->meshBounds[0], grid->meshBounds[1], grid->localOrigin );
VectorScale( grid->localOrigin, 0.5f, grid->localOrigin );
VectorSubtract( grid->meshBounds[0], grid->localOrigin, tmpVec );
grid->meshRadius = VectorLength( tmpVec );
VectorCopy( grid->localOrigin, grid->lodOrigin );
grid->lodRadius = grid->meshRadius;
return grid;
}
#endif // _XBOX