jedi-academy/codemp/qcommon/cm_terrain.cpp
2013-04-23 15:21:39 +10:00

1720 lines
43 KiB
C++

//Anything above this #include will be ignored by the compiler
#include "../qcommon/exe_headers.h"
#include "cm_local.h"
#include "cm_patch.h"
#include "cm_landscape.h"
#include "../qcommon/GenericParser2.h"
#include "cm_randomterrain.h"
#ifdef _WIN32
#pragma optimize("p", on)
#endif
void R_LoadDataImage ( const char *name, byte **pic, int *width, int *height);
void R_InvertImage ( byte *data, int width, int height, int depth);
void R_Resample ( byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components);
#define _SMOOTH_TERXEL_BRUSH
#ifdef _SMOOTH_TERXEL_BRUSH
#define BRUSH_SIDES_PER_TERXEL 8
#else
#define BRUSH_SIDES_PER_TERXEL 5
#endif
void CCMLandScape::SetShaders(int height, CCMShader *shader)
{
int i;
for(i = height; shader && (i < HEIGHT_RESOLUTION); i++)
{
if(!mHeightDetails[i].GetSurfaceFlags())
{
mHeightDetails[i].SetFlags(shader->contentFlags, shader->surfaceFlags);
}
}
}
void CCMLandScape::LoadTerrainDef(const char *td)
{
char terrainDef[MAX_QPATH];
CGenericParser2 parse;
CGPGroup *basegroup, *classes, *items;
Com_sprintf(terrainDef, MAX_QPATH, "ext_data/RMG/%s.terrain", Info_ValueForKey(td, "terrainDef"));
Com_DPrintf("CM_Terrain: Loading and parsing terrainDef %s.....\n", Info_ValueForKey(td, "terrainDef"));
if(!Com_ParseTextFile(terrainDef, parse))
{
Com_sprintf(terrainDef, MAX_QPATH, "ext_data/arioche/%s.terrain", Info_ValueForKey(td, "terrainDef"));
if(!Com_ParseTextFile(terrainDef, parse))
{
Com_Printf("Could not open %s\n", terrainDef);
return;
}
}
// The whole file....
basegroup = parse.GetBaseParseGroup();
// The root { } struct
classes = basegroup->GetSubGroups();
while(classes)
{
items = classes->GetSubGroups();
while(items)
{
if(!stricmp(items->GetName(), "altitudetexture"))
{
int height;
const char *shaderName;
CCMShader *shader;
// Height must exist - the rest are optional
height = atol(items->FindPairValue("height", "0"));
// Shader for this height
shaderName = items->FindPairValue("shader", "");
if(strlen(shaderName))
{
shader = CM_GetShaderInfo(shaderName);
if(shader)
{
SetShaders(height, shader);
}
}
}
else if(!stricmp(items->GetName(), "water"))
{
const char *shaderName;
CCMShader *shader;
// Grab the height of the water
mBaseWaterHeight = atol(items->FindPairValue("height", "0"));
SetRealWaterHeight(mBaseWaterHeight);
// Grab the material of the water
shaderName = items->FindPairValue("shader", "");
shader = CM_GetShaderInfo(shaderName);
if(shader)
{
mWaterContents = shader->contentFlags;
mWaterSurfaceFlags = shader->surfaceFlags;
}
}
items = (CGPGroup *)items->GetNext();
}
classes = (CGPGroup *)classes->GetNext();
}
Com_ParseTextFileDestroy(parse);
}
CCMPatch::~CCMPatch(void)
{
}
CCMLandScape::CCMLandScape(const char *configstring, bool server)
{
int numPatches, numBrushesPerPatch, size, seed;
char heightMap[MAX_QPATH];
char *ptr;
holdrand = 0x89abcdef;
// Clear out the height details
memset(mHeightDetails, 0, sizeof(CCMHeightDetails) * HEIGHT_RESOLUTION);
mBaseWaterHeight = 0;
mWaterHeight = 0.0f;
// When constructed, referenced once
mRefCount = 1;
// Extract the relevant data from the config string
Com_sprintf(heightMap, MAX_QPATH, "%s", Info_ValueForKey(configstring, "heightMap"));
numPatches = atol(Info_ValueForKey(configstring, "numPatches"));
mTerxels = atol(Info_ValueForKey(configstring, "terxels"));
mHasPhysics = !!atol(Info_ValueForKey(configstring, "physics"));
seed = strtoul(Info_ValueForKey(configstring, "seed"), &ptr, 10);
mBounds[0][0] = (float)atof(Info_ValueForKey(configstring, "minx"));
mBounds[0][1] = (float)atof(Info_ValueForKey(configstring, "miny"));
mBounds[0][2] = (float)atof(Info_ValueForKey(configstring, "minz"));
mBounds[1][0] = (float)atof(Info_ValueForKey(configstring, "maxx"));
mBounds[1][1] = (float)atof(Info_ValueForKey(configstring, "maxy"));
mBounds[1][2] = (float)atof(Info_ValueForKey(configstring, "maxz"));
// Calculate size of the brush
VectorSubtract(mBounds[1], mBounds[0], mSize);
// Work out the dimensions of the brush in blocks - the object is to make the blocks as square as possible
mBlockWidth = Round(sqrtf(numPatches * mSize[0] / mSize[1]));
mBlockHeight = Round(sqrtf(numPatches * mSize[1] / mSize[0]));
// ...which lets us get the size of the heightmap
mWidth = mBlockWidth * mTerxels;
mHeight = mBlockHeight * mTerxels;
mHeightMap = (byte *)Z_Malloc(GetRealArea(), TAG_CM_TERRAIN);
mFlattenMap = (byte *)Z_Malloc(GetRealArea(), TAG_CM_TERRAIN);
// Zero means unused.
memset ( mFlattenMap, 0, GetRealArea() );
if(strlen(heightMap))
{
byte *imageData;
int iWidth, iHeight;
Com_DPrintf("CM_Terrain: Loading heightmap %s.....\n", heightMap);
mRandomTerrain = 0;
#ifdef DEDICATED
imageData=NULL;
#else
R_LoadDataImage(heightMap, &imageData, &iWidth, &iHeight);
if(imageData)
{
if(strstr(heightMap, "random_"))
{
mRandomTerrain = CreateRandomTerrain ( configstring, this, mHeightMap, GetRealWidth(), GetRealHeight());
}
else
{
// Flip to make the same as GenSurf
R_InvertImage(imageData, iWidth, iHeight, 1);
R_Resample(imageData, iWidth, iHeight, mHeightMap, GetRealWidth(), GetRealHeight(), 1);
}
Z_Free(imageData);
}
#endif
}
else
{
Com_Error(ERR_FATAL, "Terrain has no heightmap specified\n");
}
// Work out the dimensions of the terxel - should be almost square
mTerxelSize[0] = mSize[0] / mWidth;
mTerxelSize[1] = mSize[1] / mHeight;
mTerxelSize[2] = mSize[2] / 255.0f;
// Work out the patchsize
mPatchSize[0] = mSize[0] / mBlockWidth;
mPatchSize[1] = mSize[1] / mBlockHeight;
mPatchSize[2] = 1.0f;
mPatchScalarSize = VectorLength(mPatchSize);
// Loads in the water height and properties
// Gets the shader properties for the blended shaders
LoadTerrainDef(configstring);
Com_DPrintf("CM_Terrain: Creating patches.....\n");
mPatches = (CCMPatch *)Z_Malloc(sizeof(CCMPatch) * GetBlockCount(), TAG_CM_TERRAIN);
numBrushesPerPatch = mTerxels * mTerxels * 2;
size = (numBrushesPerPatch * sizeof(cbrush_t)) + (numBrushesPerPatch * BRUSH_SIDES_PER_TERXEL * 2 * (sizeof(cbrushside_t) + sizeof(cplane_t)));
mPatchBrushData = (byte *)Z_Malloc(size * GetBlockCount(), TAG_CM_TERRAIN);
// Initialize all terrain patches
UpdatePatches();
}
// Initialise a plane from 3 coords
void CCMPatch::InitPlane(struct cbrushside_s *side, cplane_t *plane, vec3_t p0, vec3_t p1, vec3_t p2)
{
vec3_t dx, dy;
VectorSubtract(p1, p0, dx);
VectorSubtract(p2, p0, dy);
CrossProduct(dx, dy, plane->normal);
VectorNormalize(plane->normal);
plane->dist = DotProduct(p0, plane->normal);
plane->type = PlaneTypeForNormal(plane->normal);
SetPlaneSignbits(plane);
#ifdef _XBOX
cmg.planes[side->planeNum.GetValue()] = *plane;
#else
side->plane = plane;
#endif
}
// Create the planes required for collision detection
// 2 brushes per terxel - each brush has 5 sides and 5 planes
void* CCMPatch::GetAdjacentBrushY ( int x, int y )
{
int yo1 = y % owner->GetTerxels();
int yo2 = (y-1) % owner->GetTerxels();
int xo = x % owner->GetTerxels();
CCMPatch* patch;
// Different patch
if ( yo2 > yo1 )
{
patch = owner->GetPatch ( x / owner->GetTerxels(), (y-1) / owner->GetTerxels() );
}
else
{
patch = this;
}
cbrush_t *brush;
brush = patch->mPatchBrushData;
brush += ((yo2 * owner->GetTerxels ( ) + xo) * 2);
brush ++;
return brush;
}
void* CCMPatch::GetAdjacentBrushX ( int x, int y )
{
int xo1 = x % owner->GetTerxels();
int xo2 = (x-1) % owner->GetTerxels();
int yo = y % owner->GetTerxels();
CCMPatch* patch;
// Different patch
if ( xo2 > xo1 )
{
patch = owner->GetPatch ( (x-1) / owner->GetTerxels(), y / owner->GetTerxels() );
}
else
{
patch = this;
}
cbrush_t *brush;
brush = patch->mPatchBrushData;
brush += ((yo * owner->GetTerxels ( ) + xo2) * 2);
if ( ! ((x+y) & 1) )
{
brush ++;
}
return brush;
}
void CCMPatch::CreatePatchPlaneData(void)
{
#ifndef PRE_RELEASE_DEMO
int realWidth;
int x, y, i, j;
#if 0
int n;
#endif
cbrush_t *brush;
cbrushside_t *side;
cplane_t *plane;
vec3_t *coords;
vec3_t localCoords[8];
mNumBrushes = owner->GetTerxels() * owner->GetTerxels() * 2;
realWidth = owner->GetRealWidth();
coords = owner->GetCoords();
brush = mPatchBrushData;
side = (cbrushside_t *)(mPatchBrushData + mNumBrushes);
plane = (cplane_t *)(side + (mNumBrushes * BRUSH_SIDES_PER_TERXEL * 2));
for(y = mHy; y < mHy + owner->GetTerxels(); y++)
{
for(x = mHx; x < mHx + owner->GetTerxels(); x++)
{
int offsets[4];
if ( (x+y)&1 )
{
offsets[0] = (y * realWidth) + x; // TL
offsets[1] = (y * realWidth) + x + 1; // TR
offsets[2] = ((y + 1) * realWidth) + x; // BL
offsets[3] = ((y + 1) * realWidth) + x + 1; // BR
}
else
{
offsets[2] = (y * realWidth) + x; // TL
offsets[0] = (y * realWidth) + x + 1; // TR
offsets[3] = ((y + 1) * realWidth) + x; // BL
offsets[1] = ((y + 1) * realWidth) + x + 1; // BR
}
for(i = 0; i < 4; i++)
{
VectorCopy(coords[offsets[i]], localCoords[i]);
VectorCopy(coords[offsets[i]], localCoords[i + 4]);
// Set z of base of brush to bottom of landscape brush
localCoords[i + 4][2] = owner->GetMins()[2];
}
// Set the bounds of the terxel
VectorSet(brush[0].bounds[0], MAX_WORLD_COORD, MAX_WORLD_COORD, MAX_WORLD_COORD);
VectorSet(brush[0].bounds[1], MIN_WORLD_COORD, MIN_WORLD_COORD, MIN_WORLD_COORD);
for(i = 0; i < 8; i++)
{
for(j = 0; j < 3; j++)
{
// mins
if(localCoords[i][j] < brush[0].bounds[0][j])
{
brush[0].bounds[0][j] = localCoords[i][j];
}
// maxs
if(localCoords[i][j] > brush[0].bounds[1][j])
{
brush[0].bounds[1][j] = localCoords[i][j];
}
}
}
VectorDec(brush[0].bounds[0]);
VectorInc(brush[0].bounds[1]);
VectorCopy(brush[0].bounds[0], brush[1].bounds[0]);
VectorCopy(brush[0].bounds[1], brush[1].bounds[1]);
brush[0].contents = mContentFlags;
brush[1].contents = mContentFlags;
#ifndef _SMOOTH_TERXEL_BRUSH
// Set up sides of the brushes
brush[0].numsides = 5;
brush[0].sides = side;
brush[1].numsides = 5;
brush[1].sides = side + 5;
for ( i = 0; i < 8 ; i ++ )
{
localCoords[i][0] = (int)localCoords[i][0];
localCoords[i][1] = (int)localCoords[i][1];
localCoords[i][2] = (int)localCoords[i][2];
}
// Create the planes of the 2 triangles that make up the tops of the brushes
InitPlane(side + 0, plane + 0, localCoords[0], localCoords[1], localCoords[2]);
InitPlane(side + 5, plane + 5, localCoords[3], localCoords[2], localCoords[1]);
// Create the bottom face of the brushes
InitPlane(side + 1, plane + 1, localCoords[6], localCoords[5], localCoords[4]);
InitPlane(side + 6, plane + 6, localCoords[5], localCoords[6], localCoords[7]);
// Create the 3 vertical faces
InitPlane(side + 2, plane + 2, localCoords[0], localCoords[2], localCoords[4]);
InitPlane(side + 7, plane + 7, localCoords[3], localCoords[1], localCoords[7]);
InitPlane(side + 3, plane + 3, localCoords[0], localCoords[4], localCoords[1]);
InitPlane(side + 8, plane + 8, localCoords[3], localCoords[7], localCoords[2]);
InitPlane(side + 4, plane + 4, localCoords[2], localCoords[1], localCoords[6]);
InitPlane(side + 9, plane + 9, localCoords[5], localCoords[1], localCoords[6]);
// Increment to next terxel
brush += 2;
side += 10;
plane += 10;
#else
// Set up sides of the brushes
brush[0].numsides = 5;
brush[0].sides = side;
brush[1].numsides = 5;
brush[1].sides = side + 8;
// Create the planes of the 2 triangles that make up the tops of the brushes
InitPlane(side + 0, plane + 0, localCoords[0], localCoords[1], localCoords[2]);
InitPlane(side + 8, plane + 8, localCoords[3], localCoords[2], localCoords[1]);
// Create the bottom face of the brushes
InitPlane(side + 1, plane + 1, localCoords[4], localCoords[6], localCoords[5]);
InitPlane(side + 9, plane + 9, localCoords[7], localCoords[5], localCoords[6]);
// Create the 3 vertical faces
InitPlane(side + 2, plane + 2, localCoords[0], localCoords[2], localCoords[4]);
InitPlane(side + 10, plane + 10, localCoords[3], localCoords[1], localCoords[7]);
InitPlane(side + 3, plane + 3, localCoords[0], localCoords[4], localCoords[1]);
InitPlane(side + 11, plane + 11, localCoords[3], localCoords[7], localCoords[2]);
InitPlane(side + 4, plane + 4, localCoords[2], localCoords[1], localCoords[6]);
InitPlane(side + 12, plane + 12, localCoords[5], localCoords[1], localCoords[6]);
float V = DotProduct ( (plane + 8)->normal, localCoords[0] ) - (plane + 8)->dist;
if ( V < 0 )
{
InitPlane ( brush[0].sides + brush[0].numsides, plane + brush[0].numsides, localCoords[3], localCoords[2], localCoords[1]);
brush[0].numsides++;
InitPlane ( brush[1].sides + brush[1].numsides, plane + 8 + brush[1].numsides, localCoords[0], localCoords[1], localCoords[2]);
brush[1].numsides++;
}
// Determine if we need to smooth the brush transition from the brush above us
if ( y > 0 && y < owner->GetPatchHeight ( ) - 1 )
{
cbrush_t* abovebrush = (cbrush_t*)GetAdjacentBrushY ( x, y );
#ifdef _XBOX
cplane_t* aboveplane = &cmg.planes[abovebrush->sides->planeNum.GetValue()];
#else
cplane_t* aboveplane = abovebrush->sides->plane;
#endif
V = DotProduct ( aboveplane->normal, ((y+x)&1)?(localCoords[2]):(localCoords[1]) ) - aboveplane->dist;
if ( V < 0 )
{
memcpy ( brush[0].sides + brush[0].numsides, abovebrush->sides, sizeof(cbrushside_t) );
brush[0].numsides++;
memcpy ( abovebrush->sides + abovebrush->numsides, side + 0, sizeof(cbrushside_t) );
abovebrush->numsides++;
}
}
// Determine if we need to smooth the brush transition from the brush to the left of us
if ( x > 0 && x < owner->GetPatchWidth ( ) - 1 )
{
cbrush_t* abovebrush = (cbrush_t*)GetAdjacentBrushX ( x, y );
#ifdef _XBOX
cplane_t* aboveplane = &cmg.planes[abovebrush->sides->planeNum.GetValue()];
#else
cplane_t* aboveplane = abovebrush->sides->plane;
#endif
V = DotProduct ( aboveplane->normal, localCoords[1] ) - aboveplane->dist;
if ( V < 0 )
{
if ( (x+y)&1 )
{
memcpy ( brush[0].sides + brush[0].numsides, abovebrush->sides, sizeof(cbrushside_t) );
brush[0].numsides++;
memcpy ( abovebrush->sides + abovebrush->numsides, side + 0, sizeof(cbrushside_t) );
abovebrush->numsides++;
}
else
{
memcpy ( brush[1].sides + brush[1].numsides, abovebrush->sides, sizeof(cbrushside_t) );
brush[1].numsides++;
memcpy ( abovebrush->sides + abovebrush->numsides, side + 8, sizeof(cbrushside_t) );
abovebrush->numsides++;
}
}
}
// Increment to next terxel
brush += 2;
side += 16;
plane += 16;
#endif
}
}
#endif // PRE_RELEASE_DEMO
}
void CCMPatch::Init(CCMLandScape *ls, int heightX, int heightY, vec3_t world, byte *hMap, byte *patchBrushData)
{
#ifndef PRE_RELEASE_DEMO
int min, max, x, y, height;
// Set owning landscape
owner = ls;
// Store the base of the top left corner
VectorCopy(world, mWorldCoords);
// Store pointer to first byte of the height data for this patch.
mHx = heightX;
mHy = heightY;
mHeightMap = hMap + ((heightY * owner->GetRealWidth()) + heightX);
// Calculate the bounds for culling
// Use the dimensions 1 terxel outside the patch to allow for sloping of edge terxels
min = 256;
max = -1;
for(y = heightY - 1; y < heightY + owner->GetTerxels() + 1; y++)
{
if(y >= 0)
{
for(x = heightX - 1; x < heightX + owner->GetTerxels() + 1; x++)
{
if(x >= 0)
{
height = hMap[(y * owner->GetRealWidth()) + x];
if(height > max)
{
max = height;
}
if(height < min)
{
min = height;
}
}
}
}
}
// Mins
mBounds[0][0] = world[0];
mBounds[0][1] = world[1];
mBounds[0][2] = world[2] + (min * owner->GetTerxelSize()[2]);
// Maxs
mBounds[1][0] = world[0] + (owner->GetPatchSize()[0]);
mBounds[1][1] = world[1] + (owner->GetPatchSize()[1]);
mBounds[1][2] = world[2] + (max * owner->GetTerxelSize()[2]);
// Corner heights
mCornerHeights[0] = mHeightMap[0];
mCornerHeights[1] = mHeightMap[owner->GetTerxels()];
mCornerHeights[2] = mHeightMap[owner->GetTerxels() * owner->GetRealWidth()];
mCornerHeights[3] = mHeightMap[(owner->GetTerxels() * owner->GetRealWidth()) + owner->GetTerxels()];
// Set the surfaceFlags using average height (may want a more complex algo here)
mSurfaceFlags = owner->GetSurfaceFlags((min + max) >> 1);
mContentFlags = owner->GetContentFlags((min + max) >> 1);
// Set base of brush data from big array
mPatchBrushData = (cbrush_t *)patchBrushData;
CreatePatchPlaneData();
#endif // PRE_RELEASE_DEMO
}
CCMPatch *CCMLandScape::GetPatch(int x, int y)
{
return(mPatches + ((y * mBlockWidth) + x));
}
extern cvar_t *com_newtrace;
void CCMLandScape::PatchCollide(struct traceWork_s *tw, trace_t &trace, const vec3_t start, const vec3_t end, int checkcount)
{
vec3pair_t tBounds;
// Convert to valid bounding box
CM_CalcExtents(start, end, tw, tBounds);
//if (com_newtrace->integer)
if (1)
{
float slope, offset;
float startPatchLoc, endPatchLoc, startPos, endPos;
float patchDirection = 1;
float checkDirection = 1;
int countPatches, count;
CCMPatch *patch;
float fraction = trace.fraction;
if (fabs(end[0]-start[0]) >= fabs(fabs(end[1]-start[1])))
{ // x travels more than y
// calculate line slope and offset
if (end[0] - start[0])
{
slope = (end[1] - start[1]) / (end[0] - start[0]);
}
else
{
slope = 0;
}
offset = start[1] - (start[0] * slope);
// find the starting
startPatchLoc = floor((start[0] - mBounds[0][0]) / mPatchSize[0]);
endPatchLoc = floor((end[0] - mBounds[0][0]) / mPatchSize[0]);
if (startPatchLoc <= endPatchLoc)
{ // moving along slope in a positive direction
endPatchLoc++;
startPatchLoc--;
countPatches = endPatchLoc - startPatchLoc + 1;
}
else
{ // moving along slope in a negative direction
endPatchLoc--;
startPatchLoc++;
patchDirection = -1;
countPatches = startPatchLoc - endPatchLoc + 1;
}
if (slope < 0.0)
{
checkDirection = -1;
}
// first calculate the real world location
startPos = ((startPatchLoc * mPatchSize[0] + mBounds[0][0]) * slope) + offset;
// calculate it back into patch coords
startPos = floor((startPos - mBounds[0][1] + tw->size[0][1]) / mPatchSize[1]);
do
{
if (startPatchLoc >= 0 && startPatchLoc < mBlockWidth)
{ // valid location
// first calculate the real world location
endPos = (((startPatchLoc+patchDirection) * mPatchSize[0] + mBounds[0][0]) * slope) + offset;
// calculate it back into patch coords
endPos = floor((endPos - mBounds[0][1] + tw->size[1][1]) / mPatchSize[1]);
if (checkDirection < 0)
{
startPos++;
endPos--;
}
else
{
startPos--;
endPos++;
}
count = fabs(endPos - startPos) + 1;
while(count)
{
if (startPos >= 0 && startPos < mBlockHeight)
{ // valid location
patch = GetPatch(startPatchLoc, startPos);
// Collide with every patch to find the minimum fraction
CM_HandlePatchCollision(tw, trace, tBounds[0], tBounds[1], patch, checkcount);
if (trace.fraction <= 0.0)
{
return;
}
}
startPos += checkDirection;
count--;
}
if (trace.fraction < fraction)
{
return;
}
}
// move to the next spot
// we still stay one behind, to get the opposite edge of the terrain patch
startPos = ((startPatchLoc * mPatchSize[0] + mBounds[0][0]) * slope) + offset;
startPatchLoc += patchDirection;
// first calculate the real world location
// calculate it back into patch coords
startPos = floor((startPos - mBounds[0][1] + tw->size[0][1]) / mPatchSize[1]);
countPatches--;
}
while (countPatches);
}
else
{
// calculate line slope and offset
slope = (end[0] - start[0]) / (end[1] - start[1]);
offset = start[0] - (start[1] * slope);
// find the starting
startPatchLoc = floor((start[1] - mBounds[0][1]) / mPatchSize[1]);
endPatchLoc = floor((end[1] - mBounds[0][1]) / mPatchSize[1]);
if (startPatchLoc <= endPatchLoc)
{ // moving along slope in a positive direction
endPatchLoc++;
startPatchLoc--;
countPatches = endPatchLoc - startPatchLoc + 1;
}
else
{ // moving along slope in a negative direction
endPatchLoc--;
startPatchLoc++;
patchDirection = -1;
countPatches = startPatchLoc - endPatchLoc + 1;
}
if (slope < 0.0)
{
checkDirection = -1;
}
// first calculate the real world location
startPos = ((startPatchLoc * mPatchSize[1] + mBounds[0][1]) * slope) + offset;
// calculate it back into patch coords
startPos = floor((startPos - mBounds[0][0] + tw->size[0][0]) / mPatchSize[0]);
do
{
if (startPatchLoc >= 0 && startPatchLoc < mBlockHeight)
{ // valid location
// first calculate the real world location
endPos = (((startPatchLoc+patchDirection) * mPatchSize[1] + mBounds[0][1]) * slope) + offset;
// calculate it back into patch coords
endPos = floor((endPos - mBounds[0][0] + tw->size[1][0]) / mPatchSize[0]);
if (checkDirection < 0)
{
startPos++;
endPos--;
}
else
{
startPos--;
endPos++;
}
count = fabs(endPos - startPos) + 1;
while(count)
{
if (startPos >= 0 && startPos < mBlockWidth)
{ // valid location
patch = GetPatch(startPos, startPatchLoc);
// Collide with every patch to find the minimum fraction
CM_HandlePatchCollision(tw, trace, tBounds[0], tBounds[1], patch, checkcount);
if (trace.fraction <= 0.0)
{
return;
}
}
startPos += checkDirection;
count--;
}
if (trace.fraction < fraction)
{
return;
}
}
// move to the next spot
// we still stay one behind, to get the opposite edge of the terrain patch
startPos = ((startPatchLoc * mPatchSize[1] + mBounds[0][1]) * slope) + offset;
startPatchLoc += patchDirection;
// first calculate the real world location
// calculate it back into patch coords
startPos = floor((startPos - mBounds[0][0] + tw->size[0][0]) / mPatchSize[0]);
countPatches--;
}
while (countPatches);
}
}
else
{
int x, y;
vec3_t tWork;
vec3_t pStart, pEnd;
int minx, maxx, miny, maxy;
CCMPatch *patch;
// Work out and grab the relevant patches
VectorSubtract(tBounds[0], mBounds[0], tWork);
VectorInverseScaleVector(tWork, mPatchSize, pStart);
VectorSubtract(tBounds[1], mBounds[0], tWork);
VectorInverseScaleVector(tWork, mPatchSize, pEnd);
minx = Com_Clamp(0, mBlockWidth - 1, floorf(pStart[0]));
maxx = Com_Clamp(0, mBlockWidth - 1, ceilf(pEnd[0]));
miny = Com_Clamp(0, mBlockHeight - 1, floorf(pStart[1]));
maxy = Com_Clamp(0, mBlockHeight - 1, ceilf(pEnd[1]));
// generic box collide with each one
for(y = miny; y <= maxy; y++)
{
for(x = minx; x <= maxx; x++)
{
patch = GetPatch(x, y);
// Collide with every patch to find the minimum fraction
CM_HandlePatchCollision(tw, trace, tBounds[0], tBounds[1], patch, checkcount);
if (trace.fraction <= 0.0)
{
break;
}
}
}
}
}
float CCMLandScape::WaterCollide(const vec3_t begin, const vec3_t end, float fraction) const
{
// Check for completely above water
if((begin[2] > mWaterHeight) && (end[2] > mWaterHeight))
{
return(fraction);
}
// Check for completely below water
if((begin[2] < mWaterHeight) && (end[2] < mWaterHeight))
{
return(fraction);
}
// Check for starting in water and leaving
if(begin[2] < mWaterHeight - SURFACE_CLIP_EPSILON)
{
fraction = ((mWaterHeight - SURFACE_CLIP_EPSILON) - begin[2]) / (end[2] - begin[2]);
return(fraction);
}
// Now the trace must be entering the water
if(begin[2] > mWaterHeight + SURFACE_CLIP_EPSILON)
{
fraction = (begin[2] - (mWaterHeight + SURFACE_CLIP_EPSILON)) / (begin[2] - end[2]);
}
return(fraction);
}
void CCMLandScape::GetTerxelLocalCoords ( int x, int y, vec3_t localCoords[8] )
{
int realWidth;
vec3_t* coords;
int offsets[4];
int i;
coords = GetCoords ( );
realWidth = GetRealWidth ( );
if ( (x+y)&1 )
{
offsets[0] = (y * realWidth) + x; // TL
offsets[1] = (y * realWidth) + x + 1; // TR
offsets[2] = ((y + 1) * realWidth) + x; // BL
offsets[3] = ((y + 1) * realWidth) + x + 1; // BR
}
else
{
offsets[2] = (y * realWidth) + x; // TL
offsets[0] = (y * realWidth) + x + 1; // TR
offsets[3] = ((y + 1) * realWidth) + x; // BL
offsets[1] = ((y + 1) * realWidth) + x + 1; // BR
}
for( i = 0; i < 4; i++ )
{
VectorCopy(coords[offsets[i]], localCoords[i]);
VectorCopy(coords[offsets[i]], localCoords[i + 4]);
// Set z of base of brush to bottom of landscape brush
localCoords[i + 4][2] = GetMins()[2];
}
}
void CCMLandScape::UpdatePatches(void)
{
CCMPatch *patch;
int x, y, ix, iy, numBrushesPerPatch;
vec3_t world;
int size;
/* for(y=0;y<GetRealHeight();y++)
{
for(x=0;x<GetRealWidth();x++)
{
Com_Printf("(%d,%d) = %u\n", x, y, (unsigned)mHeightMap[y*GetRealWidth() + x]);
}
}
*/
// Calculate real world coordinates from the heightmap
CalcRealCoords();
numBrushesPerPatch = mTerxels * mTerxels * 2;
size = (numBrushesPerPatch * sizeof(cbrush_t)) + (numBrushesPerPatch * BRUSH_SIDES_PER_TERXEL * 2 * (sizeof(cbrushside_t) + sizeof(cplane_t)));
patch = mPatches;
for(y = 0, iy = 0; y < mHeight; y += mTerxels, iy++)
{
for(x = 0, ix = 0; x < mWidth; x += mTerxels, ix++, patch++)
{
VectorSet(world, mBounds[0][0] + (x * mTerxelSize[0]), mBounds[0][1] + (y * mTerxelSize[1]), mBounds[0][2]);
patch->Init(this, x, y, world, mHeightMap, mPatchBrushData + (size * (ix + (iy * mBlockWidth))));
}
}
/*
for ( y = mTerxels; y < mHeight - mTerxels; y ++ )
{
for ( x = mTerxels; x < mWidth - mTerxels; x ++ )
{
int xo = x % mTerxels;
int yo = y % mTerxels;
int xor = (x + 1) % mTerxels;
int yob = (y + 1) % mTerxels;
CCMPatch* patch = mPatches + (mWidth / mTerxels) * y + (x / mTerxels);
CCMPatch* rpatch = mPatches + (mWidth / mTerxels) * y + ((x+1) / mTerxels);
CCMPatch* bpatch = mPatches + (mWidth / mTerxels) * (y + 1) + (x / mTerxels);
int offsets[4];
vec3_t localCoords[8];
vec3_t localCoordsR[8];
vec3_t localCoordsL[8];
GetTerxelLocalCoords ( x, y, localCoords );
GetTerxelLocalCoords ( x + 1, y, localCoordsR );
GetTerxelLocalCoords ( x, y + 1, localCoordsB );
brush = patch->GetCollisionData ( );;
side = (cbrushside_t *)(mPatchBrushData + patch->GetNumBrushes ( ) );
plane = (cplane_t *)(side + (mNumBrushes * BRUSH_SIDES_PER_TERXEL * 2));
float V = DotProduct ( (plane + 8)->normal, localCoords[0] ) + plane->dist;
if ( V < 0 )
{
InitPlane ( brush[0].sides + brush[0].numsides, plane + brush[0].numsides, localCoords[3], localCoords[2], localCoords[1]);
brush[0].numsides++;
InitPlane ( brush[1].sides + brush[1].numsides, plane + 8 + brush[1].numsides, localCoords[0], localCoords[1], localCoords[2]);
brush[1].numsides++;
}
}
}
*/
// Cleanup coord array
Z_Free(mCoords);
}
void CCMLandScape::CalcRealCoords(void)
{
int x, y;
mCoords = (vec3_t *)Z_Malloc(sizeof(vec3_t) * GetRealWidth() * GetRealHeight(), TAG_CM_TERRAIN_TEMP);
// Work out the real world coordinates of each heightmap entry
for(y = 0; y < GetRealHeight(); y++)
{
for(x = 0; x < GetRealWidth(); x++)
{
ivec3_t icoords;
int offset;
offset = (y * GetRealWidth()) + x;
VectorSet(icoords, x, y, mHeightMap[offset]);
VectorScaleVectorAdd(GetMins(), icoords, GetTerxelSize(), mCoords[offset]);
}
}
}
void CCMLandScape::TerrainPatchIterate(void (*IterateFunc)( CCMPatch *, void * ), void *userdata) const
{
int i;
CCMPatch *patch;
patch = mPatches;
for(i = 0; i < GetBlockCount(); i++, patch++)
{
IterateFunc(patch, userdata);
}
}
#define LERP(t, a, b) (((b)-(a))*(t) + (a))
float CCMLandScape::GetWorldHeight(vec3_t origin, const vec3pair_t bounds, bool aboveGround) const
{
vec3_t work;
int minx, maxx, miny, maxy;
int TL, TR, BL, BR;
int final;
VectorSubtract(origin, mBounds[0], work);
VectorInverseScaleVector(work, mTerxelSize, work);
// Presume the bases of all misc models are less than 1 terxel square
minx = Com_Clamp(0, GetWidth(), (int)floorf(work[0]));
maxx = Com_Clamp(0, GetWidth(), (int)ceilf(work[0]));
miny = Com_Clamp(0, GetHeight(), (int)floorf(work[1]));
maxy = Com_Clamp(0, GetHeight(), (int)ceilf(work[1]));
TL = mHeightMap[(miny * GetRealWidth()) + minx];
TR = mHeightMap[(miny * GetRealWidth()) + maxx];
BL = mHeightMap[(maxy * GetRealWidth()) + minx];
BR = mHeightMap[(maxy * GetRealWidth()) + maxx];
if(aboveGround)
{
// int max1, max2;
// max1 = maximum(TL, TR);
// max2 = maximum(BL, BR);
// final = maximum(max1, max2);
float h1, h2;
float tx, ty;
tx = (work[0] - minx)/((float)(maxx-minx));
ty = (work[1] - miny)/((float)(maxy-miny));
h1 = LERP(tx, TL, TR);
h2 = LERP(tx, BL, BR);
final = LERP(ty, h1, h2);
}
else
{
int min1, min2;
min1 = minimum(TL, TR);
min2 = minimum(BL, BR);
final = minimum(min1, min2);
}
origin[2] = (final * mTerxelSize[2]) + mBounds[0][2];
// compute slope at this spot
if (maxx == minx)
maxx = Com_Clamp(0, GetWidth(), minx+1);
if (maxy == miny)
maxy = Com_Clamp(0, GetHeight(), miny+1);
BR = mHeightMap[(maxy * GetRealWidth()) + maxx];
// rise over run
return (fabs((float)(BR - TL)) * mTerxelSize[2]) / mTerxelSize[0];
}
void CM_CircularIterate(byte *data, int width, int height, int xo, int yo, int insideRadius, int outsideRadius, int *user, void (*callback)(byte *, float, int *))
{
int x, y, offset;
byte *work;
for(y = -outsideRadius; y < outsideRadius + 1; y++)
{
if(y + yo >= 0 && y + yo < height)
{
offset = sqrtf((outsideRadius * outsideRadius) - (y * y));
for(x = -offset; x < offset + 1; x++)
{
if(x + xo >= 0 && x + xo < width)
{
float radius = sqrt((float)(x*x+y*y));
if ( radius >= insideRadius )
{
work = data + (x + xo) + ((y + yo) * width);
callback( work, (radius - (float)insideRadius) / (float)(outsideRadius - insideRadius), user);
}
}
}
}
}
}
void CM_ForceHeight( byte *work, float lerp, int *user)
{
*work = (byte)Com_Clamp(0, 255, (int)*user);
}
void CM_GetAverage( byte *work, float lerp, int *user)
{
user[0] += *work;
user[1]++;
}
void CM_Smooth ( byte* work, float lerp, int *user )
{
float smooth = sin ( M_PI/2*3 + (1.0f-lerp) * (M_PI / 2) ) + 1.0f;
// float smooth = (1.0f - lerp);
*work = *work + (int)((float)(*user - *work) * smooth);
}
void CM_MakeAverage( byte *work, float lerp, int *user)
{
int height, diff;
height = (int)*work;
diff = *user - height;
if(abs(diff) > 3)
{
diff >>= 2;
}
height += diff;
*work = (byte)Com_Clamp(0, 255, height);
}
void CCMLandScape::SaveArea(CArea *area)
{
mAreas.push_back(area);
}
void CCMLandScape::CarveLine ( vec3_t start, vec3_t end, int depth, int width )
{
int x, x1, x2, deltax;
int y, y1, y2, deltay;
int xinc1, xinc2;
int yinc1, yinc2;
int den, num;
int count, add;
int i;
float heightStart;
float heightEnd;
float heightStep;
x1 = (int) start[0];
y1 = (int) start[1];
x2 = (int) end[0];
y2 = (int) end[1];
deltax = abs(x2 - x1);
deltay = abs(y2 - y1);
x = x1;
y = y1;
// The x-values are increasing
if (x2 >= x1)
{
xinc1 = 1;
xinc2 = 1;
}
// The x-values are decreasing
else
{
xinc1 = -1;
xinc2 = -1;
}
// The y-values are increasing
if (y2 >= y1)
{
yinc1 = 1;
yinc2 = 1;
}
// The y-values are decreasing
else
{
yinc1 = -1;
yinc2 = -1;
}
if (deltax >= deltay) // There is at least one x-value for every y-value
{
xinc1 = 0; // Don't change the x when numerator >= denominator
yinc2 = 0; // Don't change the y for every iteration
den = deltax;
num = deltax / 2;
add = deltay;
count = deltax; // There are more x-values than y-values
}
else // There is at least one y-value for every x-value
{
xinc2 = 0; // Don't change the x for every iteration
yinc1 = 0; // Don't change the y when numerator >= denominator
den = deltay;
num = deltay / 2;
add = deltax;
count = deltay; // There are more y-values than x-values
}
vec3_t pt;
vec3_t bounds[2] = {{-1,-1,-1},{1,1,1}};
pt[0] = start[0];
pt[1] = start[1];
GetWorldHeight ( pt, bounds, false );
heightStart = pt[2];
pt[0] = end[0];
pt[1] = end[1];
GetWorldHeight ( pt, bounds, false );
heightEnd = pt[2];
heightStep = (heightEnd-heightStart) / count;
for ( i = 0; i <= count; i++ )
{
// Flatten the current location
CArea area;
pt[0] = x;
pt[1] = y;
area.Init ( pt, width / 2 + (irand(0, width/2)) );
FlattenArea ( &area, heightStart + (heightStep * i) - (depth/2 - (irand(0, depth/2))), false, true, true );
// Increase the numerator by the top of the fraction
num += add;
if (num >= den)
{
// Calculate the new numerator value
num -= den;
// Change the x and y as appropriate
x += xinc1;
y += yinc1;
}
// Change the x and y as appropriate
x += xinc2;
y += yinc2;
}
}
void CCMLandScape::CarveBezierCurve ( int numCtlPoints, vec3_t* ctlPoints, int steps, int depth, int size )
{
int i;
int choose;
int n;
float u;
float t;
float tt;
float t1;
float step;
vec3_t pt;
vec3_t lastpt;
vec3_t b[10];
n = numCtlPoints - 1;
choose = 1;
for ( i = 1; i <= n; i ++ )
{
if ( i == 1 )
choose = n;
else
choose = choose * (n-i+1) / i;
(*(ctlPoints+i))[0] *= choose;
(*(ctlPoints+i))[1] *= choose;
}
step = 1.0f / (float)steps;
for ( choose = 0, t = step; t < 1; t += step, choose++ )
{
b[0][0] = (*(ctlPoints+0))[0];
b[0][1] = (*(ctlPoints+0))[1];
for ( u = t, i = 1; i <= n; i ++ )
{
b[i][0] = (*(ctlPoints+i))[0] * u;
b[i][1] = (*(ctlPoints+i))[1] * u;
u = u * t;
}
pt[0] = b[n][0];
pt[1] = b[n][1];
t1 = 1 - t;
tt = t1;
for ( i = n - 1; i >= 0; i -- )
{
pt[0] += b[i][0] * tt;
pt[1] += b[i][1] * tt;
tt = tt * t1;
}
if ( choose != 0 )
{
CarveLine ( lastpt, pt, depth, size );
}
// Save this point for next time around
lastpt[0] = pt[0];
lastpt[1] = pt[1];
}
}
void CCMLandScape::FlattenArea(CArea *area, int height, bool save, bool forceHeight, bool smooth )
{
vec3_t temp;
ivec3_t icoords;
int radius;
int height2;
if(save)
{
SaveArea(area);
// mAreas.push_back(*area);
}
// Work out coords in the heightmap
VectorSubtract(area->GetPosition(), mBounds[0], temp);
icoords[0] = temp[0] / (mBounds[1][0] - mBounds[0][0]) * (float)GetRealWidth ( );
icoords[1] = temp[1] / (mBounds[1][1] - mBounds[0][1]) * (float)GetRealHeight ( );
// VectorInverseScaleVector(temp, mTerxelSize, icoords);
// round up, we'd rather have a little more area flattened than have less then what was requested
radius = (int)ceilf( (area->GetRadius() / mTerxelSize[1]) );
// Work out the average height of the surrounding terrain
height2 = height;
if(height < 0)
{
ivec3_t info;
info[0] = 0;
info[1] = 0;
CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius, info, CM_GetAverage);
if(info[1])
{
height = info[0] / info[1];
}
}
else
{
height = height & 0x7F;
}
if ( smooth )
{
CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], radius, radius * 3, &height, CM_Smooth);
}
if ( forceHeight )
{
CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius + 1, &height, CM_ForceHeight );
CM_CircularIterate(mFlattenMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius + 1, &height2, CM_ForceHeight );
}
else if ( smooth )
{
CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius, &height, CM_Smooth);
}
}
void CM_BelowLevel(byte *data, float lerp, int *info)
{
info[1]++;
if(*data < info[2])
{
info[0]++;
}
}
float CCMLandScape::FractionBelowLevel(CArea *area, int height)
{
vec3_t temp;
ivec3_t icoords, info;
int count;
float level;
// Work out coords in the heightmap
VectorSubtract(area->GetPosition(), mBounds[0], temp);
VectorInverseScaleVector(temp, mTerxelSize, icoords);
// Work out radius of area in heightmap entries
count = area->GetRadius() / mTerxelSize[1];
info[0] = 0;
info[1] = 0;
info[2] = height;
if(height < 0)
{
info[2] = mBaseWaterHeight;
}
CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, count, info, CM_BelowLevel);
level = 0.0f;
if(info[1])
{
level = (float)info[0] / info[1];
}
return(level);
}
CArea *CCMLandScape::GetFirstArea(void)
{
if(!mAreas.size())
{
return(NULL);
}
mAreasIt = mAreas.begin();
return (*mAreasIt);
}
CArea *CCMLandScape::GetFirstObjectiveArea(void)
{
if(!mAreas.size())
{
return(NULL);
}
mAreasIt = mAreas.begin();
while (mAreasIt != mAreas.end())
{
// run through the areas to find the player area
if((*mAreasIt)->GetType() == AT_OBJECTIVE)
{
return (*mAreasIt);
}
mAreasIt++;
}
return(NULL);
}
CArea *CCMLandScape::GetPlayerArea(void)
{ // do me
if(!mAreas.size())
{
return(NULL);
}
mAreasIt = mAreas.begin();
while (mAreasIt != mAreas.end())
{
// run through the areas to find the player area
if((*mAreasIt)->GetType() == AT_PLAYER)
{
return (*mAreasIt);
}
mAreasIt++;
}
return(NULL);
}
CArea *CCMLandScape::GetNextArea(void)
{
mAreasIt++;
if(mAreasIt == mAreas.end())
{
return(NULL);
}
return (*mAreasIt);
}
CArea *CCMLandScape::GetNextObjectiveArea(void)
{
mAreasIt++;
while (mAreasIt != mAreas.end())
{
// run through the areas to find the player area
if((*mAreasIt)->GetType() == AT_OBJECTIVE)
{
return (*mAreasIt);
}
mAreasIt++;
}
return(NULL);
}
bool CCMLandScape::AreaCollision(CArea *area, int *areaTypes, int areaTypeCount)
{
CArea *areas;
int i;
float segment;
bool collision;
areas = GetFirstArea();
while(areas)
{
collision = false;
if(area->GetVillageID() == areas->GetVillageID())
{
// Check for being too close angularly
if(area->GetAngleDiff() && areas->GetAngleDiff())
{
segment = areas->GetAngle() - area->GetAngle();
if(segment < M_PI)
{
segment += 2 * M_PI;
}
if(segment > M_PI)
{
segment -= 2 * M_PI;
}
if(fabsf(segment) < areas->GetAngleDiff() + area->GetAngleDiff())
{
collision = true;
}
}
}
// Check for buildings being too close together
if(Distance(areas->GetPosition(), area->GetPosition()) < areas->GetRadius() + area->GetRadius())
{
collision = true;
}
if(collision)
{
// If no area type list was specified then all areas are fair game
if ( !areaTypes )
{
return true;
}
for(i = 0; i < areaTypeCount; i++)
{
if(areas->GetType() == areaTypes[i])
{
return(true);
}
}
}
areas = GetNextArea();
}
return(false);
}
void CCMLandScape::rand_seed(int seed)
{
holdrand = seed;
Com_Printf("rand_seed = %d\n", holdrand);
}
float CCMLandScape::flrand(float min, float max)
{
float result;
assert((max - min) < 32768);
holdrand = (holdrand * 214013L) + 2531011L;
result = (float)(holdrand >> 17); // 0 - 32767 range
result = ((result * (max - min)) / 32768.0F) + min;
// Com_Printf("flrand: Seed = %d\n", holdrand);
return(result);
}
int CCMLandScape::irand(int min, int max)
{
int result;
assert((max - min) < 32768);
max++;
holdrand = (holdrand * 214013L) + 2531011L;
result = holdrand >> 17;
result = ((result * (max - min)) >> 15) + min;
// Com_Printf("irand: Seed = %d\n", holdrand);
return(result);
}
CCMLandScape::~CCMLandScape(void)
{
if(mHeightMap)
{
Z_Free(mHeightMap);
mHeightMap = NULL;
}
if(mFlattenMap)
{
Z_Free(mFlattenMap);
mFlattenMap = NULL;
}
if(mPatchBrushData)
{
Z_Free(mPatchBrushData);
mPatchBrushData = NULL;
}
if(mPatches)
{
Z_Free(mPatches);
mPatches = NULL;
}
if (mRandomTerrain)
{
delete mRandomTerrain;
}
for(mAreasIt=mAreas.begin(); mAreasIt != mAreas.end(); mAreasIt++)
{
delete (*mAreasIt);
}
mAreas.clear();
}
class CCMLandScape *CM_InitTerrain(const char *configstring, thandle_t terrainId, bool server)
{
CCMLandScape *ls;
ls = new CCMLandScape(configstring, server);
ls->SetTerrainId(terrainId);
return(ls);
}
void CM_TerrainPatchIterate(const class CCMLandScape *landscape, void (*IterateFunc)( CCMPatch *, void * ), void *userdata)
{
landscape->TerrainPatchIterate(IterateFunc, userdata);
}
float CM_GetWorldHeight(const CCMLandScape *landscape, vec3_t origin, const vec3pair_t bounds, bool aboveGround)
{
return landscape->GetWorldHeight(origin, bounds, aboveGround);
}
void CM_FlattenArea(CCMLandScape *landscape, CArea *area, int height, bool save, bool forceHeight, bool smooth )
{
landscape->FlattenArea(area, height, save, forceHeight, smooth );
}
void CM_CarveBezierCurve(CCMLandScape *landscape, int numCtls, vec3_t* ctls, int steps, int depth, int size )
{
landscape->CarveBezierCurve(numCtls, ctls, steps, depth, size );
}
void CM_SaveArea(CCMLandScape *landscape, CArea *area)
{
landscape->SaveArea(area);
}
float CM_FractionBelowLevel(CCMLandScape *landscape, CArea *area, int height)
{
return(landscape->FractionBelowLevel(area, height));
}
bool CM_AreaCollision(class CCMLandScape *landscape, class CArea *area, int *areaTypes, int areaTypeCount)
{
return(landscape->AreaCollision(area, areaTypes, areaTypeCount));
}
CArea *CM_GetFirstArea(CCMLandScape *landscape)
{
return(landscape->GetFirstArea());
}
CArea *CM_GetFirstObjectiveArea(CCMLandScape *landscape)
{
return(landscape->GetFirstObjectiveArea());
}
CArea *CM_GetPlayerArea(CCMLandScape *landscape)
{
return(landscape->GetPlayerArea());
}
CArea *CM_GetNextArea(CCMLandScape *landscape)
{
return(landscape->GetNextArea());
}
CArea *CM_GetNextObjectiveArea(CCMLandScape *landscape)
{
return(landscape->GetNextObjectiveArea());
}
CRandomTerrain *CreateRandomTerrain(const char *config, CCMLandScape *landscape, byte *heightmap, int width, int height)
{
CRandomTerrain *RandomTerrain = 0;
#ifndef PRE_RELEASE_DEMO
char *ptr;
unsigned long seed;
seed = strtoul(Info_ValueForKey(config, "seed"), &ptr, 10);
landscape->rand_seed(seed);
RandomTerrain = new CRandomTerrain;
RandomTerrain->Init(landscape, heightmap, width, height);
#endif // #ifndef PRE_RELEASE_DEMO
/*
RandomTerrain->CreatePath(0, -1, 0, 9, 0.1, 0.5, 0.5, 0.5, 0.05, 0.08, 0.31, 0.1, 3);
RandomTerrain->CreatePath(1, 0, 0, 6, 0.5, 0.5, 0.9, 0.1, 0.08, 0.1, 0.31, 0.1, 0.9);
RandomTerrain->CreatePath(2, 0, 0, 6, 0.5, 0.5, 0.9, 0.9, 0.08, 0.1, 0.31, 0.1, 0.9);
RandomTerrain->Generate();
*/
return RandomTerrain;
}
// end
#ifdef _WIN32
#pragma optimize("p", off)
#endif